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Periodic Light Conductors

Photonic Crystals
Johnson & Joannopoulos (2004)

Periodic Waveguide Arrays
Rechtsman, Szameit et al (2013)

We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses
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Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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• periodic structure =⇒ peculiar light conduction properties
• “band structure engineering”
⇝ photonic band gaps, slow light, low-dispersion materials

• artificial PLCs can be engineered arbitrarily and inexpensively
• natural photonic crystals: gem stones, beetle shells, butterfly wings
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Periodic Light Conductors

Johnson & Joannopoulos (2004)

Maxwell equations
Dynamical equations(
ε χ
χ∗ µ

)
∂

∂t

(
E
H

)
=

(
−∇× H
+∇× E

)
Absence of sources(

∇ ·
(
εE+ χH

)
∇ ·

(
χ∗E+ µH

)) = 0
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PLCs as Building Blocks of Future Photonic Devices

Wavelength-multiplexed silicon photonics chip by IBM (2015)

Integration of photonics and electronics
• Moving photonics closer to the CPUs and GPUs
• Server chassis→motherboard→ chip package→ die
• Ultimately optical processing

(eliminates need for optical-electrical-optical conversion)
• Advantages: lower power consumption, no interference,

higher bandwidth, lower latency, longer distances
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PLCs as Building Blocks of Future Photonic Devices

PhC-based photonic memory
Kuramochi et al, NTT Nanophotonics Center (2014)

various detuning conditions for one of the dips (fifth dip in Fig. 3b).
The curve shows a clear hysteresis when the input light is detuned to
a shorter wavelength than the dip, which is a signature of bistable
operation based on optical nonlinearity via photoexcited
carriers9,13,17. In this case the threshold power, given by the onset
of bistability with clear hysteresis, is 79 nW. The power is
defined as the light intensity in the bus waveguide. The bistable
thresholds for all the dips are shown in Fig. 3d, and range from
79 nW to 2 mW. The total sum of the bistable threshold power for
all dips is !13 mW.

We next examined channel-by-channel bit-memory operation
(Fig. 4a). We observed successful bit-memory operation for 28
dips out of 32 cavities. In the experiment each memory was initially
in one of the bistable states (denoted ‘0’). We then injected a write
pulse that switched the memory to the other state, ‘1’ (Write).

This state (and therefore the stored bit information) is maintained
until the bias light is blocked (Reset). As long as the bit information
is stored, we can read it out with arbitrary timing by injecting a read
pulse (Read). The left panel in Fig. 4a shows the output waveform of
the bias light slightly blue-detuned from cavity resonance, and
shows the state of each memory. The centre and right panels
show the output waveforms of the read pulse for two cases (with
and without write pulse injection, that is, with ‘1’ and ‘0’ infor-
mation stored) for which the wavelength is on-resonance with the
cavity (zero detuning). Because the side-coupling configuration is
used, the low and high power states in the lower left panel corre-
spond to ‘1’ and ‘0’, respectively, which is the opposite of previous
reports2,13 where the cavity was in an end-coupling configuration.
As expected, when the write pulse is injected ‘1’ is retrieved, and
when there is no write pulse, ‘0’ is retrieved for all channels. For
this operation, the bias power was between 1.6 and 7.9 mW, and
the write/read pulse energy was 100–200 fJ. This result clearly
shows that we have achieved 28-bit memory operation. The total
power consumption for 28 bits in Fig. 4a is 137 mW.

To demonstrate that this 28-bit memory can operate as a multi-
bit RAM and that different bits can be addressed simultaneously, we
simultaneously injected a four-bit signal and examined the RAM
operation (Fig. 4b). Two sets of four sequential channels (dips 2–5
and dips 18–21) were chosen from the 28 channels. Write pulses
were composed of four-bit light pulse signals with different wave-
lengths. In the experiment, two types of write pulse (‘1101’ and
‘1010’) were injected. The two sets of readout waveforms for both
sets of channels demonstrate that the stored information was suc-
cessfully read out in all cases. With the two different dip sets, the
results clearly show that different memories can be accessed inde-
pendently and simultaneously without noticeable crosstalk or
mutual interference. This is the first demonstration of wavelength-
addressable multi-bit RAM. For more details about the experiments
in Fig. 4a,b, see the Methods and Supplementary Information,
Chapters 3 and 4.

