An Exhaustive Classification of Photonic Topological Insulators

Max Lein
in collarboration with Giuseppe De Nittis

University of Toronto
2014.08.28@ESI

Talk based on

Collaboration with Giuseppe De Nittis

- On the Role of Symmetries in the Theory of Photonic Crystals to appear in the Annals of Physics
- The Perturbed Maxwell Operator as Pseudodifferential Operator Documenta Mathematica 19, 2014
- Effective Light Dynamics in Perturbed Photonic Crystals to appear in Comm. Math. Phys.
(1) The Schrödinger formulation of the Maxwell equations

2 Symmetries of photonic crystals
(3) Cartan-Altland-Zirnbauer classification of photonic crystals
4. Photonic crystals of class BDI \& AIII
(5) Open Problems

Johnson \& Joannopoulos (2004)

Quantum-light analogies

1987-2005 Research focuses on photonic crystals with photonic band gap

2005-now Two seminal work by Raghu \& Haldane: study of topological properties

Quantum-light analogies

Quantum-light analogies

»A photonic crystal is to light what
a crystalline solid is to an electron."

Quantum-light analogies

- Photonic bulk-edge correspondences
- Identify topological observables $O=T+$ error
- Find all topological invariants T
- Classification of PhCs by symmetries

Quantum-light analogies

- Photonic bulk-edge correspondences
\downarrow
- Identify topological observables $O=T+$ error
- Find all topological invariants T

- Classification of PhCs by symmetries

Quantum-light analogies

- Photonic bulk-edge correspondences
\downarrow
- Identify topological observables $O=T+$ error
\downarrow
- Find all topological invariants T
- Classification of PhCs by symmetries

Quantum-light analogies

- Photonic bulk-edge correspondences
\downarrow
- Identify topological observables $O=T+$ error
\downarrow
- Find all topological invariants T
\downarrow
- Classification of PhCs by symmetries

Quantum-light analogies

- Photonic bulk-edge correspondences
- Identify topological observables $O=T$
- Find all topological invariants T
- Classification of PhCs by symmetries \rightsquigarrow today

1) The Schrödinger formulation of the Maxwell equations

2 Symmetries of photonic crystals
(3) Cartan-Altland-Zirnbauer classification of photonic crystals
4. Photonic crystals of class BDI \& Alll
(5) Open Problems

The Material Weights

Properties of the material enter through phenomenological

$$
W(x)^{-1}=\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right) \in \operatorname{Mat}_{\mathbb{C}}(6)
$$

Assumption (Material weights)
(1) $0<c \mathbf{1} \leq W^{-1} \leq \mathbf{C} \mathbf{1}$ (W exists, satisfies same condition)
(2) $W^{*}=W$ (lossless)
(3) W frequency-independent (medium linear)

Maxwell equations as Schrödinger equation

(1) Field energy

$$
\mathcal{E}(\mathbf{E}, \mathbf{H})=\frac{1}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} x\binom{\mathbf{E}(x)}{\mathbf{H}(x)} \cdot\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)\binom{\mathbf{E}(x)}{\mathbf{H}(x)}
$$

(2) Dynamical equations

Maxwell equations as Schrödinger equation

(1) Field energy

$$
\mathcal{E}(\mathbf{E}, \mathbf{H})=\mathcal{E}(\mathbf{E}(t), \mathbf{H}(t))
$$

(2) Dynamical equations

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy

$$
\mathcal{E}(\mathbf{E}, \mathbf{H})=\frac{1}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} x\binom{\mathbf{E}(x)}{\mathbf{H}(x)} \cdot\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)\binom{\mathbf{E}(x)}{\mathbf{H}(x)}
$$

(2) Dynamical equations

$$
\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\binom{-\nabla_{x} \times \mathbf{H}}{+\nabla_{x} \times \mathbf{E}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy

$$
\mathcal{E}(\mathbf{E}, \mathbf{H})=\frac{1}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} x\binom{\mathbf{E}(x)}{\mathbf{H}(x)} \cdot\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)\binom{\mathbf{E}(x)}{\mathbf{H}(x)}
$$

(2) Dynamical equations

$$
\binom{\varepsilon \partial_{t} \mathbf{E}+\chi \partial_{t} \mathbf{H}}{\chi^{*} \partial_{t} \mathbf{E}+\mu \partial_{t} \mathbf{H}}=\binom{-\nabla_{x} \times \mathbf{H}}{+\nabla_{x} \times \mathbf{E}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy

$$
\mathcal{E}(\mathbf{E}, \mathbf{H})=\frac{1}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} x\binom{\mathbf{E}(x)}{\mathbf{H}(x)} \cdot\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)\binom{\mathbf{E}(x)}{\mathbf{H}(x)}
$$

