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Reformulate source-free Maxwell equations (d= 3)
1 Field energy

E
�

E,H
�

=

∫

R3

dx
�

ε(x) |E(x)|2+µ(x) |H(x)|2
�

= E
�

E(t),H(t)
�

2 Dynamical equations

−ε(x̂)
∂

∂ t
E(t) =∇x ×H(t), E(0) = E

+µ(x̂)
∂

∂ t
H(t) =∇x × E(t), H(0) = H

3 No sources

∇x · ε(x̂)E(t) = 0

∇x ·µ(x̂)H(t) = 0



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

Reformulate source-free Maxwell equations (d= 3)
1 Field energy

E
�

E,H
�

=

∫

R3

dx
�

ε(x) |E(x)|2+µ(x) |H(x)|2
�

= E
�

E(t),H(t)
�

2 Dynamical equations

−ε(x̂)
∂

∂ t
E(t) =∇x ×H(t), E(0) = E

+µ(x̂)
∂

∂ t
H(t) =∇x × E(t), H(0) = H

3 No sources

∇x · ε(x̂)E(t) = 0

∇x ·µ(x̂)H(t) = 0



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

Reformulate source-free Maxwell equations (d= 3)
1 Field energy

E
�

E,H
�

=

∫

R3

dx
�

ε(x) |E(x)|2+µ(x) |H(x)|2
�

= E
�

E(t),H(t)
�

2 Dynamical equations

−ε(x̂)
∂

∂ t
E(t) =∇x ×H(t), E(0) = E

+µ(x̂)
∂

∂ t
H(t) =∇x × E(t), H(0) = H

3 No sources

∇x · ε(x̂)E(t) = 0

∇x ·µ(x̂)H(t) = 0



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

Reformulate source-free Maxwell equations (d= 3)

1 Field energy
(E,H) ∈H(ε,µ) := L2(R3,ε(x)dx;C3)⊕ L2(R3,µ(x)dx;C3)



(E,H)




2
H(ε,µ) :=

∫

R3

dx
�

ε(x) |E(x)|2+µ(x) |B(x)|2
�

= E
�

E,H
�

2 Dynamical equations  »Schrödinger-type equation«

i
d

dt







E(t)

H(t)






=







0 +ε−1(x̂) (−i∇x)×

−µ−1(x̂) (−i∇x)× 0













E(t)

H(t)







3 No sources  »physical states«

J(ε,µ) :=
n

(E,H) ∈H(ε,µ)
�

�∇x · ε(x̂)E= 0∧∇x ·µ(x̂)H= 0
o
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Domain and invariant subspaces

Assumption

ε,µ ∈ L∞(R3), ε,µ≥ c> 0
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Domain and invariant subspaces

Maxwell operator

M(ε,µ) :=







0 +ε−1(x̂) (−i∇x)×

−µ−1(x̂) (−i∇x)× 0







=







ε−1(x̂) 0

0 µ−1(x̂)













0 +(−i∇x)×

−(−i∇x)× 0







= Ξ(x̂) rot⊗σ2

Ξ(x̂) bounded, bounded inverse
⇒ D =D

�

rot⊗σ2
�

= ker Div⊕ ranGrad
  independent of choice of ε, µ!
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Domain and invariant subspaces

Maxwell operator

M(ε,µ) :=







0 +ε−1(x̂) (−i∇x)×

−µ−1(x̂) (−i∇x)× 0







= Ξ(x̂) rot⊗σ2

Ξ(x̂) bounded, bounded inverse
⇒ D

�

M(ε,µ)
�

=D
�

rot⊗σ2
�

= kerDiv⊕ ranGrad

Grad := grad⊕ grad : H1(R3)⊕H1(R3)−→H(ε,µ)
Div := div⊕ div : H1(R3,C6)⊂H(ε,µ)−→ L2(R3)⊕ L2(R3)

  independent of choice of ε, µ!
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Domain and invariant subspaces

Maxwell operator

M(ε,µ) :=







0 +ε−1(x̂) (−i∇x)×

−µ−1(x̂) (−i∇x)× 0







= Ξ(x̂) rot⊗σ2

M(ε,µ)∗ =M(ε,µ) on D [Birman & Solomyak (1987)]
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Domain and invariant subspaces