With the present device, the number of bits is limited by three
factors: the available bandwidth, the cavity-resonance width and
the wavelength accuracy. To demonstrate the greatest degree of inte-
gration we next fabricated similar integrated memories (design
shown in Fig. 1d) using Si photonic crystals, because they are
superior to InGaAsP/InP BH photonic crystals in terms of the last
two factors. In fact, the modified L3 cavity design with Si photonic
crystals leads to a maximum measured Q of !1 million, which is an
order of magnitude greater than that in InGaAsP/InP BH photonic
crystals. We fabricated 128 cavity devices (Fig. 5a) with ay varied in
0.125 nm steps, as described in the legend of Fig. 5.

Figure 5b shows the transmission spectrum of the fabricated
device. A total of 115 dips (except for Fabry–Pérot modes) related
to the fundamental nanocavity mode are resolved, and the total
bandwidth is 30 nm. The dips are 10–20 dB deep, and the average
intrinsic Q for the dips is about 0.5 million. Figure 5c summarizes
the wavelengths for all the dips in the same device (s is 0.36 nm).
The values of Q and s are significantly improved compared to
those of the InGaAsP/InP devices. The average wavelength
spacing is 0.23 nm, corresponding to an average WDM channel
density of 30 GHz. We examined the input power dependence,
and 105 dips exhibited clear optical nonlinearity17 without overlap-
ping with other cavity modes.

We next investigated bistable memory operation with this Si device
and examined how many bits could be operated (Fig. 6). The pro-
cedure shown in Fig. 6a is essentially the same as for the
InGaAsP/InP devices. Figure 6b shows the temporal waveform of
the bias light output for 105 channels, revealing the instantaneous
state of the optical memory. Each memory was initially in the ‘0’
state and, after a write pulse was injected, the state switched to the
‘1’ state until the reset operation. This result shows that bistable
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Figure 5 | Cascaded integrated 128-Si-nanocavity array. a, SEM images of
the fabricated 128-nanocavity array with a periodicity of 20ay at different
magnifications. The lattice constant ay of each cavity is systematically varied
between 408 and 423.875 nm (Day¼0.125 nm). ax was fixed at
408 ×

p
3 nm b, Transmission spectrum via the output port; 105 dips are

confirmed to correspond to different cavities. c, Wavelengths for the 105
dips. The blue line is a fitted line and s is the standard deviation of the
residuals from the fitted line.
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Quantum computing logic
Szameit et al, Jena (2013)

probability distribution for which there is no known efficient classi-
cal sampling algorithm. The simplest case of the non-classical inter-
ference effect has been demonstrated for two photons by Hong, Ou
and Mandel (HOM)22.

When two indistinguishable photons enter a 50/50 beamsplitter
from different input modes, a and b, the two photons will always
end up propagating together in one of the two output modes
(Fig. 1a). This occurs because a 50/50 beamsplitter represents a
unitary transformation23 that cancels the probability of having
both photons transmitted with the probability of having both
photons reflected. More generally, the probability of finding one
photon in output mode a′ and the other in mode b′ is given by

the permanent (see Methods) of the beamsplitter matrix BS:

P = |Per(BS)|2 = Per
T iR
iR T

( )∣∣∣∣

∣∣∣∣
2

= |T2 − R2|2

where T and R are beamsplitter transmission and reflection coeffi-
cients, respectively. In the case of a 50/50 beamsplitter the perma-
nent is obviously zero, so the photons bunch into one of the output
modes. The same formula holds for the general case of n photons
injected into n different modes of an m × m optical network with
a underlying matrix U. The probability that one finds these
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Figure 2 | The optical networks. a, Schematic. The circuit consists of five input modes (1 to 5), five output modes (1′ to 5′), eight directional couplers (h1 to
h8) and eleven phase shifters (w1 to w11). Up to three single photons can be coherently launched into any combination of input modes. Each output mode is
connected to a single-photon detector, and coincidences are recorded with a home-built FPGA logic. Neighbouring modes are separated by 127 mm and the
chip has a total length of 10 cm. Three different optical networks written on the same chip were used in the experiment. b, Fluoresence image. To visualize
the light evolution in the network, coherent laser light at a wavelength of 633 nm was launched into input modes 2 to 4 of an optical network. Colour centres
are excited by the propagating beam and emit fluorescent light at a wavelength of 650 nm. The fluoresence signal is directly proportional to the propagating
light intensity.
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PhC-based waveguides
Russel, Max Planck Institute for Light (2014)
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loss guidance of light in a hollow fiber core.
The challenge would be to increase the
scattering sufficiently so that, over a range
of axial wavevectors, propagation is closed
off for all radial and azimuthal directions in
the transverse plane – in other words, a
two-dimensional photonic band gap
(PBG) appears.

