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Long-Term Goal
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Long-Term Goal

Understand how topological effects
emerge from electrodynamics,
starting fromMaxwells equations.
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Photonic Cyrstals

Johnson & Joannopoulos (2004)

.
Assumption (Material weights)
..

.

W(x) =
(
ε(x) χ(x)
χ(x)∗ µ(x)

)

...1 0 < c 1 ≤ W ≤ C1
(excludesmetamaterials)

...2 W∗ = W (lossless)

...3 W frequency-independent
(response instantaneous)

...4 Wperiodic wrt latticeΓ ≃ Z3
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Photonic Cyrstals

Johnson & Joannopoulos (2004)

.
Maxwell equations
..

.

Dynamical equations(
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)
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∂t
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E
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=
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Absence of sources(
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Symmetries of Ordinary Materials

W =

(
ε 0
0 µ

)
=

(
Re ε 0
0 Reµ

)
, ε ̸∝ µ

.
3 symmetries
..

.

...1 C :
(
E ,H

)
7→

(
E ,H

)
complex conjugation

relies on ε, µ, χ ∈ R, “real fields remain real”
...2 T :

(
E ,H

)
7→

(
E ,−H

)
implements time-reversal

relies on χ = 0
...3 J = T C :

(
E ,H

)
7→

(
E ,−H

)
implements time-reversal
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Symmetries of Ordinary Materials

Each of these 3 symmetries
can be broken separately!
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Part 2
Photonic Topological Insulators
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Quantum-Light Analogies

»A photonic crystal is to light what
a crystalline solid is to an electron.«
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Photonic Topological Insulators

1987-2005 Research focuses on photonic
crystals with photonic band gap

2005-now Two seminal work by Onoda, Murakami & Nagaosa
as well as Raghu & Haldane:
study of topological properties
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Topologically Protected Edge Modes

(
ε 0
0 µ

)
̸=

(
ε 0
0 µ

)
=⇒

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Classification of Topological Insulators in QM

.
Cartan-Altland-Zirnbauer classification scheme..

.

Classifies according to discrete symmetries

3 types of (pseudo) symmetries:
U unitary/antiunitary, U2 = ±id,

UH(k)U−1 = +H(−k) time-reversal symmetry (±TR)

UH(k)U−1 = −H(−k) particle-hole (pseudo) symmetry (±PH)

UH(k)U−1 = −H(+k) chiral (pseudo) symmetry (χ)

10 CAZ classes

Relies on i∂tψ = Hψ (Schrödinger equation)



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Schrödinger Formalism of the Maxwell Equations

...1 Field energy

E
(
E,H

)
=

1

2

∫
R3

dx
(
E(x)
H(x)

)
·
(
ε(x) χ(x)
χ(x)∗ µ(x)

)(
E(x)
H(x)

)
...2 Dynamical equations(

ε χ
χ∗ µ

)
∂

∂t

(
E
H

)
=

(
−∇x × H
+∇x × E

)
...3 No sources (

div 0
0 div

)(
ε χ
χ∗ µ

)(
E
H

)
= 0
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Schrödinger Formalism of the Maxwell Equations

...1 Field energy (E,H) ∈ L2w(R3,C6)with energy norm

∥∥(E,H)∥∥2L2w :=

∫
R3

dx
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E(x)
H(x)
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·
(
ε(x) χ(x)
χ(x)∗ µ(x)

)(
E(x)
H(x)

)
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ε χ
χ∗ µ

)
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E
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−∇x × H
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χ∗ µ

)−1 (
0 +i∇×

−i∇× 0

)
︸ ︷︷ ︸

=M

(
E
H

)

...3 No sources

Jw :=

{(
E
H

)
∈ L2w(R3,C6)

∣∣∣∣ (
div 0
0 div

)(
ε χ
χ∗ µ

)(
E
H

)
= 0

}
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The Maxwell Operator

M =

(
ε(x) χ(x)
χ(x)∗ µ(x)

)−1 (
0 +i∇×

−i∇× 0

)
= W−1 Rot

M selfadjoint on weighted L2w(R3,C6)
⇒ e−itM unitary, yields conservation of energy



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

The Maxwell Operator

M =

(
ε(x) χ(x)
χ(x)∗ µ(x)

)−1 (
0 +i∇×

−i∇× 0

)
= W−1 Rot

M selfadjoint on weighted L2w(R3,C6)
⇒ e−itM unitary, yields conservation of energy



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

The Maxwell Operator

M =

(
ε(x) χ(x)
χ(x)∗ µ(x)

)−1 (
0 +i∇×

−i∇× 0

)
= W−1 Rot

M selfadjoint on weighted L2w(R3,C6)
⇒ e−itM unitary, yields conservation of energy



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

The Frequency Band Picture

M ∼= MF =

∫ ⊕

B
dk M(k)

=

∫ ⊕

B
dk

(
ε χ
χ∗ µ

)−1 (
0 +(−i∇y + k)×

−(−i∇y + k)× 0

)

D
(
M(k)

)
=

(
H1(T3,C6) ∩ Jw(k)

)︸ ︷︷ ︸
physical states

⊕G(k) ⊂ L2w(T3,C6)

M(k)|G(k) = 0⇒ focus on
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The Frequency Band Picture

.
Physical bands
..