Decomposition of H(ε,µ) into invariant orthogonal subspaces

H(ε,µ) =
�

ran Grad
�⊥H(ε,µ) ⊕⊥ ran Grad

=: J(ε,µ)⊕⊥ G

  identifies physical and unphysical subspaces
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Domain and invariant subspaces

Decomposition of H(ε,µ) into invariant orthogonal subspaces

H(ε,µ) =
�

ran Grad
�⊥H(ε,µ) ⊕⊥ ran Grad

=: J(ε,µ)⊕⊥ G

Maxwell operator is block diagonal [Birman & Solomyak (1987)]

M(ε,µ) =M(ε,µ)|J(ε,µ)⊕ 0|G

⇒ many authors study M(ε,µ)|J(ε,µ) instead of M(ε,µ)
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Photonic crystals

taken from S. G. Johnson and J. D. Joannopoulos, APL 77, 3490-3492 (2000)
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Photonic crystals

Γ :=
n

γ=
∑3

j=1βj aj

�

� β1,β2,β3 ∈ Z
o

Γ∗ :=
n

γ∗ =
∑3

j=1αj bj

�

� α1,α2,α3 ∈ Z
o

W Wigner-Seitz cell B Brillouin zone
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Photonic crystals

Assumption (Γ-periodicity)
In addition, assume ε = εΓ and µ= µΓ are Γ-periodic.

  simplify notation: use HΓ :=H(εΓ,µΓ), MΓ :=M(εΓ,µΓ), etc.
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Zak transform

Ψ ∈HΓ ∩ C∞c (R
3,C6)

(ZΨ)(k, y) := e−ik·y (FΨ)(k, y) =
∑

γ∈Γ
e−ik·(y+γ)Ψ(y+ γ)
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Zak transform

Zak transform: unitary map Z : HΓ −→ L2(B)⊗HTΓ where

HTΓ := L2�T3,εΓ(y)dy;C3�⊕ L2�T3,µΓ(y)dy;C3�



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

The band picture

MZ
Γ := Z MΓZ−1 =

∫ ⊕

B
dkMZ

Γ (k)

=

∫ ⊕

B
dk







0 +ε−1
Γ (ŷ) (−i∇y + k)×

−µ−1
Γ (ŷ) (−i∇y + k)× 0







ZD = Z
�

�

JΓ ∩H1(R3,C6)
�

⊕G
�

∼=
⊔

k∈B
DZ(k) =

⊔

k∈B

�

�

H1(T3,C6)∩ JZΓ (k)
�

⊕GZ(k)
�

  domain of MZ
Γ (k) depends on k!
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The band picture

σ
�

MZ
Γ (k)|JZΓ (k)

�

= σdisc
�

MZ
Γ (k)|JZΓ (k)

�

on physical subspace

σ
�

MZ
Γ (k)|GZ (k)

�

= σpp
�

MZ
Γ (k)|GZ (k)

�

= {0} on unphysical
subspace

  focus on non-trivial, physical part of spectrum
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The band picture
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The band picture

schematics of energy bands
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The band picture

3d, taken from Photonic Crystals – Molding the Flow of Light
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Non-analyticity

Question of analyticity

Easy: k 7→MZ
Γ (k) is linear and thus analytic, right?
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Non-analyticity

Theorem
1 k 7→MZ

Γ (k) as well as their their restrictions to physical and
unphysical subspaces are analytic on R3 \Γ∗

2 k 7→MZ
Γ (k) 1R\(−δ,+δ)

�

MZ
Γ (k)

�

is locally analytic on all of R3

for δ > 0 suitable

Essential insights due to Figotin and Kuchment (1996)
⇒ MZ

Γ is not a ΨDO! (but it’s very close to a ΨDO)
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Perturbation multiplicative, not additive

Perturbation of material constants
λ� 1 small parameter, quantifies slow variation (lattice spacing
vs. length scale of modulation)

εΓ(x)  ελ(x) := τ−2
ε (λx) εΓ(x)

µΓ(x)  µλ(x) := τ−2
µ (λx) µΓ(x)
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Perturbation multiplicative, not additive

Assumption (Slow modulation)

τε,τµ ∈ C∞b (R
3), τε,τµ ≥ c> 0
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Macroscopic and microscopic degrees of freedom

x [lattice constants]

τ−2
ε (λx)
εΓ(x)
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Macroscopic and microscopic degrees of freedom