Why not annular 
Bragg fibers?
Another kind of structure that could
potentially create this effect had been
suggested theoretically in 1968 by
Melekin [11] and then studied in more
detail by Yariv some ten years later [12].
It consisted of concentric tubular layers of
alternating refractive index (Fig. 1(d)).
The idea was that rays traveling at an
angle to the axis encounter a cylindrical
Bragg stack, and are fully reflected back
into the core, where they become
trapped. The modes that would most nat-
urally guide in such a structure are those
where the electric or magnetic fields are
parallel to the boundary, i.e., the field
polarization turns with azimuthal angle

(these are the TE01 and TM01 modes). In
fact, the TE01 mode had been used previ-
ously at microwave frequencies in hollow
metallic waveguides; the field moves
away from the waveguide walls as the fre-
quency increases, resulting in very low
attenuation, although the guide must be
kept very straight to avoid bending-relat-
ed losses caused by field penetration into
the metal. 

Although it is straightforward to pro-
duce solid-core versions of such Bragg
fibers by MCVD [13], for guidance in a
hollow core one is up against the need for
low effective index (the radial stop-band
must appear at values of axial refractive
index nax <1) and high index contrast (for
strong confinement). As a result, the indi-
vidual layers must be very thin (thickness ≈
(1.462–nax)-1/2 λ/4<0.69λ, where λ is
the vacuum wavelength), which enhances
the effects of dopant diffusion during fiber
drawing, further reducing the already weak
index contrast. Small index contrast has the
drawback that, for good confinement, a
large number of periods is needed and the
structure must be highly perfect to avoid

leakage through defect states in the
cladding layers. 

The ideal structure would be a series of
concentric glass layers with air between
them; of course, this structure would not
hold together mechanically. One could
think of increasing the index contrast using
two solid materials, but here the problems
are extreme for another reason. Pairs of
drawable glasses with compatible melting
and mechanical properties, a large refrac-
tive index difference, and high optical
transparency have not yet been found.
More exotic combinations of chalcogenide
and polymer overcome the mechanical
problems, but suffer from extremely high
absorption in the polymer layers (neverthe-
less, 1 dB/m loss at 10 µm wavelength has
been reported for the TE01 mode [14]). 

In the end, it turns out that PCF, with
a triangular array of hollow channels, satis-
fies all of the requirements in one step:
high index contrast, mechanical stability,
no problems with thermal expansion, and
extremely low material absorption.

The undiscovered 
has no map
Like Thomas Edison in his search to find a
suitable material for the element of a light
bulb (apparently he tried out 3000 fila-
ments before coming up with one that
worked), I had no real idea how to go about
producing a fiber with holes that might be
as small as half a micron in diameter,
spaced a few microns apart in a crystalline
lattice. There was no “map”. After all, no
one had tried making something quite like
this before. Lithography was good for very
thin structures, but it was hard to see how
it could be adapted to produce even cm
lengths of PCF. More promising was work
at Naval Research Laboratories in
Washington, D.C., where Tonucci had
shown that multi-channel glass plates with
hole diameters as small as 33 nm, in a
tightly packed array, could be produced
using draw-down and selective etching
techniques [15]. The maximum channel
length was limited by the etching chem-
istry to ~1 mm, and though the structures
were impressively perfect, they were clear-
ly not fibers. 

My earliest attempt, in 1991, involved
drilling a pattern of holes into a stub of sil-
ica glass, my hope being that it could be
drawn into fiber. Machining an array of 1
mm holes in a stub of silica ~2.5 cm in

Figure 1: Drawings of various structures: (a) birefringent PCF; (b) ultra-small core PCF;
(c) hollow core PCF; (d) hollow core Bragg fiber. The white regions represent silica, the black
regions are hollow, and the colored regions are other materials (glasses or polymers).

