Existence and Absence of Non-Linear Effects in Photonic Topological Insulators

in collaboration with Giuseppe De Nittis \& Maxime Gazeau

Max Lein
2015.10.06@AIMR

Periodic Light Conductors

Photonic Crystals

Johnson \& Joannopoulos (2004)

Periodic Waveguide Arrays
Rechtsman, Szameit et al (2013)

- periodic structure \Longrightarrow peculiar light conduction properties
- artificial PLCs can be engineered arbitrarily and inexpensively
- "band structure engineering"
\rightsquigarrow photonic band gaps, slow light, low-dispersion materials
- natural photonic crystals: gem stones, beetle shells, butterfly wings

A Novel Class of Materials: Photonic Topological Insulators

Theory
Predicted by

- Onoda, Murakami and Nagaosa (2004)
- Raghu and Haldane (2005)

Experiment

... and realized in

- 2d photonic crystals for microwaves by Joannopoulos, Soljačić et al (2009)
- periodic waveguide arrays for light at optical frequencies by Rechtsman, Szameit et al (2013)

A Novel Class of Materials: Photonic Topological Insulators

Trends in Research on Photonics

(1) Realize many effects for light at optical frequencies.
\rightsquigarrow Necessary for integration with optical devices
(2) Rely as much as possible on ordinary materials.
\rightsquigarrow Ordinary materials in non-trivial topological class!
(3) Include non-linear effects.
\rightsquigarrow Should be particularly strong in topological edge modes (remain localized!)

Trends in Research on Photonics

(1) Realize many effects for light at optical frequencies.
\rightsquigarrow Necessary for integration with optical devices
(2) Rely as much as possible on ordinary materials.
\rightsquigarrow Ordinary materials in non-trivial topological class!
(3) Include non-linear effects.
\rightsquigarrow Should be particularly strong in
topological edge modes (remain localized!)

Trends in Research on Photonics

(1) Realize many effects for light at optical frequencies.
\rightsquigarrow Necessary for integration with optical devices
(2) Rely as much as possible on ordinary materials.
\rightsquigarrow Ordinary materials in non-trivial topological class!
(3) Include non-linear effects.
\rightsquigarrow Should be particularly strong in topological edge modes (remain localized!)

Trends in Research on Photonics

(1) Realize many effects for light at optical frequencies.
(2) Rely as much as possible on ordinary materials. \rightsquigarrow Ordinary materials in non-trivial topological class!
(3) Include non-linear effects.
\rightsquigarrow Should be particularly strong in topological edge modes (remain localized!)

Goals

Long-term goal: Prove existence of topological solitons
Problem: Linear case not fully understood.
(1) Find candidates for topologically non-trivial modes exhibit appreciable non-linear effects.
(2) Find a mathematical formulation of "Topological phenomena persist in the presence of non-linearities

Goals

Long-term goal: Prove existence of topological solitons Problem: Linear case not fully understood.
(1) Find candidates for topologically non-trivial modes exhibit appreciable non-linear effects.
(2) Find a mathematical formulation of "Topological phenomena persist in the presence of non-linearities

Goals

Long-term goal: Prove existence of topological solitons
Problem: Linear case not fully understood.
(1) Find candidates for topologically non-trivial modes which exhibit appreciable non-linear effects. persist in the presence of non-linearities

Goals

Long-term goal: Prove existence of topological solitons
Problem: Linear case not fully understood.
(1) Find candidates for topologically non-trivial modes which exhibit appreciable non-linear effects.
(2) Find a mathematical formulation of "Topological phenomena persist in the presence of non-linearities with the same symmetries as the linear system."

