Classification of Topological Insulators for Classical Light

in collarboration with Giuseppe De Nittis

Max Lein
Advanced Institute of Materials Research, Tohoku University
2016.02.09@Bressanone

Talk Based on

Collaboration with Giuseppe De Nittis

- On the Role of Symmetries in the Theory of Photonic Crystals Annals of Physics 350, pp. 568–587, 2014
- On the Role of Symmetries and Topology in the Theory of Classical Electromagnetism in preparation, 2016

Motivation Realizing Quantum Effects with Classical Light

Photonic Crystals

Johnson & Joannopoulos (2004)

Periodic Waveguide Arrays

Rechtsman, Szameit et al (2013)

- periodic structure \Longrightarrow peculiar light conduction properties
- artificial PLCs can be engineered arbitrarily and inexpensively
- "band structure" and "band topology engineering"
 → photonic band gaps, slow light, low-dispersion materials

Theory

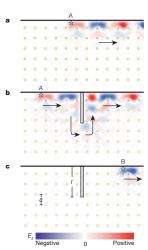
Predicted by

Raghu and Haldane (2005)

Experiment

- ... and realized in
- 2d photonic crystals for microwaves by Joannopoulos, Soljačić et al (2009)
- periodic waveguide arrays for light at optical frequencies by Rechtsman, Szameit et al (2013)

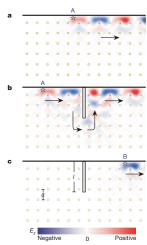
$$\begin{pmatrix}
\overline{\varepsilon} & 0 \\
0 & \overline{\mu}
\end{pmatrix} \neq \begin{pmatrix}
\varepsilon & 0 \\
0 & \mu
\end{pmatrix}$$
symmetry breaking



Joannopoulos, Soljačić et al (2009)

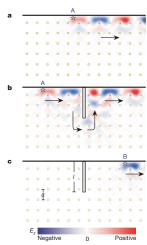
$$\begin{pmatrix} \overline{\varepsilon} & 0 \\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix}$$
 symmetry breaking
$$\Rightarrow$$

- Photonic bulk-edge correspondences
- Identify topological observables O = T + error
- ullet Find all topological invariants T
- Classification of PhCs by symmetries



Joannopoulos, Soljačić et al (2009)

- Photonic bulk-edge correspondence:
- Identify topological observables
- Find all topological invariants T
- Classification of PhCs by symmetries



Joannopoulos, Soljačić et al (2009)

Fundamental Equations Maxwell's Equations in Matter

Maxwell's Equations for Non-Gyrotropic Dielectrics

Johnson & Joannopoulos (2004)

Assumption (Material weights)

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix}$$

- $0 < c \mathbf{1} \le W \le C \mathbf{1}$ (excludes metamaterials)
- 4 W frequency-independent (response instantaneous)

Maxwell's Equations for Non-Gyrotropic Dielectrics

Maxwell equations

Dynamical equations

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \; \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$$

Absence of sources

$$\begin{pmatrix} \operatorname{div} & 0 \\ 0 & \operatorname{div} \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

Johnson & Joannopoulos (2004)

Schrödinger Formalism of Electromagnetism

$$\left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix} \right) \tfrac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) = \left(\begin{smallmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{smallmatrix} \right)$$
 dynamical Maxwell equations
$$\Longrightarrow \quad \left\{ \begin{aligned} & \mathrm{i} \partial_t \Psi = M \Psi \\ \text{"Schrödinger-type equation"} \end{aligned} \right.$$

$$\Psi(t) = \left(\mathbf{E}(t), \mathbf{H}(t)\right) \in L^2_W(\mathbb{R}^3, \mathbb{C}^6) \,$$
 transversal em field

$$M = \underbrace{\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix}^{-1}}_{=W^{-1}} \underbrace{\begin{pmatrix} 0 & +(-i\nabla)^{\times} \\ -(-i\nabla)^{\times} & 0 \end{pmatrix}}_{=\text{Rot}} = M^*$$

$$\iff \qquad \qquad \text{Adaptation of techniques} \\ \iff \qquad \iff \qquad \text{from quantum mechanics} \\ \text{Maxwell operator } M = M^*$$

