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Idea
Realizing Quantum Effects

with Classical Waves
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Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Making Quantum Analogies Rigorous

Develop and explore the Schrödinger formalism for certain classical
wave equations

Allows for adaptation of techniques from quantum mechanics
to other wave equations

Also differences, e. g. classical waves ℝ-valued



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Advances in Understanding of Quantum Systems

Spectral theory

Scattering theory

Semiclassical limits

Perturbation theory

Non-linear effects

Periodic operators

Random operators

Topological insulators

⇝ Adapt and apply these techniques to other wave equations
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Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Some Relevant Wave Equations

Classical electromagnetism

(𝜀 0
0 𝜇) 𝜕

𝜕𝑡 (E
H) = (−∇ × H

+∇ × E) − (𝑗
0)

(∇ ⋅ 𝜀E
∇ ⋅ 𝜇H) = (𝜌

0)

Transverse acoustic waves
𝜕

𝜕𝑡 (𝜌
v) = ( 0 −∇ 𝜌0

−𝜌−1
0 ∇𝛾𝑣2

s 0 ) (𝜌
v)

Magnons

i 𝜕
𝜕𝑡 ( 𝛽(𝑘)

𝛽†(−𝑘)) = 𝜎3 𝐻(𝑘) ( 𝛽(𝑘)
𝛽†(−𝑘))

Characteristics
1 First order in time
2 Product structure of

operators
3 Waves take values in ℝ𝑁

Other examples
Plasmons, magnetoplasmons,
van Alvén waves, etc.
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Experimental Realizations of Quantum Analogies

Topological Boundary States

Photonic

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez

0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.

NATURE | Vol 461 | 8 October 2009 LETTERS
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 Macmillan Publishers Limited. All rights reserved©2009

Joannopoulos, Soljačić et al (2009)

Magnonic
SHINDOU, MATSUMOTO, MURAKAMI, AND OHE PHYSICAL REVIEW B 87, 174427 (2013)

FIG. 1. (Color online) Magnonic crystal with chiral edge modes.
Periodic array of holes is introduced into YIG, where iron (Fe) is filled
inside every hole. Chiral spin-wave edge modes are propagating along
the boundary in a unidirectional way (light purple arrow).

where β
†
k ≡ [β†

1,k, . . . ,β
†
N,k] denote spin-wave (boson) cre-

ation operators. Describing volume-type modes, the operators
are already Fourier-transformed in a two-dimensional space
with the periodic boundary conditions and the wave vector
k ≡ (kx,ky). N is a number of internal degrees of freedom
considered within a unit cell. A 2N by 2N Hermitian matrix
(H k) stands for a bosonic Bogoliubov–de Gennes (BdG)
Hamiltonian, whose explicit form will be derived from a
linearized Landau-Lifshitz equation later. With the magnetic
dipolar interaction, the Hamiltonian thus derived acquires not
only N by N normal parts (particle-hole channel), ak and a∗

−k,
but also N by N anomalous parts (particle-particle channel),
bk and b∗

−k,

H k ≡
[

ak bk

b∗
−k a∗

−k

]
.

Such a bosonic BdG Hamiltonian is diagonalized in terms
of a paraunitary matrix T k instead of a unitary matrix,33

T †
k H k T k =

[
Ek

E−k

]
, (2)

with [γ †
k,γ −k]T †

k = [β†
k,β−k]. Ek is a diagonal matrix, whose

diagonal element gives a dispersion relation for respective
volume-mode band. The orthogonality and completeness of a
new basis (γ field) are derived as

T †
kσ 3T k = σ 3, T kσ 3T †

k = σ 3, (3)

respectively, where a diagonal matrix σ 3 takes ±1 in the
particle/hole space, i.e., [σ 3]jm = δjmσj with σj = +1 for j =
1, . . . ,N and σj = −1 for j = N + 1, . . . ,2N . This additional
structure comes from the fact that the magnon obeys the boson
statistics. Each column vector encoded in the paraunitary
matrix T k stands for the (periodic part of) Bloch wave function
for the respective volume-mode band.

Provided that a Hermite matrix H k is unitarily equivalent
to a positive-definite diagonal matrix, a paraunitary matrix T k
which diagonalizes H k can be obtained by a method based
on the Cholesky decomposition.33 In the method, we first
decompose H k into a product between an upper triangle matrix
K k and its Hermite conjugate, H k = K †

k K k. The unitarily
positive definiteness of H k always allows this decomposition
and also guarantees the existence of K−1

k . We next introduce
a unitary matrix U k which diagonalizes a Hermite matrix

W k ≡ K kσ 3 K †
k,

U†
kW kU k =

[
Ek

−E−k

]
.

Owing to Sylvester’s law of inertia, both Ek and E−k can be
made positive-definite N by N diagonal matrices. One can see
a posteriori that these two diagonal matrices are nothing but
those in the right-hand side of Eq. (2). Namely, the following
paraunitary matrix satisfies Eq. (3):33

T k = K−1
k U k

[
E1/2

k

E1/2
−k

]

(4)

and it diagonalizes the Hamiltonian as

H kT k = σ 3T k

[
Ek

−E−k

]
. (5)

The upper N by N diagonal matrix in the right-hand side, Ek,
is positive definite, so we will refer to them as (dispersions
for) “particle bands,” while the lower N by N diagonal matrix,
−E−k, is negative definite, whose diagonal elements are thus
referred to as (dispersion for) “hole bands.” Due to the trivial
redundancy, σ 1 H∗

kσ 1 = H−k with [σ 1]jm = δ|j−m|,N , either
one of these two N by N diagonal matrices gives the full
information of the dispersions for the volume-mode bands.

B. Chern integers in bosonic BdG systems

To introduce the Chern number for the j th volume-mode
band, let us first define a projection operator Pj in the 2N -
dimensional vector space, which filters out those bands other
than the j th volume-mode band at each momentum point k,

Pj ≡ T k$jσ 3T †
kσ 3. (6)

Here $j is a diagonal matrix taking +1 for the j th diagonal
component and zero otherwise. Equation (3) suggests that the
operator obeys

∑
j P j = 1 and Pj Pm = δjm Pj . In terms of

the projection operator, the Chern number for the j th band is
given as follows:34

Cj ≡ iϵµν

2π

∫

BZ
dkTr[(1 − P j )(∂kµ

Pj )(∂kν
Pj )], (7)

where the integral is over the first Brillouin zone (BZ) in the
two-dimensional k space.

Equation (7) is integer-valued and characterizes a certain
global phase structure associated with a Bloch wave function
over the BZ. To see this, we follow the same argument as in the
quantum Hall case,35,36 and introduce field strength (Berry’s
curvature) Bj and gauge connection (gauge field) (Aj,x,Aj,y)
for each volume-mode band,

Bj (k) ≡ ∂kx
Aj,y(k) − ∂ky

Aj,x(k), (8)

Aj,ν(k) ≡ iTr[$jσ 3T †
kσ 3(∂kν

T k)], (9)

with j = 1, . . . ,2N . The Chern number for a volume-mode
band reduces to an integral of the respective Berry’s curvature
over the BZ,

Cj = 1
2π

∫

BZ
d2kBj (k). (10)

174427-2

Shindou, Matsumoto et al (2013)
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Figure 1 | 1D phononic crystal interface system. a, Experimental set-up. The green arrow marks the position of the interface separating the PC with
configuration S1 on the left and the PC with configuration S2 on the right. The large white arrow shows the incidence direction. b–d, Simulated pressure
eigenfunctions of an S1 unit cell. b, Lowest even mode, located at 3,341 Hz. c, Odd mode, located at 4,421 Hz. d, First transverse mode, located at 4,527 Hz.
Red/blue colour indicates positive/negative local pressure. Eigenfunctions of the PC configurations S2, S3 and S4 are qualitatively similar, but have di�erent
eigenfrequencies. e, Band structure of S1, where the black lines represent fundamental modes and the green line a higher order mode. Red dots mark the
eigenfrequencies shown in b–d. The higher order mode marked by the green line is a ‘deaf mode’ that cannot be excited by the incident plane wave.