(2) Dynamical equations

$$
\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\binom{-\nabla_{x} \times \mathbf{H}}{+\nabla_{x} \times \mathbf{E}}
$$

(3) No sources

$$
\left(\begin{array}{cc}
\operatorname{div} & 0 \\
0 & \operatorname{div}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}=0
$$

Maxwell equations as Schrödinger equation

(1) Field energy

$$
\mathcal{E}(\mathbf{E}, \mathbf{H})=\frac{1}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} x\binom{\mathbf{E}(x)}{\mathbf{H}(x)} \cdot\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)\binom{\mathbf{E}(x)}{\mathbf{H}(x)}
$$

(2) Dynamical equations

$$
\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\binom{-\nabla_{x} \times \mathbf{H}}{+\nabla_{x} \times \mathbf{E}}
$$

(3) No sources

$$
\binom{\nabla \cdot(\varepsilon \mathbf{E}+\chi \mathbf{H})}{\nabla \cdot\left(\chi^{*} \mathbf{E}+\mu \mathbf{H}\right)}=0
$$

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}:=\int_{\mathbb{R}^{3}} \mathrm{~d} x\binom{\mathbf{E}(x)}{\mathbf{H}(x)} \cdot\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)\binom{\mathbf{E}(x)}{\mathbf{H}(x)}
$$

(2) Dynamical equations $\rightsquigarrow » S c h r o ̈ d i n g e r ~ e q u a t i o n « ~$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=2 \mathcal{E}(\mathbf{E}, \mathbf{H})
$$

(2) Dynamical equations $\rightsquigarrow »$ »chrödinger equation«

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow>$)Schrödinger equation«

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\binom{-\nabla_{x} \times \mathbf{H}}{+\nabla_{x} \times \mathbf{E}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\binom{-\nabla_{x} \times \mathbf{H}}{+\nabla_{x} \times \mathbf{E}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\mathrm{i} \frac{\partial}{\partial t} \underbrace{\binom{\mathbf{E}}{\mathbf{H}}}_{=\Psi}=\underbrace{\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)}_{=M_{w}}\binom{\mathbf{E}}{\mathbf{H}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\mathfrak{i} \frac{\partial}{\partial t} \Psi=M_{w} \Psi
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\mathrm{i} \frac{\partial}{\partial t} \underbrace{\binom{\mathbf{E}}{\mathbf{H}}}_{=\Psi}=\underbrace{\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)}_{=M_{w}}\binom{\mathbf{E}}{\mathbf{H}}
$$

(3) No sources

Maxwell equations as Schrödinger equation

(1) Field energy $(\mathbf{E}, \mathbf{H}) \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ with energy norm

$$
\|(\mathbf{E}, \mathbf{H})\|_{L_{w}^{2}}^{2}=\left\langle(\mathbf{E}, \mathbf{H}), W^{-1}(\mathbf{E}, \mathbf{H})\right\rangle_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)}
$$

(2) Dynamical equations $\rightsquigarrow »$ Schrödinger equation«

$$
\mathrm{i} \frac{\partial}{\partial t} \underbrace{\binom{\mathbf{E}}{\mathbf{H}}}_{=\Psi}=\underbrace{\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)}_{=M_{w}}\binom{\mathbf{E}}{\mathbf{H}}
$$

(3) No sources

$$
J_{w}:=\left\{\binom{\mathbf{E}}{\mathbf{H}} \in L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right) \left\lvert\,\left(\begin{array}{cc}
\text { div } & 0 \\
0 & \operatorname{div}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}=0\right.\right\}
$$

The Maxwell operator

$$
\begin{aligned}
M_{w} & =\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right) \\
& =W \operatorname{Rot}=W(-
\end{aligned}
$$

M_{w} selfadjoint on weighted $L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ $\Rightarrow \mathrm{e}^{-\mathrm{it} M_{w}}$ unitary, yields conservation of energy

The Maxwell operator

$$
\begin{aligned}
M_{w} & =\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right) \\
& =W \text { Rot }=W\left(-\sigma_{2}\right.
\end{aligned}
$$

M_{w} selfadjoint on weighted $L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ $\Rightarrow \mathrm{e}^{-\mathrm{it} M_{w}}$ unitary, yields conservation of \in nergy