Talk Based on

Collaboration with Giuseppe De Nittis

- On the Role of Symmetries in the Theory of Photonic Crystals Annals of Physics 350, pp. 568-587, 2014
and Maxime Gazeau
- Existence and Absence of Non-Linear Effects in Photonic Topological Insulators in preparation, 2015

Part 1
 Linear Photonic Topological Insulators

Assumption (Material weights)

$$
W_{1}(x)=\left(\begin{array}{cc}
\varepsilon(x) & \chi(x) \\
\chi(x)^{*} & \mu(x)
\end{array}\right)
$$

(1) $W_{1}^{*}=W_{1}$ (lossless)
(2) $0<c \mathbf{1} \leq W_{1} \leq \mathbf{C} \mathbf{1}$ (excludes negative index mat.)
(3) W_{1} frequency-independent (response instantaneous)
(4) W_{1} periodic wrt lattice $\Gamma \simeq \mathbb{Z}^{3}$

Maxwell equations

Dynamical equations

$$
\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{H}}=\binom{+\nabla \times \mathbf{H}}{-\nabla \times \mathbf{E}}
$$

Absence of sources

$$
\left(\begin{array}{cc}
\operatorname{div} & 0 \\
0 & \operatorname{div}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}=0
$$

Johnson \& Joannopoulos (2004)

Maxwell equations

Dynamical equations

$$
\frac{\partial}{\partial t}\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}=\binom{+\nabla \times \mathbf{H}}{-\nabla \times \mathbf{E}}
$$

Absence of sources

$$
\left(\begin{array}{cc}
\operatorname{div} & 0 \\
0 & \operatorname{div}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}=0
$$

Express Maxwell equations in terms of $\binom{\mathbf{D}}{\mathbf{B}}=\left(\begin{array}{cc}\varepsilon & \chi \\ \chi^{*} & \mu\end{array}\right)\binom{\mathbf{E}}{\mathbf{H}}$

Maxwell equations
Dynamical equations

$$
\frac{\partial}{\partial t}\binom{\mathbf{D}}{\mathbf{B}}=\left(\begin{array}{cc}
0 & +\nabla^{\times} \\
-\nabla^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\binom{\mathbf{D}}{\mathbf{B}}
$$

Absence of sources

$$
\operatorname{Div}\binom{\mathbf{D}}{\mathbf{B}}=0
$$

Define Div $:=\left(\begin{array}{cc}\operatorname{div} & 0 \\ 0 & \operatorname{div}\end{array}\right)$

Maxwell equations
Dynamical equations

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\mathbf{D}}{\mathbf{B}}=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\binom{\mathbf{D}}{\mathbf{B}}
$$

Absence of sources

$$
\operatorname{Div}\binom{\mathbf{D}}{\mathbf{B}}=0
$$

Maxwell operator $M=\left(\begin{array}{cc}0 & +\mathrm{i} \nabla^{\times} \\ -\mathrm{i} \nabla^{\times} & 0\end{array}\right)\left(\begin{array}{cc}\varepsilon & \chi \\ \chi^{*} & \mu\end{array}\right)^{-1}$

Maxwell equations

Dynamical equations

$$
\mathrm{i} \frac{\partial}{\partial t} \underbrace{\binom{\mathbf{D}}{\mathbf{B}}}_{=\Psi}=\underbrace{\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}}_{=M}\binom{\mathbf{D}}{\mathbf{B}}
$$

Absence of sources

$$
\operatorname{Div}\binom{\mathbf{D}}{\mathbf{B}}=0
$$

Maxwell operator $M=\left(\begin{array}{cc}0 & +\mathrm{i} \nabla^{\times} \\ -\mathrm{i} \nabla^{\times} & 0\end{array}\right)\left(\begin{array}{cc}\varepsilon & \chi \\ \chi^{*} & \mu\end{array}\right)^{-1}$

Maxwell equations
Dynamical equations

$$
\mathrm{i} \partial_{t} \Psi=M \Psi
$$

Absence of sources

$$
\binom{\mathbf{D}}{\mathbf{B}} \in J:=\operatorname{ker} \operatorname{Div} \subset L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)
$$

$M=M^{*}$ on weighted Hilbert space $L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ Helmholtz splitting: $L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)=\operatorname{ker} \operatorname{Div} \oplus W_{1}$ ran Grad

Maxwell equations
Dynamical equations

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\mathbf{D}}{\mathbf{B}}=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla^{\times} \\
-\mathrm{i} \nabla^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}\binom{\mathbf{D}}{\mathbf{B}}
$$

Absence of sources

$$
\binom{\mathbf{D}}{\mathbf{B}} \in J:=\operatorname{ker} \operatorname{Div} \subset L_{w}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)
$$

Symmetries of Ordinary Materials

$$
W_{1}^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right), \quad \varepsilon \not \nsim \mu
$$