.

M(k)φn(k) = ωn(k)φn(k)

Frequency band functions k 7→ ωn(k)

Bloch functions k 7→ φn(k)

both locally continuous everywhere

both locally analytic away from band crossings
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The Frequency Band Picture
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CAZ Classification of Ordinary PhCs

Symmetry Action Classified
as Physical meaning

C CM(k) C = −M(−k) +PH
“real states
remain real”

T = σ3 ⊗ id TM(k) T = −M(+k) χ
implements
time-reversal

J = T C JM(k) J = +M(−k) +TR
implements
time-reversal

⇒ Ordinary PhCs are of class BDI
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Comparison Between Photonics and Quantum Mechanics

Material Photonics Quantummechanics

ordinary
class BDI

+PH, +TR, χ
class AI
+TR

exhibiting
edge currents

class AIII
χ

class A/AII
none/-TR

.
Important consequences
..

.

Class BDI not topologically trivial
(also relevant in theory of topological superconductors)

Existing derivations of topological effects in crystalline
solids do not automatically apply to photonic crystals
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Part 3
Effective Models
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Effective Tight-Binding Models

Goal: Find
...1 an orthogonal projectionΠ and
...2 a simpler effective operatorMeff

(equivalent to a tight-binding operator)

so that for states from ranΠwe have

e−itMΠ = e−itMeff Π+ error.
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Effective Models Should Retain All Symmetries!

For topological effects: M andMeff which enter

e−itMΠ = e−itMeff Π+ error

should be in the same CAZ class

M andMeff possess the same number and type of symmetries

Due to misclassification of PhCs in earlier works: disregarded
in the literature
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Perturbed Photonic Crystals

For simplicity
Consider PhCs of class BDI

W =

(
ε 0
0 µ

)
=

(
Re ε 0
0 Reµ

)
, ε ̸∝ µ
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Perturbed Photonic Crystals

x [lattice constants]

τ−2
ε (λx)
ε(x)
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Perturbed Photonic Crystals

.
Perturbation of material constants..

.

λ =
[lattice spacing]

[length scale of modulation] ≪ 1

ε(x)⇝ ελ(x) := τ−2
ε (λx) ε(x), µ(x)⇝ µλ(x) := τ−2

µ (λx) µ(x)
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Perturbed Photonic Crystals

.
Assumption (Slow modulation)
..
.τε, τµ ∈ C∞

b (R3), τε, τµ ≥ c > 0
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Adiabatically Perturbed Maxwell Operator

Mλ = S−2
λ M

=

(
τ2ε (λx) 0

0 τ2µ(λx)

)(
ε−1 0
0 µ−1

)(
0 +(−i∇x)

×

−(−i∇x)
× 0

)
slow modulation & periodic Maxwell operator
⇝ Perturbations are multiplicative!
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Existence of Physical States

.
Definition (Physical states: unperturbed)
..

.

Π0
∼=

∫ ⊕

B
dk 1σrel(k)

(
M(k)

)
so that

...1 σrel(k) = σrel(−k) =
∪

n∈I
{
ωn(k)

}
isolated family of bands

...2 source free: ranΠ0 ⊂ J0

...3 real: CΠ0 C = Π0
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Existence of Physical States

.
Definition (Physical states: perturbed)
..

.

Πλ
∼=
∫ ⊕

B
dk 1σrel(k)

(
M(k)

)
+O(λ) so that

...1 σrel(k) = σrel(−k) =
∪

n∈I
{
ωn(k)

}
isolated family of bands

...2 source free: “ranΠλ ⊂ Jλ” up toO(λ∞)

...3 real: CΠλ C = Πλ +O(λ∞)
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Existence of Physical States

.
Theorem (De Nittis-L. 2014 (CMP))..

.

Suppose the bands σrel(k) = σrel(−k) are isolated and 0 ̸∈ σrel(0).
Then there exist orthogonal projections

Πλ = Π+,λ +Π−,λ +O(λ∞)

so that [
Mλ , Π±,λ

]
= O(λ∞)

whose range supports physical states.
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Effective Light Dynamics

.
Theorem (PhCs of class BDI, De Nittis-L. 2014 (CMP))..

.