The Maxwell operator

$$
\begin{aligned}
M_{w} & =\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right) \\
& =W \operatorname{Rot}=W\left(-\sigma_{2} \otimes \nabla^{\times}\right)
\end{aligned}
$$

M_{w} selfadjoint on weighted $L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ $\Rightarrow \mathrm{e}^{-\mathrm{it} M_{w}}$ unitary, yields conservation of energy

The Maxwell operator

$$
\begin{aligned}
M_{w} & =\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right) \\
& =W \operatorname{Rot}=W
\end{aligned}
$$

M_{w} selfadjoint on weighted $L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$
$\Rightarrow \mathrm{e}^{-\mathrm{it} M_{w}}$ unitary, yields conservation of energy

(1) The Schrödinger formulation of the Maxwell equations

(2) Symmetries of photonic crystals
(3) Cartan-Altland-Zirnbauer classification of photonic crystals
4. Photonic crystals of class BDI \& All
(5) Open Problems

Symmetries of the free Maxwell operator Rot

$$
\text { Rot }=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)=-\sigma_{2} \otimes \nabla^{\times}
$$

Symmetries
For $n=1,2,3$
(2) Complex conjugation C
(3) $J_{n}=T_{n} C$ (antilinear)

Symmetries of the free Maxwell operator Rot

$$
\text { Rot }=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)=-\sigma_{2} \otimes \nabla^{\times}
$$

Symmetries
For $n=1,2,3$
(1) $T_{n}=\sigma_{n} \otimes \mathrm{id}$ (linear)
(2) Complex conjugation C
(3) $J_{n}=T_{n} C$ (antilinear)

Symmetries of the free Maxwell operator Rot

$$
\text { Rot }=\left(\begin{array}{cc}
0 & +i \nabla^{\times} \\
-i \nabla^{\times} & 0
\end{array}\right)=-\sigma_{2} \otimes \nabla^{\times}
$$

Symmetries
For $n=1,2,3$
(1) $T_{n}=\sigma_{n} \otimes i d$ (linear)
(2) Complex conjugation C (antilinear)

Symmetries of the free Maxwell operator Rot

$$
\text { Rot }=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)=-\sigma_{2} \otimes \nabla^{\times}
$$

Symmetries
For $n=1,2,3$
(1) $T_{n}=\sigma_{n} \otimes \mathrm{id}$ (linear)
(2) Complex conjugation C (antilinear)
(3) $J_{n}=T_{n} C$ (antilinear)

Symmetries of the free Maxwell operator Rot

$$
\text { Rot }=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)=-\sigma_{2} \otimes \nabla^{\times}
$$

Action of symmetries on Rot
(1) $C \operatorname{Rot} C=-\operatorname{Rot}$
(2) $T_{n} \operatorname{Rot} T_{n}=-\operatorname{Rot}, n=1,3$
$T_{2} \operatorname{Rot} T_{2}=+\operatorname{Rot}$
(3) $J_{n} \operatorname{Rot} J_{n}=+\operatorname{Rot}, n=1,3$
$J_{2} \operatorname{Rot} J_{2}=-\operatorname{Rot}$

Classification of Maxwell operator in matter

Product structure of $M_{w}=W$ Rot:

$$
U W U^{*}= \pm W \Longrightarrow U M_{W} U^{*}= \pm M_{W}
$$

(Signs may be different)

Symmetries $U=T_{n}, C, J_{n}, n=1,2,3$

Classification of Maxwell operator in matter

Product structure of $M_{w}=W$ Rot:

$$
U W U^{*}= \pm W \Longrightarrow U M_{W} U^{*}= \pm M_{w}
$$

(Signs may be different)

Symmetries $U=T_{n}, C, J_{n}, n=1,2,3$

Classification of Maxwell operator in matter

$$
U W U^{*}= \pm W \Longleftrightarrow U W^{-1} U^{*}= \pm W^{-1}
$$

Classification of Maxwell operator in matter

$$
U W U^{*}= \pm W \Longleftrightarrow U W^{-1} U^{*}= \pm W^{-1}
$$

$$
U M_{w} U^{*}= \pm M_{w} \Longrightarrow \text { conditions on } W^{-1}=\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)
$$

(1) The Schrödinger formulation of the Maxwell equations
(2) Symmetries of photonic crystals
(3) Cartan-Altland-Zirnbauer classification of photonic crystals
4. Photonic crystals of class BDI \& All
(5) Open Problems