S1

3
−2 −1 0 1 2 3

4

f (
kH

z)

∆d (cm)

5
S2S4S3

Figure 2 | Topological transition in 1D PC system. The eigenfrequency of
eigenstates bounding the second bandgap (coloured regions) at the centre
of the Brillouin zone as a function of 1d=(dA �dB)/2. The red and black
curves correspond to even and odd modes (with respect to the central
cross-sectional plane of tube-A). As the length di�erence 1d increases, the
second bandgap closes and reopens, accompanied by the crossing of two
eigenmodes. This process is analogous to the band inversion process; thus
the second bandgaps are marked with di�erent colours to show that they
have di�erent topological characteristics. Four di�erent configurations are
considered, with the length di�erence 1d indicated with vertical dashed
lines. It can be seen that the second bandgaps of configurations S1 and S3
are topologically identical, and di�er from that of S2. The second bandgap
of S4 closes at the centre of the Brillouin zone.

closes at the zone centre where the two modes become degenerate
at k= 0 (Fig. 3c). This marks a topological transition point. This
is also shown in Fig. 2, where a gap closing and reopening process
can be seen if the parameters of the system are tuned continuously
from those of S1 or S3 to those of S2, passing through a transition
point at 1d=0.49cm. Furthermore, the system’s mirror symmetry
is preserved when we vary 1d , and none of the first bandgaps
of the four PCs closes during this process. It follows that the first
bandgaps of these four systems remain topologically identical. Note
that the topological property of a bandgap is determined by the
summation of the Zak phases of all the bands below this gap, but
has no dependence on the properties of the higher bands24,25. For S1
and S3, ✓Zak

2 =⇡, and so the topological characters of their first and
second bandgaps are identical. In contrast, ✓Zak

2 =0 for S2, indicating

that the second bandgap of S2 is topologically di�erent from that of
S1 or S3.

The determination of the GP has been theoretically proposed
and experimentally done in cold atom16,26 and photonic systems27,28.
In our acoustic system, we follow a di�erent scheme to determine
the GP experimentally. The bulk band GP can be determined
by measuring the reflection phase � at the boundary of the PC.
In a quasi-1D system, � of the reflected pressure field of a PC
for frequencies inside the bandgap is a manifestation of its Zak
phase24,25. The reflection phase satisfies � 2 {�⇡, 0} or � 2 {0, ⇡}
(mod 2⇡) inside a bandgap, depending on the topological character
of that gap25. The topological character of a gap is related to the
symmetry types (even or odd) of the band-edge states below or
above this gap, while the Zak phase yields the relationship between
the two band-edge states of a band. Thus, the Zak phase of a
bulk band and the topological characters of the two bandgaps
sandwiching this band can be related to each other through the
symmetry types of the band-edge states. Owing to the inversion
symmetry that is inherent in the system under consideration, the
geometric Zak phase can take only two values: either 0 or ⇡ (see
Supplementary Information I). It has been shown rigorously that
the relationship between sgn(�) of the first and second bandgaps
and the Zak phase of the second band is given by24.

sgn(�1)/sgn(�2)=�exp(i✓Zak
2 ), with ✓Zak

2 =0 or ⇡ (2)

where the subscripts indicate the number of bandgaps. In other
words, measuring the signs of the reflection phases of the two
bandgaps sandwiching an isolated bulk band provide su�cient
information to determine the Zak phase of that band. If the signs are
the same, the Zak phase of that band is⇡. Otherwise, it is zero. This is
the first method we use to measure the Zak phase of the bulk bands.
For the measurement, we add a homogeneous waveguide with an
identical inner radius to that of tube-A between the loudspeaker
and the PC. Figure 4a shows a schematic drawing of the set-up used
to measure the reflection phase. The measured fields in the second
common bandgaps of S1, S2 and S3 are shown in Fig. 4b, together
with that of a flat sound hard surface (steel plate) for reference. The
reflection fields of S1 and S3 seem to be ‘advanced’ with respect to
the steel plate, whereas the reflection field of S2 seems to be ‘delayed’.
Thus �2 values for the two topologically identical PCs—that is, S1
and S3—have the same sign, whereas �2 for S2 has the opposite sign.
In comparison, the measured reflection phases of the first common
bandgaps, �1, of all three PCs have the same sign (Fig. 4c). Excellent
agreement with the theoretical prediction is seen.

NATURE PHYSICS | VOL 11 | MARCH 2015 | www.nature.com/naturephysics 241

© 2015 Macmillan Publishers Limited. All rights reserved

Xiao, Ma et al (2015)
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Despite Experiments ...

... first-principle derivations are scarce, be it rigorous or
non-rigorous!

⇝ Open field with lots of interesting problems!
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1 Schrödinger Formalism for Classical Waves

2 Example: Electromagnetism

3 Classification of Photonic Topological Insulators

4 Challenges & Open Problems
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1 Schrödinger Formalism for Classical Waves

2 Example: Electromagnetism

3 Classification of Photonic Topological Insulators

4 Challenges & Open Problems
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Recap: Schrödinger Equation on ℝ𝑑

Fundamental Constituents
1 Hamilton/Schrödinger operator 𝐻 , typical examples are

𝐻 = 1
2𝑚(−i∇ − 𝐴)2 + 𝑉

𝐻 = 𝑚 𝛽 + (−i∇ − 𝐴) ⋅ 𝛼 + 𝑉

2 Hilbert space 𝐿2(ℝ𝑑, ℂ𝑁) where ⟨𝜙, 𝜓⟩ = ∫
ℝ𝑑

d𝑥𝜙(𝑥) ⋅ 𝜓(𝑥)

3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝐻𝜓(𝑡), 𝜓(0) = 𝜙
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Recap: Schrödinger Equation on ℝ𝑑

Fundamental Constituents
1 Hamilton/Schrödinger operator 𝐻
2 Hilbert space
3 Schrödinger equation

Properties
𝐻 = 𝐻∗

𝜓(𝑡) = e−i𝑡𝐻𝜙
∥𝜓(𝑡)∥2 = ‖𝜙‖2 (conservation of propability)
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Schrödinger Formalism for Classical Waves

Fundamental Constituents
1 “Hamilton” operator 𝑀 = 𝑊𝐿 𝐷 𝑊𝑅 where

𝑊 ∶= 𝑊𝑅 𝑊 −1
𝐿 = 𝑊 ∗ , 0 < 𝑐 id ≤ 𝑊 ≤ 𝐶 id

(positive, bounded, bounded inverse)
𝐷 = 𝐷∗ (potentially unbounded)

2 Complex (!) Hilbert space ℋ ⊆ 𝐿2
𝑊(ℝ𝑑, ℂ𝑁) where

⟨𝜙, 𝜓⟩𝑊 = ⟨𝜙, 𝑊 −1𝜓⟩ = ∫
ℝ𝑑

d𝑥𝜙(𝑥) ⋅ 𝑊 −1𝜓(𝑥)