HΓ ∼= L2(B)⊗HTΓ =Hmacro⊗Hmicro
  study macroscopic dynamics given a fixed microscopic state
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HΓ ∼= L2(B)⊗HTΓ =Hmacro⊗Hmicro
  study macroscopic dynamics given a fixed microscopic state
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Macroscopic and microscopic degrees of freedom

  study macroscopic dynamics given a fixed microscopic state via
space-adiabatic perturbation theory [PST (2002)]
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Setup

Maxwell operator

M(ελ,µλ) defined as before

D ⊂H(ελ,µλ)

H(ελ,µλ) = J(ελ,µλ)⊕G
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Setup

Maxwell operator

M(ελ,µλ) defined as before

D ⊂H(ελ,µλ)  Hilbert space depends on λ!

H(ελ,µλ) = J(ελ,µλ)⊕G
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Representation of Mλ on λ-independent Hilbert space

Preparation

How to compare Maxwell operators with different values of λ?
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Representation of Mλ on λ-independent Hilbert space

H(ελ,µλ)
Sλ−→HΓ

Z−→ L2(B)⊗HTΓ

where

Sλ =







τ−1
ε (λx̂) 0

0 τ−1
µ (λx̂)
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Representation of Mλ on λ-independent Hilbert space

Maxwell operator in new representation:

MZ
λ := Z SλM(ελ,µλ)S

−1
λ Z−1

= Z Sλ







0 +ε−1
Γ (x̂) (−i∇x)×

−µ−1
Γ (x̂) (−i∇x)× 0






S−1
λ Z−1
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Representation of Mλ on λ-independent Hilbert space

Maxwell operator in new representation:

MZ
λ := Z SλM(ελ,µλ)S

−1
λ Z−1

= τε(iλ∇k) τµ(iλ∇k)MZ
Γ +λ τε(iλ∇k) τµ(iλ∇k) ·

·







0 +ε−1
Γ (ŷ)

�

−i∇x lnτµ
�×(iλ∇k)

−µ−1
Γ (ŷ)

�

−i∇x lnτε
�×(iλ∇k) 0







= τ(iλ∇k)MZ
Γ +λτ(iλ∇k) Υ(iλ∇k)
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Representation of Mλ on λ-independent Hilbert space

Hilbert space L2(B)⊗HTΓ splits

L2(B)⊗HTΓ = JZλ ⊕⊥ GZ
λ :=

�

ZSλJ(ελ,µλ)
�

⊕⊥
�

ZSλG
�

The Maxwell operator

MZ
λ =MZ

0 +λMZ
1

= τ(iλ∇k)MZ
Γ (k̂) +λτ(iλ∇k) Υ(iλ∇k)

is defined on the same λ-independent domain

ZD = Z
�

ker Div⊕G
�
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»Semiclassical« dynamics



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

»Semiclassical« dynamics

Setup

k 7→ Eb(k) isolated, non-degenerate

Eb(k) 6= 0 for all k ∈ R3   excludes ground state bands!

Bloch function k 7→ ϕb(k)

  projection k 7→ |ϕb(k)〉〈ϕb(k)| analytic

Berry curvature Ω(k) := i∇k ∧



ϕb(k),∇kϕb(k)
�

HTΓ
Chern number need not be zero! (then k 7→ ϕ(k) cannot be
chosen purely real)
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Chern number need not be zero! (then k 7→ ϕ(k) cannot be
chosen purely real)
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»Semiclassical« dynamics

Semiclassical flow

Define Φλ : R× T∗R3 −→ T∗R3 as flow associated to

ṙ=+∇k
�

τEb
�

+λ∇k



ϕb , τΥϕb
�

HTΓ
−λ k̇∧Ω

k̇=−∇r
�

τEb
�

−λ∇r



ϕb , τΥϕb
�

HTΓ
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Semiclassical flow

Define Φλ : R× T∗R3 −→ T∗R3 as flow associated to

ṙ=+∇k
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τEb
�

+λ
�
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»Semiclassical« dynamics

Theorem (Semiclassical dynamics, De Nittis & L. (2012))
There exists a projection

Πλ = |ϕb(k̂)〉〈ϕb(k̂)|+λπ1+O‖·‖(λ2)

such that ∀ f ∈ C∞per(T
∗R3;R) and t=O(1):