3 symmetries: $V W_{1}=W_{1} V$ where $V=$
(1) $C:(\mathbf{D}, \mathbf{B}) \mapsto(\overline{\mathbf{D}}, \overline{\mathbf{B}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"

B) implements time-reversal

Symmetries of Ordinary Materials

$$
W_{1}^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right), \quad \varepsilon \not \not \mu \mu
$$

3 symmetries: $V W_{1}=W_{1} V$ where $V=$
(1) $C:(\mathbf{D}, \mathbf{B}) \mapsto(\overline{\mathbf{D}}, \overline{\mathbf{B}})$ complex conjugation relies on $\varepsilon, \mu, \chi \in \mathbb{R}$, "real fields remain real"

Symmetries of Ordinary Materials

$$
W_{1}^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right), \quad \varepsilon \not \not \mu \mu
$$

3 symmetries: $V W_{1}=W_{1} V$ where $V=$
(1) $C:(\mathbf{D}, \mathbf{B}) \mapsto(\overline{\mathbf{D}}, \overline{\mathbf{B}})$ complex conjugation
(2) J : $(\mathbf{D}, \mathbf{B}) \mapsto(\mathbf{D},-\mathbf{B})$ implements time-reversal

Symmetries of Ordinary Materials

$$
W_{1}^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right), \quad \varepsilon \not \not \mu \mu
$$

3 symmetries: $V W_{1}=W_{1} V$ where $V=$
(1) $C:(\mathbf{D}, \mathbf{B}) \mapsto(\overline{\mathbf{D}}, \overline{\mathbf{B}})$ complex conjugation
(2) J: $(\mathbf{D}, \mathbf{B}) \mapsto(\mathbf{D},-\mathbf{B})$ implements time-reversal relies on $\chi=0$
(3) $T=J C:(\mathbf{D}, \mathbf{B}) \mapsto(\bar{D},-\bar{B})$ implements time-reversal

Symmetries of Ordinary Materials

$$
W_{1}^{-1}=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} \varepsilon & 0 \\
0 & \operatorname{Re} \mu
\end{array}\right), \quad \varepsilon \nless \mu
$$

3 symmetries: $V W_{1}=W_{1} V$ where $V=$
(1) $C:(\mathbf{D}, \mathbf{B}) \mapsto(\overline{\mathbf{D}}, \overline{\mathbf{B}})$ complex conjugation
(2) J: $(\mathbf{D}, \mathbf{B}) \mapsto(\mathbf{D},-\mathbf{B})$ implements time-reversal
(3) $T=J C:(\mathbf{D}, \mathbf{B}) \mapsto(\overline{\mathbf{D}},-\overline{\mathbf{B}})$ implements time-reversal

Symmetries of Ordinary Materials

These $\mathbf{3}$ symmetries can be broken separately!

Symmetries \& Classification of PTIs

Cartan-Altland-Zirnbauer classification scheme

Classifies according to discrete symmetries

- 3 types of (pseudo) symmetries:
V unitary/antiunitary, $V^{2}= \pm$ id,

$$
\begin{array}{ll}
V H(k) V^{-1}=+H(-k) & \text { time-reversal symmetry }(\pm \mathrm{TR}) \\
V H(k) V^{-1}=-H(-k) & \text { particle-hole (pseudo) symmetry }(\pm \mathrm{PH}) \\
V H(k) V^{-1}=-H(+k) & \text { chiral (pseudo) symmetry }(\chi)
\end{array}
$$

- 10 CAZ classes
- Relies on $\mathrm{i} \partial_{\mathrm{t}} \psi=H \psi$ (Schrödinger equation)

Symmetries \& Classification of PTIs

Cartan-Altland-Zirnbauer classification scheme

Classifies according to discrete symmetries

- 3 types of (pseudo) symmetries:
V unitary/antiunitary, $V^{2}= \pm$ id,

$$
\begin{array}{ll}
V H(k) V^{-1}=+H(-k) & \text { time-reversal symmetry }(\pm \mathrm{TR}) \\
V H(k) V^{-1}=-H(-k) & \text { particle-hole (pseudo) symmetry }(\pm \mathrm{PH}) \\
V H(k) V^{-1}=-H(+k) & \text { chiral (pseudo) symmetry }(\chi)
\end{array}
$$