Relevance of symmetries for classification

Mathematically irrelevant symmetries, e. g.
(1) $T_{n} M_{w} T_{n}=+M_{w}$ (linear, commuting)
(2) Parity $(P \Psi)(x):=\Psi(-x)$ (linear, anticommuting)

Relevance of symmetries for classification

Mathematically irrelevant symmetries, e. g.
(1) $T_{n} M_{w} T_{n}=+M_{w}$ (linear, commuting)
(2) Parity $(P \Psi)(x):=\Psi(-x)$ (linear, anticommuting)

Relevance of symmetries for classification

Physically irrelevant symmetries

Symmetry leads to unphysical conditions on weights, e. g.

$$
C W C=-W \Leftrightarrow C M_{w} C=+M_{w}
$$

implies $\varepsilon \in \mathfrak{i} \mathbb{R}, \mu \in \mathbb{R}, \chi \in \mathrm{i} \mathbb{R}$ (keep in mind $\varepsilon=\varepsilon^{*}$ and $\mu=\mu^{*}$)

Relevance of symmetries for classification

Physically irrelevant symmetries

Symmetry leads to unphysical conditions on weights, e. g.

$$
C W C=-W \Leftrightarrow C M_{w} C=+M_{w}
$$

implies $\varepsilon \in \mathfrak{i} \mathbb{R}, \mu \in \mathbb{R}, \chi \in \mathbb{i} \mathbb{R}$ (keep in mind $\varepsilon=\varepsilon^{*}$ and $\mu=\mu^{*}$)

CAZ			
A	noalized		
Alll	$T_{1} \equiv \chi$	$T_{2} \equiv \chi$	$T_{3} \equiv \chi$
AI	$J_{1} \equiv+\mathrm{TR}$	$J_{3} \equiv+\mathrm{TR}$	$C \equiv+\mathrm{TR}$
All	$J_{2} \equiv-\mathrm{TR}$		
D	$J_{1} \equiv+\mathrm{PH}$	$J_{3} \equiv+\mathrm{PH}$	$C \equiv+\mathrm{PH}$
C	$J_{2} \equiv-\mathrm{PH}$		

Symmetries present	CAZ class	Reduced K-group in dimension			
		$d=1$	$d=2$	$d=3$	$d=4$
none	A	0	\mathbb{Z}	\mathbb{Z}^{3}	\mathbb{Z}^{7}
$J_{3} \equiv+\mathrm{TR}$	Al	0	0	0	\mathbb{Z}
$T_{3} \equiv \chi$	AllI	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{4}	\mathbb{Z}^{8}
$C \equiv+\mathrm{PH}$	D	\mathbb{Z}_{2}	$\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}$	$\mathbb{Z}_{2}^{3} \oplus \mathbb{Z}^{3}$	$\mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{6}$
$T_{3} \equiv \chi$ $C \equiv+\mathrm{PH}$	BDI	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{3}	\mathbb{Z}^{4}
$J_{2} \equiv-\mathrm{PH}$ $J_{3} \equiv+\mathrm{TR}$	Cl	0	0	\mathbb{Z}	\mathbb{Z}^{4}

Symmetries present	CAZ class	Reduced K-group in dimension			
		$d=1$	$d=2$	$d=3$	$d=4$
none	A	0	\mathbb{Z}	\mathbb{Z}^{3}	\mathbb{Z}^{7}
$J_{3} \equiv+\mathrm{TR}$	Al	0	0	0	\mathbb{Z}
$T_{3} \equiv \chi$	AllI	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{4}	\mathbb{Z}^{8}
$C \equiv+\mathrm{PH}$	D	\mathbb{Z}_{2}	$\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}$	$\mathbb{Z}_{2}^{3} \oplus \mathbb{Z}^{3}$	$\mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{6}$
$T_{3} \equiv \chi$ $C \equiv+\mathrm{PH}$	BDI	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{3}	\mathbb{Z}^{4}
$J_{2} \equiv-\mathrm{PH}$ $J_{3} \equiv+\mathrm{TR}$	Cl	0	0	\mathbb{Z}	\mathbb{Z}^{4}

Cartan-Altland-Zirnbauer classification of Maxwell operators

- 9 out of 10 CAZ classes theoretically realizable
- 24 different realizations of CAZ classes
- Not all realizations physically relevant
- At least 5 out of those 9 CAZ classes considered in physics
- Electromagnetic fields are not fermions
- Reduced K-groups: anticipation of topological invariants