(a) (b) (c) (d)

Figure 2: Some PCF structures. (a) the original stub of silica (2.5 cm wide) with holes 1
mm wide partly drilled through it; (b) the hexagonal tube used in the first PCF stack; (c)
scanning electron micrograph (SEM) of the first working solid-core PCF; (d) SEM of the
latest low-loss hollow core PCF designed for 1550 nm transmission (BlazePhotonics Ltd.)

(a) (b) (c) (d)
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PhC-based laser cavities
Altug and Vučković, Stanford (2005)
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other and Lin,th becomes independent of nc, but with a much higher DQE.  On the other hand, 
if β is negligible and Vmode is large (as it is in VCSELs), Lin,th of the laser array increases 
roughly nc times relative to an individual laser (as the 3rd term in (1) dominates), while DQE  
does not change (as the threshold gain is primarily determined by 1/τp in (3)). PC nanocavity 
arrays that are shown here are somewhere in between these two extreme cases: their β is non-
negligible and Vmode is small, implying that different terms in the expression for Lin,th and 
G(Nth) become comparable. Therefore, DQE of the PC cavity array lasers increases relative to 
that of a single PC cavity laser, while the increase in the lasing threshold is slower than the 
increase in the number of cavities.  

It should also be pointed out that in PC nanocavity array lasers, Va increases slower than 
Vmode with an increase in the number of cavities. Hence, the ratio Vmode/Va is larger for 
nanocavity array laser than for a single PC cavity laser, leading to an additional increase in 
DQE, which we observe in our experiment below.  This effect is a result of a more efficient 
pumping and the better overlap between the pumped area and the cavity mode. In a single PC 
cavity laser, it is extremely difficult to pump only the central cavity region, and the pump also 
generates carriers inside the mirrors, which do not couple to the lasing mode. On the other 
hand, in a coupled array laser one can pack larger number of lasers more efficiently by 
reducing the space used as mirrors, and the overlap between the pumped region and the cavity 
mode is better.   

3. Experimental results 

3. 1. Design and fabrication of the laser structure 

 

 

 

 

 

 

 
Fig. 1. (a) SEM pictures of a fabricated single PC cavity laser and a coupled PC cavity array 
laser (b) Simulated electric field amplitude of the coupled cavity array quadrupole mode at the 
Γ-point in the middle of the slab. 

 
Here, we focus on arrays of nanocavities in a square lattice PC and choose non-degenerate 
high Q- factor (~2000) quadrupole mode (field pattern is shown in Fig. 1(b) [14,19].  We 
fabricated such nanocavity arrays in InP material system. The active region contains four 
InGaAsP quantum wells (QWs) with a peak photoluminescence emission wavelength of 
1560nm (Fig.2). Fabrication process starts with the PECVD deposition of 90 nm thick SiO2 
followed by spinning of the 380 nm thick PMMA layer. Electron-beam lithography is used to 
define the patterns in PMMA. First, the patterns are transferred from PMMA layer to oxide 
mask using reactive ion etch with CHF3/O2 gas combination and then transferred from oxide 
mask to InGaAsP slab layer using Cl2/Ar/BCl3 gas combination at 200oC. Finally the InP 
sacrificial layer under the slab is released by immersing the sample into HCl:H2O (4:1). 
During the lithography step trenches are opened at the sides of the structure (Fig. 1) to ease 
the undercut of sacrificial layer [23,24]. The coupled array consists of 81 cavities (9x9) with 
two layers of photonic crystal in between. PC parameters are the free-standing membrane 
thickness (d) of 280nm, periodicity (a) of 500nm, and the hole radius (r) tuned from 160nm to 
230nm to change the resonance frequency of cavities. Single cavity lasers are also fabricated 
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A Novel Class of Materials: Photonic Topological Insulators
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses

kx
ky

Bandgap

b

c d

a
15 15 μm

x

y

kx
ky

Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and

a b

c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Johnson & Joannopoulos (2004)
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Assumption (Material weights)
..

.

W(x) =
(
ε(x) χ(x)
χ(x)∗ µ(x)

)

...1 W∗ = W (lossless)

...2 0 < c 1 ≤ W ≤ C1
(excludes negative indexmat.)