Fundamental Symmetries of Non-Gyrotropic Materials

$$\left. \begin{array}{ccc} \left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix} \right) \frac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) = \left(\begin{smallmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{smallmatrix} \right) \\ \text{dynamical Maxwell equations} \right\} \quad \Longleftrightarrow \quad \left\{ \begin{aligned} \mathbf{i} \partial_t \Psi &= M \Psi \\ \text{"Schrödinger-type equation"} \end{aligned} \right.$$

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} = \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

3 Symmetries

②
$$J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$$
 with $JMJ = -M$ (χ)

3
$$T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}}) \text{ with } TMT = +M \text{ (+TR)}$$

Fundamental Symmetries of Non-Gyrotropic Materials

$$\left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix} \right) \tfrac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) = \left(\begin{smallmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{smallmatrix} \right)$$

$$\text{dynamical Maxwell equations} \qquad \Longleftrightarrow \qquad \left\{ \begin{aligned} \mathbf{i} \partial_t \Psi &= M \Psi \\ \end{aligned} \right.$$

$$\text{"Schrödinger-type equation"}$$

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} = \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

3 Symmetries

②
$$J: (\mathbf{E}, \mathbf{H}) \mapsto (\mathbf{E}, -\mathbf{H})$$
 with $JMJ = -M$ (χ)

3
$$T = JC : (\mathbf{E}, \mathbf{H}) \mapsto (\overline{\mathbf{E}}, -\overline{\mathbf{H}})$$
 with $TMT = +M$ (+TR)

Restriction to Real Fields

CMC = -M implies

$$\mathrm{e}^{-\mathrm{i}tM}\left(\mathbf{E}_{0},\mathbf{H}_{0}\right)=\mathrm{e}^{-\mathrm{i}tM}\operatorname{Re}\Psi_{\pm}=\operatorname{Re}\,\mathrm{e}^{-\mathrm{i}tM}\Psi_{\pm}$$

where $\mathrm{Re} \, := \frac{1}{2} (\mathrm{id} + C)$ is the real part operator and

$$\begin{split} &\Psi_{+} = 1_{\{\omega > 0\}}(M)\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right) = P_{+}(\mathbf{E}_{0}, \mathbf{H}_{0}) \\ &\Psi_{-} = 1_{\{\omega < 0\}}(M)\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right) = P_{-}(\mathbf{E}_{0}, \mathbf{H}_{0}) = C\Psi_{+} \end{split}$$

the positive and negative frequency contributions

Restriction to Real Fields

 $C\,M\,C=-M$ implies

$$\mathrm{e}^{-\mathrm{i}tM}\left(\mathbf{E}_{0},\mathbf{H}_{0}\right)=\mathrm{e}^{-\mathrm{i}tM}\operatorname{Re}\Psi_{\pm}=\operatorname{Re}\,\mathrm{e}^{-\mathrm{i}tM}\Psi_{\pm}$$

where $\operatorname{Re} := \frac{1}{2}(\operatorname{id} + C)$ is the real part operator and

$$\begin{split} &\Psi_{+} = 1_{\{\omega > 0\}}(M) \left(\mathbf{E}_{0}, \mathbf{H}_{0}\right) = P_{+}(\mathbf{E}_{0}, \mathbf{H}_{0}) \\ &\Psi_{-} = 1_{\{\omega < 0\}}(M) \left(\mathbf{E}_{0}, \mathbf{H}_{0}\right) = P_{-}(\mathbf{E}_{0}, \mathbf{H}_{0}) = C\Psi_{+} \end{split}$$

the positive and negative frequency contributions

What About Gyrotropic Media?

What if

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} \neq \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

is complex?

- Use non-gyrotropic equations $\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$ \rightsquigarrow often implicitly use in literature, but $\operatorname{Im} \left(\mathbf{E}(t), \mathbf{H}(t) \right) \neq 0$?
- ② Use $(\mathbf{E},\mathbf{H})=\frac{1}{2}\big(\Psi_++\Psi_-\big)$ and let positive/negative frequency contributions evolve separately via $M=M_+\oplus M_-$

What About Gyrotropic Media?