Πλ
�

e−i t
λ

MZ
λ Op(f)e+i t

λ
MZ
λ −Op

�

f ◦Φt
λ

�

�

Πλ




=O(λ2).
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Semiclassics: interpretation of result

first mathematically rigorous result

new term: M1(r, k) =



ϕb(k),τ(r)Υ(r)ϕb(k)
�

HTΓ
  change in

field energy

assumption Eb(k) 6= 0 ∀k ∈ R3 excludes ground state bands
states with Egs(k)≈ 0 at k≈ 0: wave length� lattice spacing
do not see periodicity of photonic crystal
»universal« behavior  free waves with modified vlight
⇒ multiscale ansatz breaks down!

Proof based on recent publication of Teufel & Stiepan

uses mixture of operator-theoretic and ΨDO techniques (e. g. π1
is not a ΨDO!)
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Semiclassics: comparison to notable previous results

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)
»derivation by analogy«

necessity of slow variation recognized, but small parameter λ not
used

equations of motion:

ṙ=+∇k
�

τEb
�

+λ
�

��
��∇kM1− k̇∧Ω

�

k̇=−∇r
�

τEb
�

−(((((
(

λ∇rM1ϕb

  eom are missing O(λ) term, only leading-order correct
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Semiclassics: comparison to notable previous results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)
use Sundaram–Niu variational technique + second quantization

semiclassical states Ψ(r, k, z) parametrized by (r, k) ∈ T∗R3,
z ∈ S2   find extremals of functional

L=
D

Ψ(r, k, z)
�

�

�i d
dt
−MZ

λ

�

�

�Ψ(r, k, z)
E

equations of motion:

ṙ=+∇k
�

τEb
�

+ k̇∧



z
�

�
eΩ
�

�z
�

+ other terms

k̇=−∇r
�

τEb
�

+ other terms

˙|z〉= additional equation of motion
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involve incorrectly defined Berry connections eAE and eAH, Berry
curvature eΩ
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Semiclassics: comparison to notable previous results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)
equations of motion:
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result is not readily comparable to ours
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Superadiabatic projection

Proposition

Suppose σrel(r, k) = {τ(r)En(k)}n∈I consists of isolated bands. Then
there exists an orthogonal projection

Πλ =
∑

n∈I
|ϕn(k̂)〉〈ϕn(k̂)|+λ π1+O‖·‖(λ2)

which commutes with MZ
λ up to O‖·‖(λ2),




�

MZ
λ , Πλ

�



=O(λ2),

and maps onto states in the physical subspace up to O(λ2),

»ranΠλ ⊂ JZλ +O‖·‖(λ2)«.
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Superadiabatic projection

Proof.
constructs only first-order correction!

uses »defect construction« introduced in [Panati, Spohn & Teufel
(2002)]

explicit ansatz for π1   only works for isolated bands

construction on the level of operators  tedious

crucial: states in ranΠλ are physically relevant states (up to errors
of higher order)
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Semiclassics
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Semiclassics

Proof.
idea of proof due to Stiepan (2011), Stiepan & Teufel (2012)

construction »by hand« on level of operators

only existence of π1 is important

π0(k̂) is a ΨDO⇒ formulas derived by Stiepan & Teufel (2012)
still hold

takes some work to prove first-order corrections are enough!
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Simplification of proofs & extension of results

pragmatic approach: construction on level of operators  tedious,
but it works

ΨDO approach more elegant
technical questions solved »automatically« by ΨDO theory
band crossings within σrel(r, k) can be treated
problem: non-uniformity of approximation of MZ

Γ by ΨDO in λ!
one needs to pick δ > 0 independent of λ  MZ

λ,δ, do usual

construction with MZ
λ,δ   additional error O(δ)

  next week: Erlangen
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Other questions

case d= 2: our methods can be easily adapted, but necessitates
TM⊕ TE split first

really interesting question: ground state band dynamics?
different physical mechanism
How to glue these approaches together?
Is that even possible? Long wavelengths⇒ breakdown of
separation of scales!
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Thank You for your attention!
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Multiband effective dynamics

Why is multiband dynamics interesting/necessary?
If at least one of the Chern numbers

Chj(|ϕb〉〈ϕb|) =
1

2π

∫

B
dkΩj(k)

associated to the band Eb is non-zero⇒ not possible to choose
k 7→ ϕb(k) real everywhere!