...3 W frequency-independent
(response instantaneous)

...4 Wperiodic wrt latticeΓ ≃ Z3
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These 3 symmetries can
be broken separately!
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Quantum-Light Analogies

»A photonic crystal is to light what
a crystalline solid is to an electron.«
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Photonic Topological Insulators

1987-2005 Research focuses on photonic
crystals with photonic band gap

2005-now Two seminal work by Onoda, Murakami & Nagaosa
as well as Raghu & Haldane:
study of topological properties
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez

0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)
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Schrödinger Formalism of the Maxwell Equations
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This is only a mathematical procedure,
allows to adapt many techniques
initially developed for quantum mechanics
to classical electromagnetism.
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The Maxwell Operator

M =
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ε(x) χ(x)
χ(x)∗ µ(x)

)−1 (
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)
= W−1 Rot

M = M∗ hermitian on weighted Hilbert space⟨
Ψ,MΦ

⟩
w =
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Ψ,WW−1 RotΦ

⟩
=

⟨
RotΨ,Ψ

⟩
=

⟨
WMΨ,Φ

⟩
=

⟨
MΨ,WΦ

⟩
=

⟨
MΨ,Φ

⟩
w

⇒ e−itM unitary, yields conservation of energy
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The Frequency Band Picture

M ∼= MF =

∫ ⊕

B
dk M(k)

=

∫ ⊕

B
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(
ε χ
χ∗ µ

)−1 (
0 +(−i∇y + k)×

−(−i∇y + k)× 0

)

D
(
M(k)

)
=

(
H1(T3,C6) ∩ Jw(k)

)︸ ︷︷ ︸
physical states

⊕G(k) ⊂ L2w(T3,C6)

M(k)|G(k) = 0⇒ focus onM(k)|Jw(k)
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The Frequency Band Picture

.
Physical bands
..

.

M(k)φn(k) = ωn(k)φn(k)

Frequency band functions k 7→ ωn(k)

Bloch functions k 7→ φn(k)

both locally continuous everywhere

both locally analytic away from band crossings
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CAZ Classification of Ordinary PhCs

Symmetry Action Classified
as Physical meaning

C CM(k) C = −M(−k) +PH
“real states
remain real”

J = σ3 ⊗ id JM(k) J = −M(+k) χ
implements
time-reversal

T = J C TM(k) T = +M(−k) +TR
implements
time-reversal

⇒ Ordinary PhCs are of class BDI
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Comparison Between Photonics and Quantum Mechanics

Material Photonics Quantummechanics

ordinary
class BDI

+PH, +TR, χ
class AI
+TR

exhibiting
edge currents

class AIII
χ

class A/AII
none/-TR

.
Important consequences
..

.

Class BDI not topologically trivial
(also relevant in theory of topological superconductors)

Existing derivations of topological effects in crystalline
solids do not automatically apply to photonic crystals
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What about other symmetries?
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Symmetries of Maxwell Operator in Matter

Product structure ofM = W−1 Rot:

U RotU−1 = ±Rot
UWU−1 = ±W

}
=⇒ UMU−1 = ±M

(Signs may be different)

What form do the symmetries U take?



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models Encore

Symmetries of Maxwell Operator in Matter

Product structure ofM = W−1 Rot:

U RotU−1 = ±Rot
UWU−1 = ±W

}
=⇒ UMU−1 = ±M

(Signs may be different)

What form do the symmetries U take?



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models Encore

Symmetries of Maxwell Operator in Matter

Product structure ofM = W−1 Rot:

U RotU−1 = ±Rot
UWU−1 = ±W

}
=⇒ UMU−1 = ±M

(Signs may be different)

What form do the symmetries U take?



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models Encore

Symmetries of the Free Maxwell Operator Rot

Rot =
(

0 +i∇×

−i∇× 0

)
= −σ2 ⊗∇×

.
Symmetries
..

.

For n = 1, 2, 3
...1 Complex conjugation C (antilinear)
...2 Jn = σn ⊗ id (linear)
...3 Tn = Jn C (antilinear)

Connection to symmetries in ordinary materials: J = J3, T = T3
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Symmetries of the Free Maxwell Operator Rot

Rot =
(

0 +i∇×

−i∇× 0

)
= −σ2 ⊗∇×

.
Action of symmetries on Rot
..

.