3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝑀𝜓(𝑡), 𝜓(0) = 𝜙

4 Even particle-hole symmetry 𝐾 , i. e.
𝐾 antiunitary, 𝐾2 = +id and 𝐾 𝑀 𝐾 = −𝑀
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Schrödinger Formalism for Classical Waves

Fundamental Constituents
1 “Hamilton” operator 𝑀 = 𝑊 𝐷 where

𝑊 = 𝑊 ∗ , 0 < 𝑐 id ≤ 𝑊 ≤ 𝐶 id
(positive, bounded, bounded inverse)
𝐷 = 𝐷∗ (potentially unbounded)

2 Complex (!) weighted Hilbert space ℋ ⊆ 𝐿2
𝑊(ℝ𝑑, ℂ𝑁) where

⟨𝜙, 𝜓⟩𝑊 = ⟨𝜙, 𝑊 −1𝜓⟩ = ∫
ℝ𝑑

d𝑥𝜙(𝑥) ⋅ 𝑊 −1𝜓(𝑥)

3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝑀𝜓(𝑡), 𝜓(0) = 𝜙

4 Even particle-hole symmetry 𝐾 , i. e.
𝐾 antiunitary, 𝐾2 = +id and 𝐾 𝑀 𝐾 = −𝑀
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Schrödinger Formalism for Classical Waves

Fundamental Constituents
1 “Hamilton” operator with product structure
2 Complex (!) weighted Hilbert space ℋ ⊆ 𝐿2

𝑊(ℝ𝑑, ℂ𝑁)
3 Dynamics given by Schrödinger equation
4 Even particle-hole symmetry 𝐾

Properties
𝑀∗𝑊 = 𝑀
𝜓(𝑡) = e−i𝑡𝑀𝜙
∥𝜓(𝑡)∥2

𝑊 = ‖𝜙‖2
𝑊 (conserved quantity, e. g. energy)

Re e−i𝑡𝑀 = e−i𝑡𝑀 Re where Re = 1
2(id + 𝐾)

(support of real solutions)
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Quantum-Light Analogies

Wave Equation QuantumMechanics

Generator
dynamics

Maxwell-type operator
𝑀 = 𝑊 𝐷 = 𝑀∗

hamiltonian
𝐻 = −Δ + 𝑉 = 𝐻∗

Necessary
symmetry

+PH none

Hilbert space weighted 𝐿2 𝐿2

Wave function ℝ-valued ℂ-valued

Conserved
quantity ‖Ψ‖2 e. g. field energy probability
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1 Schrödinger Formalism for Classical Waves

2 Example: Electromagnetism

3 Classification of Photonic Topological Insulators

4 Challenges & Open Problems



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Aim of this Section

Make a first-principles derivation of the Schrödinger
formalism for electromagnetic waves, i. e. identify

1 “Hamilton” operator 𝑀 = 𝑊 𝐷
2 Hilbert space
3 Schrödinger equation
4 Even particle-hole symmetry
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Fundamental Equations
Maxwell’s equations in media

1 Maxwell’s equations

𝜕
𝜕𝑡 (D

B
) = (+∇ × H

−∇ × E
) − (𝐽𝐷

𝐽𝐵) (dynamical eqns.)

(∇ ⋅ D
∇ ⋅ B

) = (𝜌𝐷

𝜌𝐵) (constraint eqns.)

2 Constitutive relations

(D
B

) = 𝒲 (E
H

)

3 Conservation of charge

∇ ⋅ 𝐽 ♯ + 𝜌♯ = 0, ♯ = 𝐷, 𝐵
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Fundamental Equations
Maxwell’s equations in media

1 Maxwell’s equations

𝜕
𝜕𝑡 (D

B
) = (+∇ × H

−∇ × E
) (dynamical eqns.)

(∇ ⋅ D
∇ ⋅ B

) = (0
0) (constraint eqns.)

2 Constitutive relations

(D
B

) = 𝒲 (E
H

)

3 Conservation of charge ⇝ neglect sources for simplicity

∇ ⋅ 𝐽 ♯ + 𝜌♯ = 0, ♯ = 𝐷, 𝐵
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Constitutive Relations

For a linearmedium the constitutive relations maps a trajectory

(−∞, 𝑡] ∋ 𝑠 ↦ (E(𝑠), H(𝑠))

onto

(D(𝑡, 𝑥)
B(𝑡, 𝑥)) ∶= ∫

𝑡

−∞
d𝑠𝑊(𝑡 − 𝑠, 𝑥) (E(𝑠, 𝑥)

H(𝑠, 𝑥))

⇝ reaction of medium to impinging emwave depends on the past
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Constitutive Relations

(D(𝑡), B(𝑡)) ∶= ∫
𝑡

−∞
d𝑠𝑊(𝑡 − 𝑠)(E(𝑠), H(𝑠))

Assumption (Constitutive relations)

We assume that 𝑊(𝑡, 𝑥) = ( 𝜀(𝑡, 𝑥) 𝜒𝐸𝐻(𝑡, 𝑥)
𝜒𝐻𝐸(𝑡, 𝑥) 𝜇(𝑡, 𝑥) ) ∈ Matℂ(6)

1 is real, 𝑊 = 𝑊 , and
2 satisfies the causality condition 𝑊(𝑡) = 0 for all 𝑡 > 0.
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Constitutive Relations

(D(𝑡), B(𝑡)) = (𝑊 ∗ (E, H))(𝑡)∫
𝑡

−∞

Assumption (Constitutive relations)

We assume that 𝑊(𝑡, 𝑥) = ( 𝜀(𝑡, 𝑥) 𝜒𝐸𝐻(𝑡, 𝑥)
𝜒𝐻𝐸(𝑡, 𝑥) 𝜇(𝑡, 𝑥) ) ∈ Matℂ(6)

1 is real, 𝑊 = 𝑊 , and
2 satisfies the causality condition 𝑊(𝑡) = 0 for all 𝑡 > 0.
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Rewriting the Dynamical Equations

𝜕
𝜕𝑡𝑊 ∗ Ψ = −i Rot Ψ ∶= −i ( 0 +i∇×

−i∇× 0 ) Ψ

⟺

i
𝜕
𝜕𝑡𝑊 ∗ Ψ = Rot Ψ

where Ψ = (E, H) is the electromagnetic field
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Rewriting the Dynamical Equations

i 𝜕
𝜕𝑡𝑊 ∗ Ψ = Rot Ψ

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

Reality condition implies

𝑊 = 𝑊 ⟺ 𝑊(−𝜔) = 𝑊(𝜔)

Real solutions = linear combinations of complex waves of ±𝜔(±𝑘)

cos(𝑘 ⋅ 𝑥 − 𝜔𝑡) = 1
2(e+i(𝑘⋅𝑥−𝑡𝜔) + e−i(𝑘⋅𝑥−𝑡𝜔)) = Re (e+i(𝑘⋅𝑥−𝑡𝜔))

sin(𝑘 ⋅ 𝑥 − 𝜔𝑡) = 1
i2(e+i(𝑘⋅𝑥−𝑡𝜔) − e−i(𝑘⋅𝑥−𝑡𝜔)) = Im (e+i(𝑘⋅𝑥−𝑡𝜔))
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Rewriting the Dynamical Equations

i 𝜕
𝜕𝑡𝑊 ∗ Ψ = Rot Ψ

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

Reality condition implies

𝑊 = 𝑊 ⟺ 𝑊(−𝜔) = 𝑊(𝜔)