Cartan-Altland-Zirnbauer classification of Maxwell operators

- 9 out of 10 CAZ classes theoretically realizable
- 24 different realizations of CAZ classes
- Not all realizations physically relevant
- At least 5 out of those 9 CAZ classes considered in physics
- Electromagnetic fields are not fermions
- Reduced K-groups: anticipation of topological invariants

Cartan-Altland-Zirnbauer classification of Maxwell operators

- 9 out of 10 CAZ classes theoretically realizable
- 24 different realizations of CAZ classes
- Not all realizations physically relevant
- At least 5 out of those 9 CAZ classes considered in physics
- Electromagnetic fields are not fermions
- Reduced K-groups: anticipation of topological invariants

Cartan-Altland-Zirnbauer classification of Maxwell operators

- 9 out of 10 CAZ classes theoretically realizable
- 24 different realizations of CAZ classes
- Not all realizations physically relevant
- At least 5 out of those 9 CAZ classes considered in physics
- Electromagnetic fields are not fermions
- Reduced K-groups: anticipation of topological invariants

Cartan-Altland-Zirnbauer classification of Maxwell operators

- 9 out of 10 CAZ classes theoretically realizable
- 24 different realizations of CAZ classes
- Not all realizations physically relevant
- At least 5 out of those 9 CAZ classes considered in physics
- Electromagnetic fields are not fermions
- Reduced K-groups: anticipation of topological invariants

(1) The Schrödinger formulation of the Maxwell equations

(2) Symmetries of photonic crystals
(3) Cartan-Altland-Zirnbauer classification of photonic crystals
4. Photonic crystals of class BDI \& Alll

(5) Open Problems

Material weights of ordinary materials

$$
W^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right)
$$

Material weights of ordinary (non-gyrotropic) materials

- $\varepsilon, \mu \in \mathbb{R}$
- $\chi=0$
- $\varepsilon \neq \mu$

Material weights of ordinary materials

$$
W^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right)
$$

Material weights of ordinary (non-gyrotropic) materials

- $\varepsilon, \mu \in \mathbb{R}$
- $\chi=0$
- $\varepsilon \neq \mu$

Symmetries of ordinary materials

Physical time-reversal

- Relies on $\chi=0$
- $T=T_{3}=\sigma_{3} \otimes \mathrm{id}:(\mathbf{E}, \mathbf{H}) \mapsto(\mathbf{E},-\mathbf{H})$
- $T M_{w} T=-M_{w}$ l linear \Rightarrow classified as chiral symmetry - $T \mathrm{e}^{-\mathrm{i} t M_{w}} T=\mathrm{e}^{+\mathrm{i} t M_{w}}$

Symmetries of ordinary materials

Physical time-reversal

- Relies on $\chi=0$
- $T=T_{3}=\sigma_{3} \otimes \mathrm{id}:(\mathbf{E}, \mathbf{H}) \mapsto(\mathbf{E},-\mathbf{H})$
- $T M_{w} T=-M_{w}$, linear \Rightarrow classified as chiral symmetry

Symmetries of ordinary materials

Physical time-reversal

- Relies on $\chi=0$
- $T=T_{3}=\sigma_{3} \otimes \mathrm{id}:(\mathbf{E}, \mathbf{H}) \mapsto(\mathbf{E},-\mathbf{H})$
- $T M_{w} T=-M_{w}$, linear \Rightarrow classified as chiral symmetry
- $T \mathrm{e}^{-\mathrm{i} t M_{w}} T=\mathrm{e}^{+\mathrm{i} t M_{w}}$

Symmetries of ordinary materials

Complex conjugation

- Relies on $W^{-1}=\operatorname{Re} W^{-1}$
$C M_{w} C=-M_{w}$, antilinear
\Rightarrow classified as even particle-hole symmetry
$C \mathrm{e}^{-\mathrm{i} t M_{w}} C=\mathrm{e}^{+\mathrm{it} C M_{w} C}=\mathrm{e}^{-\mathrm{i} t M_{w}}$
"Real electromagnetic fields remain real"

Symmetries of ordinary materials

Complex conjugation

- Relies on $W^{-1}=\operatorname{Re} W^{-1}$
- $C M_{w} C=-M_{w}$, antilinear \Rightarrow classified as even particle-hole symmetry - "Real electromagnetic fields remain real"