What if

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} \not= \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

is complex?

- Use non-gyrotropic equations $\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$ \rightsquigarrow often implicitly use in literature, but $\operatorname{Im} \left(\mathbf{E}(t), \mathbf{H}(t) \right) \neq 0$ 2
- ② Use $({\bf E},{\bf H})=\frac{1}{2}(\Psi_++\Psi_-)$ and let positive/negative frequency contributions evolve separately via $M=M_+\oplus M_-$

The Schrödinger Formalism for Gyrotropic Media

 $\Psi_-(t) = C \Psi_+(t)$ can be enforced by choosing $W_- = \overline{W_+}$, i. e.

$$M_{\pm} = -C\,M_{\mp}\,C = W_{\pm}\,\mathrm{Rot}\,\big|_{+\omega>0}$$

Relation between M_\pm implies relation between evolution groups:

$$C \operatorname{e}^{-\mathrm{i} M_{\pm}} = \operatorname{e}^{-\mathrm{i} t M_{\mp}} C$$

The Schrödinger Formalism for Gyrotropic Media

Maxwell equations equivalent to

$$i\partial_t \Psi(t) = M\Psi(t), \qquad \qquad \Psi(0) = \Phi \in \mathcal{H},$$

on the Hilbert space

$$\mathcal{H}:=\operatorname{ran}P_+\oplus\operatorname{ran}P_-\subset L^2_{W_+}(\mathbb{R}^3,\mathbb{C}^6)\oplus L^2_{W_-}(\mathbb{R}^3,\mathbb{C}^6)$$

with Maxwell operator

$$\begin{split} M := M_+ \oplus M_- \\ \mathcal{D}(M) := \left(P_+ \mathcal{D}(\mathsf{Rot})\right) \oplus \left(P_- \mathcal{D}(\mathsf{Rot})\right) \end{split}$$

"Indestructible" Symmetries

$$M = M_+ \oplus M_- \implies \left\{ \begin{matrix} K\,M\,K = -M \\ \Gamma\,M\,\Gamma = +M \end{matrix} \right.$$

has an even particle-hole-type symmetry

$$K:=\sigma_1\otimes C,\quad (\Psi_+,\Psi_-)\mapsto \big(\overline{\Psi_-},\overline{\Psi_+}\big),$$

which translates to complex conjugation of fields and a grading

$$\Gamma := \sigma_3 \otimes \mathrm{id}, \quad (\Psi_+, \Psi_-) \mapsto (+\Psi_+, -\Psi_-).$$

Reduction to Complex Fields with $\omega > 0$

Physically only real states relevant

$$\mathcal{H}_{\mathbb{R}} := \left\{ \left(\Psi, \overline{\Psi} \right) \; \middle| \; \; \Psi \in \operatorname{ran} P_+ \right\} \subset \operatorname{ran} P_+ \oplus \operatorname{ran} P_-$$

KMK = -M implies

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right)\simeq \mathrm{e}^{-\mathrm{i}tM}\operatorname{Re}\left(\Psi_{+},0\right)=\operatorname{Re}\,\left(\mathrm{e}^{-\mathrm{i}tM_{+}}\Psi_{+},0\right)$$

where $Re := \frac{1}{2}(id + K)$ is the real part operator

Real states \iff Complex states with $\omega > 0$

 \Longrightarrow Study symmetries of M_{\pm} (regular, \pm TR)

Reduction to Complex Fields with $\omega > 0$

Physically only real states relevant

$$\mathcal{H}_{\mathbb{R}} := \left\{ \left(\Psi, \overline{\Psi} \right) \; \middle| \; \; \Psi \in \operatorname{ran} P_+ \right\} \subset \operatorname{ran} P_+ \oplus \operatorname{ran} P_-$$

KMK = -M implies

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right)\simeq \mathrm{e}^{-\mathrm{i}tM}\operatorname{Re}\left(\Psi_{+},0\right)=\operatorname{Re}\,\left(\mathrm{e}^{-\mathrm{i}tM_{+}}\Psi_{+},0\right)$$

where Re $:= \frac{1}{2}(id + K)$ is the real part operator

Real states \iff Complex states with $\omega > 0$

 \Longrightarrow Study symmetries of M_{\perp} (regular, \pm TR)