Real solutions = linear combinations of complex waves of ±𝜔(±𝑘)

cos(𝑘 ⋅ 𝑥 − 𝜔𝑡) = 1
2(e+i((+𝑘)⋅𝑥−𝑡(+𝜔)) + e+i((−𝑘)⋅𝑥−𝑡(−𝜔)))

sin(𝑘 ⋅ 𝑥 − 𝜔𝑡) = 1
i2(e+i((+𝑘)⋅𝑥−𝑡(+𝜔)) − e+i((−𝑘)⋅𝑥−𝑡(−𝜔)))
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Approximate Maxwell Equations for 𝜔 ≈ 𝜔0

i 𝜕
𝜕𝑡𝑊 ∗ Ψ = Rot Ψ

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

1 Approximate material weights 𝑊(𝜔) ≈ 𝑊(𝜔0)
2 Undo Fourier transform
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Approximate Maxwell Equations for 𝜔 ≈ 𝜔0

i 𝜕
𝜕𝑡𝑊 ∗ Ψ = Rot Ψ

𝜔 𝑊(𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

1 Approximate material weights 𝑊(𝜔) ≈ 𝑊(𝜔0)
2 Undo Fourier transform
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Approximate Maxwell Equations for 𝜔 ≈ 𝜔0

𝜔𝑊(𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

i 𝜕
𝜕𝑡 𝑊(𝜔0) Ψ = Rot Ψ

ℱ

OO

1 Approximate material weights 𝑊(𝜔) ≈ 𝑊(𝜔0)
2 Undo Fourier transform
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Approximate Maxwell Equations for 𝜔 ≈ 𝜔0

𝜔𝑊(𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

𝑊(𝜔0) i 𝜕
𝜕𝑡Ψ = Rot Ψ

ℱ

OO

1 Approximate material weights 𝑊(𝜔) ≈ 𝑊(𝜔0)
2 Undo Fourier transform
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Approximate Maxwell Equations for 𝜔 ≈ 𝜔0

Real solutions linear combination of ±𝜔 ⇝ pair of equations

𝜔 > 0 ∶ {𝑊(𝜔0) i𝜕𝑡Ψ = Rot Ψ
Div 𝑊(𝜔0)Ψ = 0

𝜔 < 0 ∶ {𝑊(−𝜔0) i𝜕𝑡Ψ = Rot Ψ
Div 𝑊(−𝜔0) Ψ = 0

𝑊 = 𝑊 ⟺ 𝑊(−𝜔0) = 𝑊(𝜔0)
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Approximate Maxwell Equations for 𝜔 ≈ 𝜔0

Real solutions linear combination of ±𝜔 ⇝ pair of equations

𝜔 > 0 ∶ {𝑊(𝜔0) i𝜕𝑡Ψ = Rot Ψ
Div 𝑊(𝜔0)Ψ = 0

𝜔 < 0 ∶ {𝑊(𝜔0) i𝜕𝑡Ψ = Rot Ψ
Div 𝑊(𝜔0) Ψ = 0

𝑊 = 𝑊 ⟺ 𝑊(−𝜔0) = 𝑊(𝜔0)
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Difficulties Controlling 𝑊(𝜔) ≈ 𝑊(𝜔0)
Making this approximation rigorous is difficult:

1 Behavior of 𝜔 ↦ 𝑊(𝜔)
Properties very different for different frequency regimes
(lossless, reflective, resonant, etc.)
𝜔 ↦ 𝑊(𝜔) analytic on ℂ+

Meaningful assumptions on 𝑊(𝜔) hard to stipulate explicitly
Solution: Focus on light from a narrow frequency window
(where 𝑊 is well-behaved)

2 Material has “memory”
⇝ constitutive relations depend on past trajectory

Initial condition for full Maxwell equations: trajectory
(−∞, 𝑡0] ∋ (𝐸(𝑡), 𝐻(𝑡))
Approximate equations have “no memory”
⇝ initial condition (𝐸(𝑡0), 𝐻(𝑡0)) at a single point in time
How to pick and compare initial conditions?
Solution: Use same sources in full and approximate equations
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Technical Assumptions

Assumption (Material weights)

𝑊(𝜔0, 𝑥) = 𝑊+(𝑥) = ( 𝜀(𝑥) 𝜒(𝑥)
𝜒(𝑥)∗ 𝜇(𝑥)) ∈ Matℂ(6)

1 𝑊 ∗
+ = 𝑊+ (lossless)

2 0 < 𝑐 1 ≤ 𝑊+ ≤ 𝐶 1 (excludes negative indexmaterials)

Remark
𝑊− = 𝑊+ satisfies the same assumptions if and only if 𝑊+ does.
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Gyrotropic vs. Non-Gyrotropic Materials

Definition (Gyrotropic material weights)

If 𝑊+= 𝑊− = 𝑊+ are non-gyrotropic.
If 𝑊+≠ 𝑊− = 𝑊+ we call gyrotropic.
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Let us treat the non-gyrotropic case first where

𝑊+ = 𝑊−.

⇒ Equations for 𝜔 > 0 and 𝜔 < 0 coincide!

𝜔 > 0 ∶ {𝑊+ i𝜕𝑡Ψ+ = Rot Ψ+
Div 𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {𝑊− i𝜕𝑡Ψ− = Rot Ψ−
Div 𝑊− Ψ− = 0
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Schrödinger Formalism of the Maxwell Equations

1 Field energy

ℰ(E, H) = 1
2 ∫

ℝ3
d𝑥 (E(𝑥)

H(𝑥)) ⋅ ( 𝜀(𝑥) 𝜒(𝑥)
𝜒(𝑥)∗ 𝜇(𝑥)) (E(𝑥)

H(𝑥))

2 Dynamical equations

( 𝜀 𝜒
𝜒∗ 𝜇) 𝜕

𝜕𝑡 (E
H

) = (+∇ × H
−∇ × E

)

3 No sources

(div 0
0 div

) ( 𝜀 𝜒
𝜒∗ 𝜇) (E

H
) = 0
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Schrödinger Formalism of the Maxwell Equations

1 Field energy

ℰ(E, H) = ℰ(E(𝑡), H(𝑡))∫
ℝ3

2 Dynamical equations

( 𝜀 𝜒
𝜒∗ 𝜇) 𝜕

𝜕𝑡 (E
H

) = (+∇ × H
−∇ × E

)

3 No sources

(div 0
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) ( 𝜀 𝜒
𝜒∗ 𝜇) (E

H
) = 0
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Schrödinger Formalism of the Maxwell Equations

1 Field energy (E, H) ∈ 𝐿2
𝑊+

(ℝ3, ℂ6) with energy norm

∥(E, H)∥2
𝑊+

= ∫
ℝ3

d𝑥 (E(𝑥)
H(𝑥)) ⋅ ( 𝜀(𝑥) 𝜒(𝑥)

𝜒(𝑥)∗ 𝜇(𝑥)) (E(𝑥)
H(𝑥))

2 Dynamical equations ⇝ »Schrödinger equation«

( 𝜀 𝜒
𝜒∗ 𝜇) 𝜕

𝜕𝑡 (E
H

) = (+∇ × H
−∇ × E

)

3 No sources

𝐽𝑊+
= {(E

H
) ∈ 𝐿2

𝑊+
(ℝ3, ℂ6) ∣ (div 0

0 div
) ( 𝜀 𝜒

𝜒∗ 𝜇) (E
H

) = 0}
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Schrödinger Formalism of the Maxwell Equations