Symmetries of ordinary materials

Complex conjugation

- Relies on $W^{-1}=\operatorname{Re} W^{-1}$
- $C M_{w} C=-M_{w}$, antilinear \Rightarrow classified as even particle-hole symmetry
- $C \mathrm{e}^{-\mathrm{i} t M_{w}} C=\mathrm{e}^{+\mathrm{it} C M_{w} C}=\mathrm{e}^{-\mathrm{it} M_{w}}$ "Real electromagnetic fields remain real"

Symmetries of ordinary materials

Complex conjugation

- Relies on $W^{-1}=\operatorname{Re} W^{-1}$
- $C M_{w} C=-M_{w}$, antilinear \Rightarrow classified as even particle-hole symmetry
- $C \mathrm{e}^{-\mathrm{i} t M_{w}} C=\mathrm{e}^{+\mathrm{it} C M_{w} C}=\mathrm{e}^{-\mathrm{i} t M_{w}}$
- "Real electromagnetic fields remain real"

Incorrect classification of C as time-reversal symmetry

Classification in second-order framework
Physicists usually start with $\left(\partial_{t}^{2}+M_{w}^{2}\right) \Psi(t)=0$
\rightsquigarrow action of symmetry

$$
C M_{w}^{2} C=(-1)^{2} M_{w}^{2}=M_{w}^{2}
$$

$" \Rightarrow$ " C is a time-reversal symmetry
$" \Rightarrow$ " Ordinary (non-gyrotropic) materials are of class AI
$" \Rightarrow$ " Absence of topological effects
$" \Rightarrow$ " Gyrotropic materials are of class A

Incorrect classification of C as time-reversal symmetry

Classification in second-order framework
Physicists usually start with $\left(\partial_{t}^{2}+M_{w}^{2}\right) \Psi(t)=0$
\rightsquigarrow action of symmetry

$$
C M_{w}^{2} C=(-1)^{2} M_{w}^{2}=M_{w}^{2}
$$

" \Rightarrow " C is a time-reversal symmetry
" \Rightarrow " Ordinary (non-gyrotropic) materials are of class AI
" \Rightarrow " Absence of topological effects
" \Rightarrow " Gyrotropic materials are of class A

Incorrect classification of C as time-reversal symmetry

Classification in second-order framework
Physicists usually start with $\left(\partial_{t}^{2}+M_{w}^{2}\right) \Psi(t)=0$
\rightsquigarrow action of symmetry

$$
C M_{w}^{2} C=(-1)^{2} M_{w}^{2}=M_{w}^{2}
$$

" \Rightarrow " C is a time-reversal symmetry
" \Rightarrow " Ordinary (non-gyrotropic) materials are of class AI
" \Rightarrow " Absence of topological effects
" \Rightarrow " Gyrotropic materials are of class A
Conclusions are false!

Incorrect classification of C as time-reversal symmetry

Example (Free Dirac equation)

- Write Dirac equation as i $\partial_{t} \Psi=H_{D} \Psi$ where

$$
H_{D}=m \beta+(-\mathrm{i} \nabla) \cdot \alpha
$$

- H_{D} has TR and PH symmetry
- But: in second-order formulation

$$
\left(\partial_{t}^{2}+H_{D}^{2}\right) \Psi=\left(\partial_{t}^{2}+\left(m^{2}+(-\mathrm{i} \nabla)^{2}\right) \beta\right) \Psi=0
$$

TR and PH symmetry both incorrectly appear as "TR symmetry"
2nd-order distinguishing CAZ types of symmetries
framework (TR vs. PH) impossible!

Incorrect classification of C as time-reversal symmetry

Example (Free Dirac equation)

- Write Dirac equation as i $\partial_{t} \Psi=H_{D} \Psi$ where

$$
H_{D}=m \beta+(-\mathrm{i} \nabla) \cdot \alpha
$$

- H_{D} has TR and PH symmetry
- But: in second-order formulation

$$
\left(\partial_{t}^{2}+H_{D}^{2}\right) \Psi=\left(\partial_{t}^{2}+\left(m^{2}+(-\mathrm{i} \nabla)^{2}\right) \beta\right) \Psi=0
$$

TR and PH symmetry both incorrectly appear as "TR symmetry"

2nd-order distinguishing CAZ types of symmetries framework (TR vs. PH) impossible!