...1 C RotC = −Rot

...2 Jn Rot J−1
n = −Rot, n = 1, 3

J2 Rot J−1
2 = +Rot

...3 Tn Rot T−1
n = +Rot, n = 1, 3

T2 Rot T−1
2 = −Rot
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Symmetries of Maxwell Operator in Matter

Product structure ofM = W−1 Rot:

U RotU−1 = ±Rot
UWU−1 = ±W

}
=⇒ UMw U−1 = ±Mw

(Signs may be different)

Symmetries U = Tn, C, Jn, n = 1, 2, 3
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PPPPPPPPPCAZ
realized

A none

AIII J1 ≡ χ J2 ≡ χ J3 ≡ χ

AI T1 ≡ +TR T3 ≡ +TR C ≡ +TR

AII T2 ≡ −TR

D T1 ≡ +PH T3 ≡ +PH C ≡ +PH

C T2 ≡ −PH
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PPPPPPPPPCAZ
realized

BDI T1 ≡ +TR
C ≡ +PH

C ≡ +TR
T1 ≡ +PH

T3 ≡ +TR
C ≡ +PH

BDI C ≡ +TR
T3 ≡ +PH

T3 ≡ +TR
T1 ≡ +PH

T1 ≡ +TR
T3 ≡ +PH

DIII T2 ≡ −TR
T1 ≡ +PH

T2 ≡ −TR
T3 ≡ +PH

T2 ≡ −TR
C ≡ +PH

CI T1 ≡ +TR
T2 ≡ −PH

T3 ≡ +TR
T2 ≡ −PH

C ≡ +TR
T2 ≡ −PH
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Symmetries
present

CAZ class ε, µ χ Realized?

none A C C Yes

T3 AI R iR Yes

J3 AIII C 0 Yes

C D R R Unknown

C, J3, T3 BDI R 0 Yes
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Symmetries
present

CAZ
class

Reduced K-group in dimension

d = 1 d = 2 d = 3 d = 4

none A 0 Z Z3 Z7

T3 ≡ +TR AI 0 0 0 Z
J3 ≡ χ AIII Z Z2 Z4 Z8

C ≡ +PH D Z2 Z2
2 ⊕ Z Z3

2 ⊕ Z3 Z4
2 ⊕ Z6

J3 ≡ χ
C ≡ +PH

BDI Z Z2 Z3 Z4

T2 ≡ −PH
T3 ≡ +TR

CI 0 0 Z Z4
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Part 3
Effective Models
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Tight-Binding Models from Ad Hoc Considerations

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤

...1 Obtain band spectrum by solving a second-order equation for
electric/magnetic field only, e. g. M(k)2EE φ

E
n(k) = λn(k)2 φE

n(k)
...2 Pick a family of bands, e. g. with a conical intersection (A+, Y1)
...3 Use a graphene-type tight-binding model to understand light

propagation for states located near intersection
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Caution!

Procedure yields tight-binding operatorMeff
.
Problems..

.

...1 Connection ofMeff to dynamics?

...2 Nature of symmetries?

...3 Correct notion of Berry connection?
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.

...1 Connection ofMeff to dynamics?

...2 Nature of symmetries?

...3 Correct notion of Berry connection?
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First- vs. Second-Order Framework

Assume χ = 0 (no bianisotropy).



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models Encore

First- vs. Second-Order Framework

first order second order

i∂t
(E
H

)
= M

(E
H

)
⇐⇒

(
∂2t +M2

)(E
H

)
= 0

M =
(

0 +i ε−1 ∇×

−iµ−1 ∇× 0

)
=⇒ M2 =

(
ε−1 ∇× µ−1 ∇× 0

0 µ−1 ∇× ε−1 ∇×

)

M(k)φn(k) = ωn(k)φn(k) =⇒ M(k)2 φn(k) =
(
ωn(k)

)2
φn(k)
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first order second order

i∂t
(E
H

)
= M

(E
H

)
⇐⇒

(
∂2t +M2

)(E
H

)
= 0

M block-offdiagonal =⇒ M2 block-diagonal

M(k)φn(k) = ωn(k)φn(k) =⇒ M(k)2 φn(k) =
(
ωn(k)

)2
φn(k)
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First- vs. Second-Order Framework

Compute frequency bands starting from

M(k)2EEφ
E
n(k) =

(
λn(k)

)2
φE
n(k)

Assumption λn(k) ≥ 0 =⇒ yields |ω| spectrum

⇝ Sign important for dynamics!