Suppose the bands σrel(k) = σrel(−k) are isolated and 0 ̸∈ σrel(0).
Then there exist a unitary Vλ and an effectiveMaxwell operator

Meff = V−1
λ Meff

(
iλ∇k, k̂

)
Vλ

which approximates the full light dynamics,

e−itMλ Πλ = e−itMeff Πλ +O(λ∞),

e−itMλ Πλ Re = Re e−itMeff Πλ Re +O(λ∞),

and leaves ranΠλ invariant up toO(λ∞).

Πλ, Vλ andMeff can be computed explicitly order-by-order in λ



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Effective Light Dynamics

.
Theorem (PhCs of class BDI, De Nittis-L. 2014 (CMP))..

.

Suppose the bands σrel(k) = σrel(−k) are isolated and 0 ̸∈ σrel(0).
Then there exist a unitary Vλ and an effectiveMaxwell operator

Meff = V−1
λ Meff

(
iλ∇k, k̂

)
Vλ

which approximates the full light dynamics,

e−itMλ Πλ = e−itMeff Πλ +O(λ∞),

e−itMλ Πλ Re = Re e−itMeff Πλ Re +O(λ∞),

and leaves ranΠλ invariant up toO(λ∞).

Πλ, Vλ andMeff can be computed explicitly order-by-order in λ



. . . . . .

Photonic crystals Photonic Topological Insulators Effective Models

Effective Light Dynamics

.
Corollary (“Peierl's substitution”, De Nittis-L. 2014 (CMP))
..

.

For class BDI the symbol toMeff associated to
σrel(k) =

{
+ω(+k),−ω(−k)

}
is

Meff(r, k) = τε(r) τµ(r)
(
+ω(+k) 0

0 −ω(−k)

)
+O(λ).

⇒motivates the definition of aMaxwell-Harper operator
⇝ Hofstadter butterfly?
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Effective Light Dynamics

.
Theorem (PhCs of class D and AI, De Nittis-L. 2014 (CMP))..

.

Similarly, we can derive effective effective dynamics of the form

e−itMλ Πλ = e−itMeff Πλ +O(λ∞)

if Mλ has only C-symmetry (class D) or only J = T C-symmetry (class AI).
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Ingredients to the proof
.
Proof...

.

Crucial technical tool: pseudodifferential calculus
Projection onto almost-invariant subspace:

Πλ = πλ
(
iλ∇k, k̂

)
+O(λ∞)

Unitary: Vλ = Uaux Uλ where

Uλ = uλ
(
iλ∇k, k̂

)
+O(λ∞)

4 defining relations:

πλ♯πλ = πλ +O(λ∞)
[
Mλ , πλ

]
♯
= O(λ∞)

uλ♯u∗λ = 1 +O(λ∞) uλ♯πλ♯u∗λ = πref +O(λ∞)
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Ingredients to the proof

.
Proof...

.

Construction of almost-invariant projection:

πλ(r, k) ≍
i
2π

∫
Γ(r,k)

dz
(
Mλ − z

)(−1)♯(r, k)

Here:
(
Mλ − z

)(−1)♯ is theMoyal resolvent(
Mλ − z

)(−1)♯♯
(
Mλ − z

)
= 1 +O(λ∞)

Local spectral gap
⇒ Γ(r, k) can be chosen to be locally constant
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Ingredients to the proof

.
Proof...

.

Construction of Moyal unitary uλ =
∑∞

n=0 λ
n un

Existence of u0 relies on triviality of the Bloch bundle
(⇔ Chern numbers 0)

EBloch =

( ⊔
k∈R3

ranπ0(k)
)
/Γ∗

un, n ≥ 1, can be computed recursively and explicitly from
{uj}0≤j≤n−1 and {πj}0≤j≤n
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Conclusion
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Covered in the talk today

Part 2
Classification of photonic topological insulators
• Schrödinger formalism of electromagnetism
⇝ application of CAZ scheme for TIs

• Complete classification table in publication
• Ordinary material in class BDI (3 symmetries)
⇝ different from time-reversal-invariant quantum systems!
⇝ each symmetry can be broken individually

Part 3
Effective light dynamics
• For topological effects: M andMeff of same CAZ class
• So far: effective dynamics for PTIs of classes BDI, D and AI
• Explicit form ofO(λ) corrections available
• Ray optics equations also available
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⇝ each symmetry can be broken individually

Part 3
Effective light dynamics
• For topological effects: M andMeff of same CAZ class
• So far: effective dynamics for PTIs of classes BDI, D and AI
• Explicit form ofO(λ) corrections available
• Ray optics equations also available
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Open Problems

Better understanding of topological classes BDI and AIII
⇝ also relevant for topological superconductors

Effective dynamics for classes BDI, D and AIII⇝ edge currents

Bulk-edge correspondences
⇝ photonic analog of transverse conductivity?

Effects of non-linearity⇝ topological solitons?

Persistence of edge currents in presence of random impurities

Periodic waveguide arrays
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Thank you for your attention!
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