Proper identification of CAZ classes

ordinary (non-gyrotropic)	"topologically non-trivial" (gyrotropic)
$\varepsilon \neq \mu$	
$\varepsilon, \mu \in \mathbb{R}$	$\varepsilon \in \mathbb{C} V \mu \in \mathbb{C}$
$T \equiv \chi, C \equiv+\mathrm{PH}$	$T \equiv \chi$
class BDI	class AIII
(not class AI)	(not class A)

Proper identification of CAZ classes

Symmetries present	CAZ class	Reduced K-group in dimension			
		$d=1$	$d=2$	$d=3$	$d=4$
none	A	0	\mathbb{Z}	\mathbb{Z}^{3}	\mathbb{Z}^{7}
$J_{3} \equiv+\mathrm{TR}$	Al	0	0	0	\mathbb{Z}
$T_{3} \equiv \chi$	AllI	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{4}	\mathbb{Z}^{8}
$C \equiv+\mathrm{PH}$	D	\mathbb{Z}_{2}	$\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}$	$\mathbb{Z}_{2}^{3} \oplus \mathbb{Z}^{3}$	$\mathbb{Z}_{2}^{4} \oplus \mathbb{Z}^{6}$
$T_{3} \equiv \chi$ $C \equiv+\mathrm{PH}$	BDI	\mathbb{Z}	\mathbb{Z}^{2}	\mathbb{Z}^{3}	\mathbb{Z}^{4}
$J_{2} \equiv-\mathrm{PH}$ $J_{3} \equiv+\mathrm{TR}$	Cl	0	0	\mathbb{Z}	\mathbb{Z}^{4}

Absence of topological effects in class BDI?

Topological effects in BDI?
Seemingly contradicts experimental observations.

Absence of topological effects in class BDI?

Assumption

W periodic
Frequency band picture

gives rise to Bloch functions and frequency bands

Absence of topological effects in class BDI?

Assumption

W periodic
Frequency band picture

- $M_{w} \cong \int_{\mathbb{B}}^{\oplus} \mathrm{d} k M_{w}(k)$
- gives rise to Bloch functions and frequency bands

$$
M_{w}(k) \varphi_{n}(k)=\omega_{n}(k) \varphi_{n}(k)
$$

$C M_{w}(k) C=-M_{w}(-k)$
\Rightarrow pairing $\left\{\omega_{n}(k),-\omega_{n}(-k)\right\}$ with $\left\{\varphi_{n}(k), C \varphi_{n}(-k)\right\}$
$T M_{w}(k) T=-M_{w}(+k)$
\Rightarrow pairing $\left\{\omega_{n}(k),-\omega_{n}(+k)\right\}$ with $\left\{\varphi_{n}(k), T \varphi_{n}(+k)\right\}$

Absence of topological effects in class BDI?

Assumption

W periodic
Frequency band picture

- $M_{w} \cong \int_{\mathbb{B}}^{\oplus} \mathrm{d} k M_{w}(k)$
- gives rise to Bloch functions and frequency bands

$$
M_{w}(k) \varphi_{n}(k)=\omega_{n}(k) \varphi_{n}(k)
$$

- $C M_{w}(k) C=-M_{w}(-k)$
\Rightarrow pairing $\left\{\omega_{n}(k),-\omega_{n}(-k)\right\}$ with $\left\{\varphi_{n}(k), C \varphi_{n}(-k)\right\}$
\Rightarrow pairing $\left\{\omega_{n}(k),-\omega_{n}(+k)\right\}$ with $\left\{\varphi_{n}(k), T \varphi_{n}(+k)\right\}$

Absence of topological effects in class BDI?

Assumption

W periodic
Frequency band picture

- $M_{w} \cong \int_{\mathbb{B}}^{\oplus} \mathrm{d} k M_{w}(k)$
- gives rise to Bloch functions and frequency bands

$$
M_{w}(k) \varphi_{n}(k)=\omega_{n}(k) \varphi_{n}(k)
$$

- $C M_{w}(k) C=-M_{w}(-k)$ \Rightarrow pairing $\left\{\omega_{n}(k),-\omega_{n}(-k)\right\}$ with $\left\{\varphi_{n}(k), C \varphi_{n}(-k)\right\}$
- $T M_{w}(k) T=-M_{w}(+k)$
\Rightarrow pairing $\left\{\omega_{n}(k),-\omega_{n}(+k)\right\}$ with $\left\{\varphi_{n}(k), T \varphi_{n}(+k)\right\}$

Absence of topological effects in class BDI?

Only C-symmetry present, T-symmetry broken!

Absence of topological effects in class BDI?