0 =
(
∂2t +M(k)2

)(E
H

)
=

(
∂t + iM(k)

) (
∂t − iM(k)

)(E
H

)
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ω spectrum vs. |ω| spectrum

First-order formulation
M(k)φn(k) = ωn(k)φn(k)

A+

n2

n-4

n-3

n-2

n-1

n1

n3

n4

A-

B-

B+

-Π Π
k

Ω

Second-order formulation
M(k)2φn(k) = |ωn(k)|2 φn(k)

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤
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ω spectrum vs. |ω| spectrum

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤

Points Xj and Yj are artificial band crossings
No graphene-like physics
⇝ eigenfunctions well-behaved at artificial crossings
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Symmetries

Classification of (anti-)unitary Uwith U2 = ±id with

UM(k)2 U−1 = M(±k)2

in Cartan-Altland-Zirnbauer scheme, e. g.

CM(k) C = −M(−k)
⇒ CM(k)2 C = +M(−k)2

}
vs.

{
TM(k) T = +M(−k)

⇒ TM(k)2 T = +M(−k)2

⇒ No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!
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Proper definition of the Berry Connection

A(k) = i
⟨
φn(k),∇kφn(k)

⟩
w = i

⟨
φn(k),W∇kφn(k)

⟩
= i

⟨
φE
n(k), ε∇kφn(k)

⟩
+ i

⟨
φH
n(k), µ∇kφ

H
n(k)

⟩
Berry connection sometimes computed using only φE

n(k)

However:
∥∥E(t)∥∥2

ε
=

⟨
E(t), ε E(t)

⟩
not conserved quantity!

⇒AE(k) = i
⟨
φE
n(k), ε∇kφ

E
n(k)

⟩
not a connection

Magnetic field necessary to compute Berry connection!

Same arguments hold for φH
n .
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Effective Tight-Binding Models

Goal: Find
...1 an orthogonal projection P and
...2 a simpler effective operatorMeff

(equivalent to a tight-binding operator)

so that for states from ran Pwe have

e−itM P = e−itMeff P+ error.
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Effective Models Should Retain All Symmetries!

For topological effects: M andMeff which enter

e−itM P = e−itMeff P+ error

should be in the same CAZ class

M andMeff possess the same number and type of symmetries

Due to misclassification of PhCs in earlier works: disregarded
in the literature
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Effective Dynamics

CMP paper explains how to compute effective tight-binding
operators in the presence of adiabatic perturbations.

2015 preprint derives correct ray optics equations and explains
how they intertwine with C symmetry.
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Effective Dynamics

CMP paper explains how to compute effective tight-binding
operators in the presence of adiabatic perturbations.

2015 preprint derives correct ray optics equations and
explains how they intertwine with C symmetry.
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Conclusion
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Covered in the talk today

Part 2
Classification of photonic topological insulators
• Schrödinger formalism of electromagnetism
⇝ application of CAZ scheme for TIs

• Complete classification table in publication
• Ordinary material in class BDI (3 symmetries)
⇝ different from time-reversal-invariant quantum systems!
⇝ each symmetry can be broken individually

Part 3
Effective light dynamics
• For topological effects: M andMeff of same CAZ class
• For adiabatic perturbations: explicit form of corrections available
• Ray optics equations also available
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Trends in Research on Photonics

...1 Realize many effects for light at optical frequencies.
⇝ Necessary for integration with optical devices

...2 Rely as much as possible on ordinary materials.
⇝ Ordinary materials in non-trivial topological class!

...3 Include non-linear effects.
⇝ Should be particularly strong in

topological edgemodes (remain localized!)
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Thank you for your attention!
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Part 4
Encore
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Open Problems

Better understanding of topological classes BDI and AIII
⇝ also relevant for topological superconductors

Effective dynamics for classes BDI, D and AIII⇝ edge currents

Bulk-edge correspondences
⇝ photonic analog of transverse conductivity?

Effects of non-linearity⇝ topological solitons?

Persistence of edge currents in presence of random impurities

Periodic waveguide arrays
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Relevance of symmetries for classification

.
Mathematically irrelevant symmetries, e. g.
..

.

...1 TnMw Tn = +Mw (linear, commuting)

...2 Parity (PΨ)(x) = Ψ(−x) (linear, anticommuting)
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Relevance of symmetries for classification

.
Physically irrelevant symmetries
..

.

Symmetry leads to unphysical conditions on weights, e. g.

CWC = −W ⇔ CMw C = +Mw

implies ε ∈ iR, µ ∈ iR, χ ∈ iR (keep in mind ε = ε∗ and µ = µ∗)
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