


We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses
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Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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