- 10 CAZ classes
- Relies on $\mathrm{i}_{\mathrm{t}} \psi=H \psi$ (Schrödinger equation)

CAZ Classification of Ordinary PhCs

Symmetry	Action	Classified as	Physical meaning
C	$C M(k) C=-M(-k)$	+ PH	"real states remain real"
$J=\sigma_{3} \otimes$ id	$J M(k) J=-M(+k)$	χ	implements time-reversal
$T=J C$	$T M(k) T=+M(-k)$	+ TR	implements time-reversal

CAZ Classification of Ordinary PhCs

Symmetry	Action	Classified as	Physical meaning
C	$C M(k) C=-M(-k)$	+ PH	"real states remain real"
$J=\sigma_{3} \otimes$ id	$J M(k) J=-M(+k)$	χ	implements time-reversal
$T=J C$	$T M(k) T=+M(-k)$	+ TR	implements time-reversal

\Rightarrow Ordinary PhCs are of class BDI

Symmetries \& Classification of PTIs

Material	Photonics	Quantum mechanics
ordinary	class BDI + PH, + TR, χ	class AI + TR
exhibiting edge currents	class Alll χ	class A/AII none/-TR

G. De Nittis \& M. L., Annals of Physics 350, pp. 568-587, 2014

Important consequences

(also relevant in theory of topological superconductors)
Existing derivations of topological effects in crystalline
solids do not automatically apply to photonic crystals

Symmetries \& Classification of PTIs

Material	Photonics	Quantum mechanics
ordinary	class BDI + PH, + TR, χ	class AI + TR
exhibiting edge currents G. De Nittis \& M. L., Annals of Physics 350, pp. 568-587, 2014		

Important consequences

- Class BDI not topologically trivial (also relevant in theory of topological superconductors)

Symmetries \& Classification of PTIs

Material	Photonics	Quantum mechanics
ordinary	class BDI + PH, +TR, χ	class AI + TR
exhibiting edge currents	class Alll G. De Nittis \& M. L., Annals of Physics 350, pp. 568-587, 2014	

Important consequences

- Class BDI not topologically trivial (also relevant in theory of topological superconductors)
- Existing derivations of topological effects in crystalline solids do not automatically apply to photonic crystals

The Frequency Band Picture

$$
\begin{aligned}
M \cong M^{\mathcal{F}} & =\int_{\mathbb{T}^{*}}^{\oplus} \mathrm{dk} M(k) \\
& \cong \int_{\mathbb{T}^{*}}^{\oplus} \mathrm{d} k\left(\begin{array}{cc}
0 & +\left(-\mathrm{i} \nabla_{y}+k\right)^{\times} \\
-\left(-\mathrm{i} \nabla_{y}+k\right)^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}
\end{aligned}
$$

Frequency bands \& Bloch functions

The Frequency Band Picture

$$
\begin{aligned}
M \cong M^{\mathcal{F}} & =\int_{\mathbb{T}^{*}}^{\oplus} \mathrm{dk} M(k) \\
& \cong \int_{\mathbb{T}^{*}}^{\oplus} \mathrm{dk}\left(\begin{array}{cc}
0 & +\left(-\mathrm{i} \nabla_{y}+k\right)^{\times} \\
-\left(-\mathrm{i} \nabla_{y}+k\right)^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}
\end{aligned}
$$

Frequency bands \& Bloch functions

$$
M(k) \varphi_{n}(k)=\omega_{n}(k) \varphi_{n}(k)
$$

- Frequency band functions $k \mapsto \omega_{n}(k)$
- Bloch functions $k \mapsto \varphi_{n}(k)$
- both locally continuous everywhere
- both locally analytic away from band crossings

The Frequency Band Picture

$$
\begin{aligned}
M \cong M^{\mathcal{F}} & =\int_{\mathbb{T}^{*}}^{\oplus} \mathrm{dk} M(k) \\
& \cong \int_{\mathbb{T}^{*}}^{\oplus} \mathrm{dk}\left(\begin{array}{cc}
0 & +\left(-\mathrm{i} \nabla_{y}+k\right)^{\times} \\
-\left(-\mathrm{i} \nabla_{y}+k\right)^{\times} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon & \chi \\
\chi^{*} & \mu
\end{array}\right)^{-1}
\end{aligned}
$$