Physical fields (E,H) must be real!

  use k 7→ 1
2

�

ϕb(k) +ϕb(−k)
�

and k 7→ 1
2i

�

ϕb(k)−ϕb(−k)
�

!?

Is ϕb(−k) an eigenfunction of MZ
Γ (k)?
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and k 7→ 1
2i

�

ϕb(k)−ϕb(−k)
�

!?

Is ϕb(−k) an eigenfunction of MZ
Γ (k)? Yes!
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Multiband effective dynamics

Why is multiband dynamics interesting/necessary?
particle-hole symmetry (complex conjugation in original
representation)⇒ ϕb(k) solution to eigenvalue equation −Eb(−k)

also k 7→ −Eb(−k) is an isolated band!
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Multiband effective dynamics

upper and lower bands E±(k) with eigenfunctions ϕ±(k),
ϕ−(k) = ϕ+(−k)

π0(k) = |ϕ+(k)〉〈ϕ+(k)|+ |ϕ−(k)〉〈ϕ−(k)|
Berry connection: 2× 2 matrix A=

�

Ajn
�

j,n=± where

Ajn(k) := i



ϕj(k),∇kϕn(k)
�

j, n=±

construction similar to that for semiclassical dynamics yields

Πλ = Π
∗
λ = π0(k̂) +λ π̂1+O‖·‖(λ2)
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Multiband effective dynamics

Theorem (De Nittis & L. (2012))

There exists a projection Πλ =
∑

n=± |ϕn(k̂)〉〈ϕn(k̂)|+λπ1 and an
intertwining unitary Uλ = u0(k̂) +λU1 such the dynamics generated by
the ΨDO associated to

Meff =Meff 0+λMeff 1 ∈ S0
eq

�

T∗R3,B(C2)
�

approximates the full Maxwell dynamics up to O(λ2) in norm:






�

e−itMZ
λ −U∗λ e−itOp(Meff) Uλ

�

Πλ




=O
�

λ2(1+ |t|)
�



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

Multiband effective dynamics

Theorem (De Nittis & L. (2012))

There exists a projection Πλ =
∑

n=± |ϕn(k̂)〉〈ϕn(k̂)|+λπ1 and an
intertwining unitary Uλ = u0(k̂) +λU1 such the dynamics generated by
the ΨDO associated to

Meff =
∑

n=±
τEn |χn〉〈χn|+

+λ
∑

j,n=±

�

1
2
∇r
�

τ En
�

·Ajn+

+



ϕj , τΥ ϕn
�

HTΓ

�

|χj〉〈χn|

approximates the full Maxwell dynamics up to O(λ2) in norm:






�

e−itMZ
λ −U∗λ e−itOp(Meff) Uλ

�

Πλ




=O
�

λ2(1+ |t|)
�



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

Multiband effective dynamics

Theorem (De Nittis & L. (2012))

There exists a projection Πλ =
∑

n=± |ϕn(k̂)〉〈ϕn(k̂)|+λπ1 and an
intertwining unitary Uλ = u0(k̂) +λU1 such the dynamics generated by
the ΨDO associated to

Meff =
∑

n=±
τEn |χn〉〈χn|+

+λ
∑

j,n=±

�

1
2
∇r
�

τ En
�

·Ajn+

+



ϕj , τΥ ϕn
�

HTΓ

�

|χj〉〈χn|

approximates the full Maxwell dynamics up to O(λ2) in norm:






�

e−itMZ
λ −U∗λ e−itOp(Meff) Uλ

�

Πλ




=O
�

λ2(1+ |t|)
�



Physics of photonic crystals Slowly modulated photonic crystals Main results Technical details Future research Encore

Multiband dynamics

constructs first-order correction to intertwining unitary on the level
of operators

recipe again due to [Panati, Spohn & Teufel (2002)]

crucial ingredient: existence of u0

complex conjugation C: relation between
π±(k) = |ϕ±(k)〉〈ϕ±(k)|:

ZCZ−1π+(k̂)ZCZ−1 = π−(k̂)

⇒ dual bundle of E+ isomorphic to E−
⇒ Ch(E+) =−Ch(E−)
⇒ Ch(E+ ⊕ E−) = 0
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