1 Field energy (E, H) ∈ 𝐿2
𝑊+

(ℝ3, ℂ6) with energy norm

∥(E, H)∥2
𝑊+

= 2 ℰ(E, H)
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Schrödinger Formalism of the Maxwell Equations

1 Field energy (E, H) ∈ 𝐿2
𝑊+

(ℝ3, ℂ6) with energy scalar product

⟨(E′, H′), (E, H)⟩𝑊+
= ⟨(E′, H′), 𝑊+(E, H)⟩𝐿2(ℝ3,ℂ6)
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Schrödinger Formalism of the Maxwell Equations
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Schrödinger Formalism of the Maxwell Equations
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𝑊+

(ℝ3, ℂ6) with energy scalar product
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Schrödinger Formalism of the Maxwell Equations

1 Field energy (E, H) ∈ 𝐿2
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Schrödinger Formalism of the Maxwell Equations
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Schrödinger Formalism of the Maxwell Equations
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Schrödinger Formalism of the Maxwell Equations

1 Field energy (E, H) ∈ 𝐿2
𝑊+

(ℝ3, ℂ6) with energy scalar product

⟨(E′, H′), (E, H)⟩𝑊+
= ⟨(E′, H′), 𝑊+(E, H)⟩𝐿2(ℝ3,ℂ6)

2 Dynamical equations ⇝ »Schrödinger equation«

i
𝜕
𝜕𝑡 (E

H
)

⏟
=Ψ

= ( 𝜀 𝜒
𝜒∗ 𝜇)

−1
( 0 +i∇×

−i∇× 0 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑀+

(E
H

)

3 No sources ⇝ implements 𝜔 ≠ 0

𝐽𝑊+
= 𝐺⟂𝑊+ , 𝐺 = gradient fields
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The Maxwell Operator

𝑀+ = ( 𝜀(𝑥) 𝜒(𝑥)
𝜒(𝑥)∗ 𝜇(𝑥))

−1
( 0 +i∇×

−i∇× 0 )

= 𝑊 −1
+ Rot

𝒟(𝑀+) = (𝐻1(ℝ3, ℂ6) ∩ ker Div)⊕̂ran Grad

𝑀+ = 𝑀∗
+ selfadjoint on weighted Hilbert space 𝐿2

𝑊+
(ℝ3, ℂ6)

⟨Ψ, 𝑀+Φ⟩𝑊+
= ⟨Ψ, 𝑊+ 𝑊 −1

+ Rot Φ⟩ = ⟨Rot Ψ, Ψ⟩

= ⟨𝑊+ 𝑀+Ψ, Φ⟩ = ⟨𝑀+Ψ, 𝑊+ Φ⟩ = ⟨𝑀+Ψ, Φ⟩𝑊+

⇒ e−i𝑡𝑀+ unitary, yields conservation of energy
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Fundamental Constituents

Non-Gyrotropic Media
1 “Hamilton” operator 𝑀 = 𝑊 −1

+ Rot ∣𝐽𝑊+
where

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇)

−1
are the material weights and

Rot = −𝜎2 × ∇× is the free Maxwell operator

2 Hilbert space 𝐽𝑊+
⊂ 𝐿2

𝑊+
(ℝ3, ℂ6) where

⟨𝜙, 𝜓⟩𝑊+
= ⟨𝜙, 𝑊+𝜓⟩ = ∫

ℝ𝑑
d𝑥𝜙(𝑥) ⋅ 𝑊+(𝑥)𝜓(𝑥)

3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝑀𝜓(𝑡), 𝜓(0) = 𝜙

4 Even particle-hole symmetry: Complex conjugation 𝐶
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Restriction to Real States

(𝐶Ψ)(𝑥) ∶= Ψ(𝑥) complex conjugation

𝑊− = 𝑊+ = 𝐶 𝑊+ 𝐶 = 𝑊+
⟹

𝐶 𝑀+ 𝐶 = − 𝑀− = −𝑀+

⟹ 𝐶 is an even particle-hole symmetry
Thus, 𝐶 e−i𝑡𝑀+ = e−i𝑡𝑀− 𝐶 = e−i𝑡𝑀+ 𝐶 and

Re e−i𝑡𝑀+ = e−i𝑡𝑀+ Re

where Re ∶= 1
2(id + 𝐶) is the real part operator



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Restriction to Real States

(𝐶Ψ)(𝑥) ∶= Ψ(𝑥) complex conjugation

𝑊− = 𝑊+ = 𝐶 𝑊+ 𝐶 = 𝑊+
⟹

𝐶 𝑀+ 𝐶 = − 𝑀− = −𝑀+

⟹ 𝐶 is an even particle-hole symmetry
Thus, 𝐶 e−i𝑡𝑀+ = e−i𝑡𝑀− 𝐶 = e−i𝑡𝑀+ 𝐶 and

Re e−i𝑡𝑀+ = e−i𝑡𝑀+ Re

where Re ∶= 1
2(id + 𝐶) is the real part operator



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Restriction to Real States

(𝐶Ψ)(𝑥) ∶= Ψ(𝑥) complex conjugation

𝑊− = 𝑊+ = 𝐶 𝑊+ 𝐶 = 𝑊+
⟹

𝐶 𝑀+ 𝐶 = − 𝑀− = −𝑀+

⟹ 𝐶 is an even particle-hole symmetry
Thus, 𝐶 e−i𝑡𝑀+ = e−i𝑡𝑀− 𝐶 = e−i𝑡𝑀+ 𝐶 and

Re e−i𝑡𝑀+ = e−i𝑡𝑀+ Re

where Re ∶= 1
2(id + 𝐶) is the real part operator



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Fundamental Constituents

Non-Gyrotropic Media
1 “Hamilton” operator 𝑀 = 𝑊 −1

+ Rot ∣𝐽𝑊+
where

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇)

−1
are the material weights and

Rot = −𝜎2 × ∇× is the free Maxwell operator

2 Hilbert space 𝐽𝑊+
⊂ 𝐿2

𝑊+
(ℝ3, ℂ6) where

⟨𝜙, 𝜓⟩𝑊+
= ⟨𝜙, 𝑊+𝜓⟩ = ∫

ℝ𝑑
d𝑥𝜙(𝑥) ⋅ 𝑊+(𝑥)𝜓(𝑥)

3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝑀𝜓(𝑡), 𝜓(0) = 𝜙

4 Even particle-hole symmetry: Complex conjugation 𝐶



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Reconsidering the Case of Gyrotropic Materials

𝑊+ ≠ 𝑊− ⟹ two different dynamical equations

𝜔 > 0 ∶ {i𝜕𝑡Ψ+ = 𝑀+Ψ+
Div 𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {i𝜕𝑡Ψ− = 𝑀−Ψ−
Div 𝑊− Ψ− = 0
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Reconsidering the Case of Gyrotropic Materials

𝑊+ ≠ 𝑊− ⟹ two different dynamical equations

𝜔 > 0 ∶ {i𝜕𝑡Ψ+ = 𝑀+Ψ+
Div 𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {i𝜕𝑡Ψ− = 𝑀−Ψ−
Div 𝑊− Ψ− = 0

Use spectral projections

𝑃± ∶= 1{𝜔>0}(±𝑀±)

to restrict Maxwell operators to positive/negative frequencies

𝑀± ∶= 𝑀±∣
ran 𝑃±

= 𝑃± 𝑀± 𝑃±∣
ran 𝑃±
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Reconsidering the Case of Gyrotropic Materials

𝑊+ ≠ 𝑊− ⟹ two different dynamical equations

𝜔 > 0 ∶ {i𝜕𝑡Ψ+ = 𝑀+Ψ+
Div 𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {i𝜕𝑡Ψ− = 𝑀−Ψ−
Div 𝑊− Ψ− = 0

Div 𝑊± Ψ = 0 automatically satisfied on ran 𝑃±
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Maxwell Operator for Gyrotropic Media

Definition (Maxwell Operator)

𝑀 ∶ = 𝑀+ ⊕ 𝑀−
𝒟(𝑀) ∶ = (𝑃+𝒟(Rot)) ⊕ (𝑃−𝒟(Rot))

seen as an operator on

ℋ ∶= ran 𝑃+ ⊕ ran 𝑃− ⊂ 𝐿2
𝑊+

(ℝ3, ℂ6) ⊕ 𝐿2
𝑊−

(ℝ3, ℂ6).