Reduction to Complex Fields with $\omega > 0$

Physically only real states relevant

$$\mathcal{H}_{\mathbb{R}} := \left\{ \left(\Psi, \overline{\Psi} \right) \; \middle| \; \; \Psi \in \operatorname{ran} P_+ \right\} \subset \operatorname{ran} P_+ \oplus \operatorname{ran} P_-$$

KMK = -M implies

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right)\simeq \mathrm{e}^{-\mathrm{i}tM}\operatorname{Re}\left(\Psi_{+},0\right)=\operatorname{Re}\,\left(\mathrm{e}^{-\mathrm{i}tM_{+}}\Psi_{+},0\right)$$

where $Re := \frac{1}{2}(id + K)$ is the real part operator

Real states \Longleftrightarrow Complex states with $\omega > 0$

 \Longrightarrow Study symmetries of M_{+} (regular, \pm TR)

Which Symmetries Are Broken?

Non-Gyrotropic Materials

$$W_+ = \overline{W_+}$$

1 Relevant Symmetry of Complexified Equation

$$T = J K = \mathrm{id} \otimes ((\sigma_3 \otimes \mathrm{id})C)$$
 with $T M T = +M$ (+TR)

Which Symmetries *Are* Broken?

Gyrotropic Materials

$$W_{+} \neq \overline{W_{+}}$$

1 Relevant Symmetry of Complexified Equation

$$T = J \, K = \mathrm{id} \otimes \big((\sigma_3 \otimes \mathrm{id}) C \big) \ \, \mathrm{with} \ \, T \, M \, T = + M \ \, \mathrm{(+TR)}$$

T reverses arrow of time: $T e^{-itM} = e^{-i(-t)M} T (W_+ = \overline{W_+})$ \Longrightarrow Needs to be broken to have unidirectional edge modes!

Which Symmetries Are Broken?

Gyrotropic Materials

$$W_+ \neq \overline{W_+}$$

1 Relevant Symmetry of Complexified Equation

$$T = JK = id \otimes ((\sigma_3 \otimes id)C)$$
 with $TMT = +M$ (+TR)

T reverses arrow of time: $T e^{-itM} = e^{-i(-t)M} T (W_+ = \overline{W_+})$ \Longrightarrow Needs to be broken to have unidirectional edge modes!

Main Result Classification of PTIs

Classification for the Periodic Case

Reduction to Real Fields Topology of the Bloch Bundle

$$\mathcal{E}_{\mathrm{Bloch}} = \mathcal{E}_+ \oplus \mathcal{E}_- \cong \mathcal{E}_+ \oplus \mathcal{E}_+^* \longrightarrow \mathbb{T}^3$$

Real states determined by component in \mathcal{E}_+

 \Longrightarrow Classification of real states \rightsquigarrow topology of $\mathbb C$ -vector bundle $\mathcal E_+$

Classification for the Periodic Case

Reduction to Real Fields Topology of the Bloch Bundle

$$\mathcal{E}_{\mathrm{Bloch}} = \mathcal{E}_+ \oplus \mathcal{E}_- \cong \mathcal{E}_+ \oplus \mathcal{E}_+^* \longrightarrow \mathbb{T}^3$$

Real states determined by component in \mathcal{E}_+

 \Longrightarrow Classification of real states \rightsquigarrow topology of $\mathbb C$ -vector bundle $\mathcal E_+$

Comparison Between Photonics and Quantum Mechanics

Theorem (De Nittis-L., 2016)

Material	Photonics	Quantum Mechanics
ordinary	class AI +TR	class AI +TR
exhibiting edge currents	class A none	class A/AII none/-TR
vacuum & dual-symmetric	??? 2 anticommuting +TR	

Comparison Between Photonics and Quantum Mechanics

Theorem (De Nittis-L., 2016)

Material	Photonics	Quantum Mechanics
ordinary	class AI +TR	class AI +TR
exhibiting edge currents	class A none	class A/AII none/-TR
vacuum & dual-symmetric	??? 2 anticommuting +TR	

Thank you for your attention!