Frequency bands \& Bloch functions

$$
M(k) \varphi_{n}(k)=\omega_{n}(k) \varphi_{n}(k)
$$

- Frequency band functions $k \mapsto \omega_{n}(k)$
- Bloch functions $k \mapsto \varphi_{n}(k)$
- both locally continuous everywhere
- both locally analytic away from band crossings

The Frequency Band Picture

The Frequency Band Picture

Symmetry	Action	$\omega_{n}(k) \in \sigma(M(k)) \Rightarrow$
Parity P	$P M(k) P=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
C	$C M(k) C=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
$J=\sigma_{3} \otimes \mathrm{id}$	$J M(k) J=-M(+k)$	$\omega_{-n}(k)=-\omega_{n}(+k)$
$T=J C$	$T M(k) T=+M(-k)$	$\omega_{n}(k)=+\omega_{n}(-k)$

The Frequency Band Picture

Symmetry	Action	$\omega_{n}(k) \in \sigma(M(k)) \Rightarrow$
Parity P	$P M(k) P=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
C	$C M(k) C=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
$J=\sigma_{3} \otimes$ id	$J M(k) J=-M(+k)$	$\omega_{-n}(k)=-\omega_{n}(+k)$
$T=J C$	$T M(k) T=+M(-k)$	$\omega_{n}(k)=+\omega_{n}(-k)$

Parity $(P \Psi)(x):=\Psi(-x)$ relevant for non-linear interactions only

The Frequency Band Picture

Symmetry	Action	$\omega_{n}(k) \in \sigma(M(k)) \Rightarrow$
Parity P	$P M(k) P=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
C	$C M(k) C=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
$J=\sigma_{3} \otimes$ id	$J M(k) J=-M(+k)$	$\omega_{-n}(k)=-\omega_{n}(+k)$
$T=J C$	$T M(k) T=+M(-k)$	$\omega_{n}(k)=+\omega_{n}(-k)$

Relevant symmetries for topological classification

The Bloch Vector Bundle

Relevant family of bands $\sigma_{\text {rel }}(k):=\bigcup_{n \in \mathcal{I}}\left\{\omega_{n}(k)\right\}$
$|\mathcal{I}|<\infty$ and $\sigma_{\text {rel }}(k)$ separated by a local spectral gap.

The Bloch Vector Bundle

Relevant family of bands $\sigma_{\text {rel }}(k):=\bigcup_{n \in \mathcal{I}}\left\{\omega_{n}(k)\right\}$
$|\mathcal{I}|<\infty$ and $\sigma_{\text {rel }}(k)$ separated by a local spectral gap.
Definition (Bloch Bundle)
The Bloch bundle $\mathcal{E}_{\mathrm{B}}=\left(\xi_{\mathrm{B}}, \mathbb{T}^{*}, \pi\right)$ associated to $\sigma_{\mathrm{rel}}(k)$ is defined as

$$
\xi_{\mathrm{B}}:=\bigsqcup_{k \in \mathbb{T}^{*}} \operatorname{span}\left\{\varphi_{n}(k)\right\}_{n \in \mathcal{I}} \xrightarrow{\pi} \mathbb{T}^{*} .
$$

The Bloch Vector Bundle

Assumption (Symmetric choice of bands)

For all discrete symmetries V with $V M(k) V^{-1}= \pm M\left((-1)^{s} k\right)$ we have

$$
V \operatorname{span}\left\{\varphi_{n}\left((-1)^{s} k\right)\right\}_{n \in \mathcal{I}}=\operatorname{span}\left\{\varphi_{n}(k)\right\}_{n \in \mathcal{I}} .
$$

Lemma
The Bloch bundle \mathcal{E}_{B} is a class X vector bundle where $X=A, A l$, All, Alll is the topological class of the linear Maxwell operator M.

Remark

Presently only X-vector bundles for $X=A$, Al, All, Alll well-understood.
Procedure should extend mutatis mutandis to other CAZ classes.