Theorem
𝑀 = 𝑀∗ on ℋ.
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Fundamental Constituents

Gyrotropic Media
1 “Hamilton” operator

𝑀 = (𝑊 −1
+ Rot ∣

ran 𝑃+
) ⊕ (𝑊 −1

− Rot ∣
ran 𝑃−

)
2 Hilbert space

ℋ = ran 𝑃+ ⊕ ran 𝑃− ⊂ 𝐿2
𝑊+

(ℝ3, ℂ6) ⊕ 𝐿2
𝑊+

(ℝ3, ℂ6)
3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝑀𝜓(𝑡), 𝜓(0) = (𝑃+(E, H) , 𝑃−(E, H))

4 Even particle-hole symmetry: Complex conjugation
𝐾 = 𝜎1 ⊗ 𝐶
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Even Particle-Hole Symmetry 𝐾 = 𝜎1 ⊗ 𝐶

𝑀 = 𝑀+ ⊕ 𝑀− has permanent symmetry 𝐾 = 𝜎1 ⊗ 𝐶 :

𝐶 𝑃+ 𝐶 = 1{𝜔>0}(𝐶 𝑀+ 𝐶) = 1{𝜔>0}(−𝑀−) = 𝑃−

because 𝑊− = 𝐶 𝑊+ 𝐶 and 𝐶 Rot 𝐶 = −Rot
⟹ 𝐶 𝑀+ 𝐶 = −𝑀−

𝐾 𝑀 𝐾 = (𝜎1 ⊗ 𝐶)(𝑀+ ⊕ 𝑀−)(𝜎1 ⊗ 𝐶)
= (𝐶 𝑀− 𝐶) ⊕ (𝐶 𝑀+ 𝐶) = (−𝑀+) ⊕ (−𝑀−) = −𝑀

⟹ 𝐾 is an even particle-hole symmetry
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because 𝑊− = 𝐶 𝑊+ 𝐶 and 𝐶 Rot 𝐶 = −Rot
⟹ 𝐶 𝑀+ 𝐶 = −𝑀−

𝐾 𝑀 𝐾 = (𝜎1 ⊗ 𝐶)(𝑀+ ⊕ 𝑀−)(𝜎1 ⊗ 𝐶)
= (𝐶 𝑀− 𝐶) ⊕ (𝐶 𝑀+ 𝐶) = (−𝑀+) ⊕ (−𝑀−) = −𝑀

⟹ 𝐾 is an even particle-hole symmetry
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Even Particle-Hole Symmetry 𝐾 = 𝜎1 ⊗ 𝐶

𝑀 = 𝑀+ ⊕ 𝑀− has permanent symmetry 𝐾 = 𝜎1 ⊗ 𝐶 :

𝐶 𝑃+ 𝐶 = 1{𝜔>0}(𝐶 𝑀+ 𝐶) = 1{𝜔>0}(−𝑀−) = 𝑃−

because 𝑊− = 𝐶 𝑊+ 𝐶 and 𝐶 Rot 𝐶 = −Rot
⟹ 𝐶 𝑀+ 𝐶 = −𝑀−

𝐾 𝑀 𝐾 = (𝜎1 ⊗ 𝐶)(𝑀+ ⊕ 𝑀−)(𝜎1 ⊗ 𝐶)
= (𝐶 𝑀− 𝐶) ⊕ (𝐶 𝑀+ 𝐶) = (−𝑀+) ⊕ (−𝑀−) = −𝑀

⟹ 𝐾 is an even particle-hole symmetry
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Model Supports Real States

Theorem

𝐾 𝑀 𝐾 = −𝑀
Re 𝐾 = 1

2(id + 𝐾)} ⟹ Re 𝐾 e−i𝑡𝑀 = e−i𝑡𝑀 Re 𝐾
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Model Supports Real States

Theorem

𝐾 𝑀 𝐾 = −𝑀
Re 𝐾 = 1

2(id + 𝐾)} ⟹ Re 𝐾 e−i𝑡𝑀 = e−i𝑡𝑀 Re 𝐾

Corollary

Re 𝐾 (e−i𝑡𝑀+ 𝑃+ ⊕ 0) = e−i𝑡𝑀 Re 𝐾
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Fundamental Constituents

Gyrotropic Media
1 “Hamilton” operator

𝑀 = (𝑊 −1
+ Rot ∣

ran 𝑃+
) ⊕ (𝑊 −1

− Rot ∣
ran 𝑃−

)
2 Hilbert space

ℋ = ran 𝑃+ ⊕ ran 𝑃− ⊂ 𝐿2
𝑊+

(ℝ𝑑, ℂ𝑁) ⊕ 𝐿2
𝑊+

(ℝ𝑑, ℂ𝑁)
3 Dynamics given by Schrödinger equation

i𝜕𝑡𝜓(𝑡) = 𝑀𝜓(𝑡), 𝜓(0) = (𝑃+(E, H) , 𝑃−(E, H))

4 Even particle-hole symmetry: “Complex conjugation”
𝐾 = 𝜎1 ⊗ 𝐶
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Simplified Point of View

Is there an easier approach?
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Reduction to Complex Fields with 𝜔 > 0

A complex plane wave with 𝜔 > 0

Ψ+(𝑡, 𝑘, 𝑥) = e−i𝑡𝜔(𝑘) e+i𝑘⋅𝑥 (E0, H0), 𝜔(𝑘) = |𝑘| , E0, H0 ⟂ 𝑘,

defines two linearly independent real waves:

(ERe , HRe ) = Re Ψ+ = cos(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0, H0)
(EIm , HIm ) = Im Ψ+ = sin(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0, H0)

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+ = ran 𝑃+:

𝛼Re (ERe , HRe ) + 𝛼Im (EIm , HIm ) = Re ((𝛼Re − i𝛼Im ) Ψ+)
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Reduction to Complex Fields with 𝜔 > 0

A complex plane wave with 𝜔 > 0

Ψ+(𝑡, 𝑘, 𝑥) = e−i𝑡𝜔(𝑘) e+i𝑘⋅𝑥 (E0, H0), 𝜔(𝑘) = |𝑘| , E0, H0 ⟂ 𝑘,

defines two linearly independent real waves:

(ERe , HRe ) = Re Ψ+ = cos(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0, H0)
(EIm , HIm ) = Im Ψ+ = sin(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0, H0)

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+ = ran 𝑃+:

𝛼Re (ERe , HRe ) + 𝛼Im (EIm , HIm ) = Re ((𝛼Re − i𝛼Im ) Ψ+)
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Reduction to Complex Fields with 𝜔 > 0

Bloch waves with 𝜔 > 0

Ψ+(𝑡, 𝑘, 𝑥) = e−i𝑡𝜔𝑛(𝑘) 𝜑𝑛(𝑘, 𝑥), 𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘)𝜑𝑛(𝑘),

defines two linearly independent real waves: Still true?