Theorem (De Nittis-L. (2013))
ω_{n} isolated band

$$
\psi_{\text {Re }}(k)=\frac{1}{\sqrt{2}}\left(\varphi_{n}(k)+\overline{\varphi_{n}(-k)}\right) .
$$

Then $c_{1}\left(\left|\psi_{\text {Re }}\right\rangle\left\langle\psi_{\text {Re }}\right|\right)=0$ even if $c_{1}\left(\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right) \neq 0$.

\Rightarrow Absence of topological effects due to Chern classes for real electromagnetic fields

Absence of topological effects in class BDI?

Only C-symmetry present, T-symmetry broken!

Absence of topological effects in class BDI?

Theorem (De Nittis-L. (2013))
ω_{n} isolated band

$$
\psi_{\text {Re }}(k)=\frac{1}{\sqrt{2}}\left(\varphi_{n}(k)+\overline{\varphi_{n}(-k)}\right) .
$$

Then $c_{1}\left(\left|\psi_{\text {Re }}\right\rangle\left\langle\psi_{\text {Re }}\right|\right)=0$ even if $c_{1}\left(\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right) \neq 0$.
\Rightarrow Absence of topological effects due to Chern classes for real electromagnetic fields

Absence of topological effects in class BDI?

Effects due to topological invariants other than Chern classes?

Absence of topological effects in class BDI?

Effects due to topological invariants other than Chern classes? Maybe.

Periodic waveguide arrays

- Very interesting experiments by Mikael Rechtsman et al
- Backscattering-free unidirectional boundary currents measured Ordinary material (silica) \Rightarrow class BDI

Experiments explained by use of effective models

Periodic waveguide arrays

- Very interesting experiments by Mikael Rechtsman et al
- Backscattering-free unidirectional boundary currents measured
- Ordinary material (silica) \Rightarrow class BDI

Experiments explained by use of effective models

Periodic waveguide arrays

- Very interesting experiments by Mikael Rechtsman et al
- Backscattering-free unidirectional boundary currents measured
- Ordinary material (silica) \Rightarrow class BDI
- Experiments explained by use of effective models

(1) The Schrödinger formulation of the Maxwell equations

2 Symmetries of photonic crystals
(3) Cartan-Altland-Zirnbauer classification of photonic crystals
4. Photonic crystals of class BDI \& Alll
(5) Open Problems

Some open problems

- Photonic bulk-edge correspondences
\downarrow
- Identify bulk \& edge topological observables $O=T+$ error \downarrow
- Find all topological invariants T for PhCs of given CAZ class
\downarrow
- Classification of PhCs by symmetries (finished)

Some open problems

- Photonic bulk-edge correspondences
- Identify bulk \& edge topological observables $O=T+$ error
\uparrow
- Find all topological invariants T for PhCs of given CAZ class
\uparrow
- Classification of PhCs by symmetries (finished)

Some open problems

- Establish bulk-edge correspondences
- Interplay symmetries and dynamics (e. g. twin-band ray optics, effective tight-binding models)
- Periodic waveguide arrays

Thank you for your attention!

References

- M. S. Birman and M. Z. Solomyak. L^{2}-Theory of the Maxwell operator in arbitrary domains. Uspekhi Mat. Nauk 42.6, 1987, pp. 61--76.
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Maede. Photonic Crystals. Molding the Flow of Light. Princeton University Press, 2008.
- P. Kuchment. Mathematical Modelling in Optical Science. Chapter 7. The Mathematics of Photonic Crystals. pp. 207--272, Society for Industrial and Applied Mathematics, 2001.

References

- M. Onoda, S. Murakami and N. Nagaosa. Geometrical aspects in optical wave-packet dynamics. Phys. Rev. E. 74, 066610, 2010.
- S. Raghu and F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834, 2008.
- S. Raghu and F. D. M. Haldane. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 100, 013904, 2008.
- Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772-5, 2009.

References

- M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit. Photonic Floquet topological insulators. Nature 496, 196-200, 2013.
- M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev. Topological Creation and Destruction of Edge States in Photonic Graphene. Phys. Rev. Lett. 111, 103901, 2013.

References

- Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, A. Szameit, N. Malkova, Z. Chen, and M. Segev. Observation of dispersion-free edge states in honeycomb photonic lattices. In: Conference on Lasers and Electro-Optics 2012. Op- tical Society of America, 2012, QF2H.6.
- Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J. M. Zeuner, S. Nolte, Y. Lumer, N. Malkova, J. Xu, A. Szameit, Z. Chen, and M. Segev. Observation of unconventional edge states in "photonic graphene". Nature Materials 13, 57-62, 2014.