The Bloch Vector Bundle

Assumption (Symmetric choice of bands)

For all discrete symmetries V with $V M(k) V^{-1}= \pm M\left((-1)^{s} k\right)$ we have

$$
V_{\operatorname{span}}\left\{\varphi_{n}\left((-1)^{5} k\right)\right\}_{n \in \mathcal{I}}=\operatorname{span}\left\{\varphi_{n}(k)\right\}_{n \in \mathcal{I}} .
$$

Lemma

The Bloch bundle \mathcal{E}_{B} is a class X vector bundle where $X=A, A l, A l l$, All is the topological class of the linear Maxwell operator M.

Remark

- Presently only X-vector bundles for $X=A, A l$, All, Alll well-understood.
- Procedure should extend mutatis mutandis to other CAZ classes.

The Bloch Vector Bundle

Theorem
$\left(\mathrm{e}^{-\mathrm{i} \boldsymbol{i} M}\right)^{*} \mathcal{E}_{\boldsymbol{B}}$ (endowed with the time-transported symmetries $V(t)=\mathrm{e}^{\mathrm{+itM}} V \mathrm{e}^{-\mathrm{it} M}$) and \mathcal{E}_{B} are equivalent X-vector bundles.

Corollary

All topological invariants of class X are left invariant by the light dynamics e $\mathrm{e}^{-\mathrm{it} M}$.

Going Beyond the Linear Periodic Case

Generalizations of

Theorem
$\left(\mathrm{e}^{-\mathrm{it} M}\right)^{*} \mathcal{E}_{\mathrm{B}}$ and \mathcal{E}_{B} are equivalent X -vector bundles.
(1) Linear, adiabatically perturbed PTIs
\rightsquigarrow Pseudodifferential operators on X-vector bundles
(2) Non-linear, periodic PTIs

Going Beyond the Linear Periodic Case

Generalizations of

Theorem
$\left(\mathrm{e}^{-\mathrm{it} M}\right)^{*} \mathcal{E}_{\mathrm{B}}$ and \mathcal{E}_{B} are equivalent X -vector bundles.
(1) Linear, adiabatically perturbed PTIs
\rightsquigarrow Pseudodifferential operators on X-vector bundles
(2) Non-linear, periodic PTIs

Going Beyond the Linear Periodic Case

Generalizations of

Theorem
$\left(\mathrm{e}^{-\mathrm{it} M}\right)^{*} \mathcal{E}_{\mathrm{B}}$ and \mathcal{E}_{B} are equivalent X -vector bundles.
(1) Linear, adiabatically perturbed PTIs
\rightsquigarrow Pseudodifferential operators on X-vector bundles
(2) Non-linear, periodic PTIs (Today!)

Part 2 Non-Linear Photonic Crystals

Non-Linear Material Weights with Symmetries

Assumption (Non-linear material weights)

Suppose the non-linear material weights are of the form

$$
\mathcal{W}(\Psi)=W_{1} \Psi+\lambda^{q-1} W_{q}(\Psi)
$$

where q is the degree of the non-linearity and

$$
\left(W_{q}(\Psi)\right)(t, x)=\int_{\mathbb{R}^{q}} \mathrm{~d} s^{\prime} w_{q}\left(x, t \mathbb{1}-s^{\prime} ; \Psi\left(s_{1}^{\prime}, x\right), \ldots, \Psi\left(s_{q}^{\prime}, x\right)\right)
$$

is defined in terms of $\mathbb{1}:=(1, \ldots, 1)$ and the q-form w_{q} that satisfies:
(2) Causality and invariance: $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right)=0$ for all
(3) Some further regularity conditions need to hold true.

Non-Linear Material Weights with Symmetries

Assumption (Non-linear material weights)

Suppose the non-linear material weights are of the form

$$
\mathcal{W}(\Psi)=W_{1} \Psi+\lambda^{q-1} W_{q}(\Psi)
$$

where q is the degree of the non-linearity and

$$
\left(W_{q}(\Psi)\right)(t, x)=\int_{\mathbb{R}^{q}} \mathrm{~d} s^{\prime} w_{q}\left(x, t \mathbb{1}-s^{\prime} ; \Psi\left(s_{1}^{\prime}, x\right), \ldots, \Psi\left(s_{q}^{\prime}, x\right)\right)
$$

is defined in terms of $\mathbb{1}:=(1, \ldots, 1)$ and the q-form w_{q} that satisfies:
(1) $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right) \in \mathbb{C}^{6}$ is symmetric under exchange of $\left\{\Psi_{1}, \ldots, \Psi_{q}\right\}$.
(2) Causality and invariance: $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right)=0$ for all
(3) Some further regularity conditions need to hold true.