(ERe , HRe ) = Re Ψ+
(EIm , HIm ) = Im Ψ+

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+: Still true?

𝛼Re (ERe , HRe ) + 𝛼Im (EIm , HIm ) = Re ((𝛼Re − i𝛼Im ) Ψ+)
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Reduction to Complex Fields with 𝜔 > 0

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+: Still true!

𝛼Re (ERe , HRe ) + 𝛼Im (EIm , HIm ) = Re ((𝛼Re − i𝛼Im ) Ψ+)

Lemma
The ℝ-vector space of transversal, real vector fields 𝐿2

trans(ℝ3, ℝ6) can
be canonically identified with the ℂ-vector space of complex positive
frequency fields ℋ+ = ran 𝑃+. The vector space isomorphisms are

𝑃+ ∶ 𝐿2
trans(ℝ3, ℝ6) ⟶ ℋ+,

Re ∶ ℋ+ ⟶ 𝐿2
trans(ℝ3, ℝ6).
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Reduction to Complex Fields with 𝜔 > 0

Identification of 𝐿2
trans(𝑅3, ℝ6) with ℋ+ = ran 𝑃+

(E(𝑡), H(𝑡)) = Re (e−i𝑡𝑀+Ψ+)

where Re ∶= 1
2(id + 𝐶) is the real part operator

Real states ⟺ Complex states with 𝜔 > 0
Maxwell equations ⟺ i𝜕𝑡Ψ+ = 𝑀+Ψ+
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Reduction to Complex Fields with 𝜔 > 0

Identification of 𝐿2
trans(𝑅3, ℝ6) with ℋ+ = ran 𝑃+

(E(𝑡), H(𝑡)) = Re (e−i𝑡𝑀+Ψ+)

where Re ∶= 1
2(id + 𝐶) is the real part operator

Real states ⟺ Complex states with 𝜔 > 0
Maxwell equations ⟺ i𝜕𝑡Ψ+ = 𝑀+Ψ+
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Fundamental Constituents

All Linear Media
1 “Hamilton” operator 𝑀+ = 𝑊 −1

+ Rot ∣
ran 𝑃+

2 Hilbert space ℋ+ = ran 𝑃+ ⊂ 𝐿2
𝑊+

(ℝ3, ℂ6)
3 Dynamics given by Schrödinger equation

i𝜕𝑡Ψ+(𝑡) = 𝑀Ψ+(𝑡), Ψ+(0) = 𝑃+(E, H)

4 Even particle-hole symmetry: Implicit in construction

(E(𝑡), H(𝑡)) = Re Ψ+(𝑡)
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Fundamental Constituents

All Linear Media
1 “Hamilton” operator 𝑀+ = 𝑊 −1

+ Rot ∣
ran 𝑃+

2 Hilbert space ℋ+ = ran 𝑃+ ⊂ 𝐿2
𝑊+

(ℝ3, ℂ6)
3 Dynamics given by Schrödinger equation

i𝜕𝑡Ψ+(𝑡) = 𝑀Ψ+(𝑡), Ψ+(0) = 𝑃+(E, H)

4 Even particle-hole symmetry: Implicit in construction

(E(𝑡), H(𝑡)) = Re Ψ+(𝑡)
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1 Schrödinger Formalism for Classical Waves

2 Example: Electromagnetism

3 Classification of Photonic Topological Insulators

4 Challenges & Open Problems
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A Novel Class of Materials: Photonic Topological Insulators

(𝜀 0
0 𝜇) ≠ (𝜀 0

0 𝜇)

symmetry breaking

⎫}
⎬}⎭

⟹

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez

0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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A Novel Class of Materials: Photonic Topological Insulators

(𝜀 0
0 𝜇) ≠ (𝜀 0

0 𝜇)

symmetry breaking

⎫}
⎬}⎭

⟹

Photonic bulk-edge correspondences

↓
Identify topological observables
𝑂 = 𝑇 + error

↓
Find all topological invariants 𝑇

↓
Classification of PhCs by symmetries

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

A Novel Class of Materials: Photonic Topological Insulators

(𝜀 0
0 𝜇) ≠ (𝜀 0

0 𝜇)

symmetry breaking

⎫}
⎬}⎭

⟹

Photonic bulk-edge correspondences

↓
Identify topological observables
𝑂 = 𝑇 + error

↓
Find all topological invariants 𝑇

↓
Classification of PhCs by symmetries

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez

0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Which Symmetries Are Broken?

Non-Gyrotropic Materials

𝑊+ = 𝑊+

1 Relevant Symmetry of Complexified Equation
𝑇 ∶ (𝜓𝐸, 𝜓𝐻) ↦ (𝜓𝐸, −𝜓𝐻) with 𝑇 𝑀+ 𝑇 = +𝑀+ (+TR)
reverses arrow of time: 𝑇 e−i𝑡𝑀+ = e−i(−𝑡)𝑀+ 𝑇
⟹ Needs to be broken to have unidirectional edgemodes!
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Which Symmetries Are Broken?

Gyrotropic Materials

𝑊+ ≠ 𝑊+

1 Relevant Symmetry of Complexified Equation
𝑇 ∶ (𝜓𝐸, 𝜓𝐻) ↦ (𝜓𝐸, −𝜓𝐻) with 𝑇 𝑀+ 𝑇 = +𝑀+ (+TR)
reverses arrow of time: 𝑇 e−i𝑡𝑀+ = e−i(−𝑡)𝑀+ 𝑇
⟹ Needs to be broken to have unidirectional edgemodes!
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Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

The Topology of Light States in Periodic Media

Existence of topological
boundary states

} ⟷
⎧{
⎨{⎩

Topology of the (bulk)
Bloch bundle

ℰBloch = (𝜉Bloch
𝜋−→ 𝕋3)

where 𝜉Bloch = ⨆𝑘∈𝕋3 span{𝜑𝑛(𝑘)}𝑛∈ℐ is associated to finitely
many frequency bands⋆ separated by a spectral gap from the
others. ℰBloch may be endowed with symmetries.

What is the correct bundle here?

⋆ Not ground state bands!
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The Topology of Light States in Periodic Media
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The Topology of Light States in Periodic Media

Existence of topological
boundary states

} ⟷
⎧{
⎨{⎩

Topology of the (bulk)
Bloch bundle

ℰBloch = (𝜉Bloch
𝜋−→ 𝕋3)

where 𝜉Bloch = ⨆𝑘∈𝕋3 span{𝜑𝑛(𝑘)}𝑛∈ℐ is associated to finitely
many frequency bands⋆ separated by a spectral gap from the
others. ℰBloch may be endowed with symmetries.

What is the correct bundle here?

⋆ Not ground state bands!
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Which Schrödinger Framework to Choose?

𝑀 = 𝑀+ ⊕ 𝑀−

Choose bands symmetrically: {𝜔𝑛(𝑘), −𝜔𝑛(−𝑘)}

ℰBloch = ℰ+ ⊕ ℰ− ≅ ℰ+ ⊕ ℰ∗
+

But: ℰ+ ⊕ ℰ− is always trivial complex vector bundle as

𝑐1(ℰ−) = −𝑐1(ℰ+)

⟹ Unable to predict existence of topological edge modes

Reason: ℰ+ ⊕ ℰ− too big, contains many unphysical states
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Which Schrödinger Framework to Choose?
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Which Schrödinger Framework to Choose?