Non-Linear Material Weights with Symmetries

Assumption (Non-linear material weights)

Suppose the non-linear material weights are of the form

$$
\mathcal{W}(\Psi)=W_{1} \Psi+\lambda^{q-1} W_{q}(\Psi)
$$

where q is the degree of the non-linearity and

$$
\left(W_{q}(\Psi)\right)(t, x)=\int_{\mathbb{R}^{q}} \mathrm{ds}^{\prime} w_{q}\left(x, t \mathbb{1}-s^{\prime} ; \Psi\left(s_{1}^{\prime}, x\right), \ldots, \Psi\left(s_{q}^{\prime}, x\right)\right)
$$

is defined in terms of $\mathbb{1}:=(1, \ldots, 1)$ and the q-form w_{q} that satisfies:
(1) $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right) \in \mathbb{C}^{6}$ is symmetric under exchange of $\left\{\Psi_{1}, \ldots, \Psi_{q}\right\}$.
(2) Causality and invariance: $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right)=0$ for all $x \in \mathbb{R}^{3}, \Psi_{1}, \ldots, \Psi_{q} \in \mathbb{C}^{6}$ and $s_{j}>0$ for some $j=1, \ldots, q$.

Non-Linear Material Weights with Symmetries

Assumption (Non-linear material weights)

Suppose the non-linear material weights are of the form

$$
\mathcal{W}(\Psi)=W_{1} \Psi+\lambda^{q-1} W_{q}(\Psi)
$$

where q is the degree of the non-linearity and

$$
\left(W_{q}(\Psi)\right)(t, x)=\int_{\mathbb{R}^{q}} \mathrm{ds}^{\prime} w_{q}\left(x, t \mathbb{1}-s^{\prime} ; \Psi\left(s_{1}^{\prime}, x\right), \ldots, \Psi\left(s_{q}^{\prime}, x\right)\right)
$$

is defined in terms of $\mathbb{1}:=(1, \ldots, 1)$ and the q-form w_{q} that satisfies:
(1) $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right) \in \mathbb{C}^{6}$ is symmetric under exchange of $\left\{\Psi_{1}, \ldots, \Psi_{q}\right\}$.
(2) Causality and invariance: $w_{q}\left(x, s ; \Psi_{1}, \ldots, \Psi_{q}\right)=0$ for all $x \in \mathbb{R}^{3}, \Psi_{1}, \ldots, \Psi_{q} \in \mathbb{C}^{6}$ and $s_{j}>0$ for some $j=1, \ldots, q$.
(3) Some further regularity conditions need to hold true.

Non-Linear Maxwell Equations

Non-linear Maxwell equations
Dynamical equations

$$
\begin{aligned}
\mathbf{i} \delta \partial_{t} \Psi & =\operatorname{Rot} \mathcal{W}(\Psi)-\mathbf{i} \mathcal{J} \\
& =\left(\operatorname{Rot} W_{1} \Psi-\mathbf{i} \mathcal{J}\right)+\lambda^{q-1} \operatorname{Rot} W_{q}(\Psi)
\end{aligned}
$$

Absence of sources

$$
\operatorname{Div}(\mathcal{W}(\Psi))=0
$$

$\lambda \ll 1$ quantifies strength of non-linearity
$\delta \ll 1$ long time limit (many oscillations over period of observation)

Non-Linear Maxwell Equations

Non-linear Maxwell equations
Dynamical equations

$$
\begin{aligned}
\mathbf{i} \delta \partial_{t} \Psi & =\operatorname{Rot} \mathcal{W}(\Psi)-\mathbf{i} \mathcal{J} \\
& =\left(\operatorname{Rot} W_{1} \Psi-\mathbf{i} \mathcal{J}\right)+\lambda^{q-1} \operatorname{Rot} W_{q}(\Psi)
\end{aligned}
$$

Absence of sources

$$
\operatorname{Div}(\mathcal{W}(\Psi))=0
$$

$\lambda \ll 1$ quantifies strength of non-linearity
$\delta \ll 1$ long time limit (many oscillations over period of observation)