𝑀 = 𝑀+ ⊕ 𝑀−

Choose bands symmetrically: {𝜔𝑛(𝑘), −𝜔𝑛(−𝑘)}

ℰBloch = ℰ+ ⊕ ℰ− ≅ ℰ+ ⊕ ℰ∗
+

But: ℰ+ ⊕ ℰ− is always trivial complex vector bundle as

𝑐1(ℰ−) = −𝑐1(ℰ+)

⟹ Unable to predict existence of topological edge modes

Reason: ℰ+ ⊕ ℰ− too big, contains many unphysical states
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Which Schrödinger Framework to Choose?

𝑀 = 𝑀+ ⊕ 𝑀−

Choose bands symmetrically:
{𝜔𝑛(𝑘), −𝜔𝑛(−𝑘)}

ℰBloch = ℰ+ ⊕ ℰ− ≅ ℰ+ ⊕ ℰ∗
+

But: ℰ+ ⊕ ℰ− is always trivial
complex vector bundle as

𝑐1(ℰ−) = −𝑐1(ℰ+)

⟹ Unable to predict existence
of topological edge modes

Reason: ℰ+ ⊕ ℰ− too big,
contains many unphysical states

𝑀+

Choose only 𝜔𝑛(𝑘) > 0

ℰBloch = ℰ+

ℰ+ can be non-trivial

𝑐1(ℰ+) ≠ 0

Complex sections in ℰ+ in 1-to-1
correspondence with real states



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Which Schrödinger Framework to Choose?

𝑀 = 𝑀+ ⊕ 𝑀−

Choose bands symmetrically:
{𝜔𝑛(𝑘), −𝜔𝑛(−𝑘)}

ℰBloch = ℰ+ ⊕ ℰ− ≅ ℰ+ ⊕ ℰ∗
+

But: ℰ+ ⊕ ℰ− is always trivial
complex vector bundle as

𝑐1(ℰ−) = −𝑐1(ℰ+)

⟹ Unable to predict existence
of topological edge modes

Reason: ℰ+ ⊕ ℰ− too big,
contains many unphysical states

𝑀+

Choose only 𝜔𝑛(𝑘) > 0

ℰBloch = ℰ+

ℰ+ can be non-trivial

𝑐1(ℰ+) ≠ 0

Complex sections in ℰ+ in 1-to-1
correspondence with real states
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Comparison Between Photonics and Quantum Mechanics

Theorem (Classification via ℰ+, De Nittis-L., 2016)

Material Photonics QuantumMechanics

ordinary
class AI
+TR

class AI
+TR

exhibiting
edge currents

class A
none

class A/AII
none/-TR

vacuum &
dual-symmetric

New!
2 anticommuting +TR

metals
(non-rigorous, 𝑊 ≯ 0)

New!
commuting +TR & -TR
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Comparison Between Photonics and Quantum Mechanics

Theorem (Classification via ℰ+, De Nittis-L., 2016)

Material Photonics QuantumMechanics

ordinary
class AI
+TR

class AI
+TR

exhibiting
edge currents

class A
none

class A/AII
none/-TR

vacuum &
dual-symmetric

New!
2 anticommuting +TR

metals
(non-rigorous, 𝑊 ≯ 0)

New!
commuting +TR & -TR



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Idea of using positive frequency bundle in
classification of topological insulators should
extend to other classical wave equations!
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1 Schrödinger Formalism for Classical Waves

2 Example: Electromagnetism

3 Classification of Photonic Topological Insulators

4 Challenges & Open Problems
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Quantum Analogies Investigated in the Past

Schrödinger formalism of Maxwell equations
Physics: in vacuo ⇝ Dirac, Wigner, ... (1920s)
Mathematics: non-gyrotropic ⇝ Birman & Solomyak (1987)

Random Maxwell & acoustic operators
Figotin & Klein (1997)

Derivation of non-linear Schrödinger equation from non-linear
Maxwell equations
Babin & Figotin (early 2000s)

Adiabatic perturbation theory for photonic crystals
De Nittis & L. (2014)

Ray optics in photonics ⟷ semiclassics in quantummechanics
De Nittis & L. (2015) for photonic crystals

Classification of Photonic Topological Insulators
De Nittis & L. (2014 & 2016)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Work in Progress

Unified mathematical framework for operators 𝑀 = 𝑊 𝐷
with Giuseppe De Nittis and Carlos Villegas

Magnons (test case to undestand 𝑊 ≯ 0)
with Koji Satō and Kei Yamamoto

Non-standard topological classes with two ±TR
with Giuseppe De Nittis and Kiyonori Gomi

Non-linear photonic topological insulators
with Giuseppe De Nittis and Kiyonori Gomi
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Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Open Problems
For operators of product form

𝑀 = 𝑊 𝐷

Scattering theory
⇝ technical conditions on 𝑊 and 𝐷?

What if 𝑊 ≯ 0 (e. g. in metals or for magnons)
⇝ Theory of Krein spaces

Non-linear topological insulators (e. g. in photonic or
magnonic crystals)
⇝ Existence of topological solitons?

Dispersion

Spectral problems
e. g. 𝑀 periodic Maxwell operator, 𝑊 ∈ 𝐿∞

⟹ 𝜎(𝑀)\{0} = 𝜎ac(𝑀)\{0}
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Source for Inspiration: Wave-Wave Analogies

Cloaks
Thermal

Temperature (°C)

Cloak Reference

30 40 50 60 70 80

t =
 3

0 
s

t =
 6

0 
s

t =
 9

0 
s

t =
 1

20
 s

2 cm

Figure 3: Measured temperature distributions at di↵erent times t as indicated. At
t = 0 s, we start from a homogenous room-temperature profile. Results for
the complete thermal cloak shown in Fig. 2 (b) are shown in the left-hand side
column, results for a simplified reference structure with only a thermally iso-
lating ring around the central copper region are depicted in the right-hand side
column. The white curves are iso-temperature lines (equidistant in steps of
3�C) corresponding to the temperature profiles depicted on a false-color scale.

6

Schittny, Wegener et al (2013)

Mechanical

What are possible practical implications of the presented
direct lattice-transformation approach? A tunnel underneath a
river is subject to significant stress peaks at the tunnel walls.
The cloak described in this report allows civil engineers to
distribute the stress around the tunnel, while also separating
the stress maximum from the tunnel walls. Using material-
parameter transformations, such practical mechanical designs
have not been possible previously. Our simple-to-use design

recipe could also be applied to construct support structures
for buildings or bridges. Although we have shown 2D exam-
ples, the extension to three dimensions appears straightfor-
ward. It remains to be seen whether our approach can also be
extended to dynamic wave problems.
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Fig. 5. Measured performance of a lattice-transformation cloak. Same as Fig. 2, but measured directly on polymer structures fabricated by a 3D printer.
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× L, w = 0.4 mm, and W = 1 mm.

4934 | www.pnas.org/cgi/doi/10.1073/pnas.1501240112 Bückmann et al.

Bückmann, Wegener et al (2015)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger Formalism Electromagnetism Classification PTIs Challenges & Open Problems

Thank you for your attention!


	Schrödinger Formalism for Classical Waves
	Example: Electromagnetism
	Classification of Photonic Topological Insulators
	Challenges & Open Problems