Non-Linear Maxwell Equations

Non-linear Maxwell equations
Dynamical equations

$$
\begin{aligned}
\mathbf{i} \delta \partial_{t} \Psi & =\operatorname{Rot} \mathcal{W}(\Psi)-\mathbf{i} \mathcal{J} \\
& =\left(\operatorname{Rot} W_{1} \Psi-\mathbf{i} \mathcal{J}\right)+\lambda^{q-1} \operatorname{Rot} W_{q}(\Psi)
\end{aligned}
$$

Absence of sources

$$
\operatorname{Div}(\mathcal{W}(\Psi))=0
$$

$\lambda \ll 1$ quantifies strength of non-linearity
$\delta \ll 1$ long time limit (many oscillations over period of observation)

Symmetries of the Non-Linear Material Weights

Definition (Symmetries of the material weights)
Let V be a discrete symmetry of Rot. Then V is a symmetry of \mathcal{W} iff

$$
V \mathcal{W}(\Psi)=\mathcal{W}(V \Psi)
$$

Existence and Uniqueness of Solutions

Theorem (Babin, Figotin (2001))

For small enough λ there exists $T \in \mathbb{R} \cup\{\infty\}$ such that the non-linear Maxwell equations have a unique solution

$$
(-\infty, T] \ni t \mapsto \Psi_{\lambda}(t / \delta)
$$

up to time T which can be expressed in terms of the solution $\Psi_{0}(t)$ of the linear Maxwell equations via the analytic map

$$
\begin{aligned}
\Psi_{0} \mapsto \Psi_{\lambda}(t / \delta) & =\left(\mathcal{U}\left(\Psi_{0}\right)\right)(t / \delta) \\
& =\Psi_{0}(t / \delta)+\sum_{j=q}^{\infty} \lambda^{j-1}\left(U_{j}\left(\Psi_{0}\right)\right)(t / \delta)
\end{aligned}
$$

Existence and Uniqueness of Solutions

Theorem (Babin, Figotin (2001))
For small enough λ there exists $T \in \mathbb{R} \cup\{\infty\}$ such that the non-linear Maxwell equations have a unique solution

$$
(-\infty, T] \ni t \mapsto \Psi_{\lambda}(t / \delta)
$$

up to time T which can be expressed in terms of the solution $\Psi_{0}(t)$ of the linear Maxwell equations via the analytic map

$$
\begin{aligned}
\Psi_{0} \mapsto \Psi_{\lambda}(t / \delta) & =\left(\mathcal{U}\left(\Psi_{0}\right)\right)(t / \delta) \\
& =\Psi_{0}(t / \delta)+\sum_{j=q}^{\infty} \lambda^{j-1}\left(U_{j}\left(\Psi_{0}\right)\right)(t / \delta)
\end{aligned}
$$

Existence and Uniqueness of Solutions

Corollary (Babin, Figotin (2001))
There are recursion relations for all the U_{j}, and the first non-linear response is given by

$$
\begin{aligned}
&\left(U_{q}\left(\Psi_{0}\right)\right)(t / \delta)=-\mathrm{i} \int_{0}^{t / \delta} \mathrm{d} s \mathrm{e}^{-\mathrm{i}(t-s) M} M \operatorname{Rot}\left(W_{q}\left(\Psi_{0}\right)\right)(s) \\
&=+\mathrm{i} \int_{0}^{t / \delta} \mathrm{d} s \int_{\mathbb{R}^{q}} \mathrm{~d} s^{\prime} \mathrm{e}^{-\mathrm{i}(t-s) M} M \operatorname{Rot} \\
& \quad w_{q}\left(\hat{x}, s \mathbb{1}-s^{\prime} ; \Psi_{0}\left(s_{1}^{\prime}\right), \ldots, \Psi_{0}\left(s_{q}^{\prime}\right)\right)
\end{aligned}
$$

Part 3
 Candidates for Relevant States

Goal

For simplicity: $\mathcal{J}=0$ (absence of currents)

Goal

Find initial conditions $\left\{f_{n}(k)\right\}_{n \in \mathcal{I}}$ supported on a finite family of bands $\sigma_{\mathrm{rel}}(k)=\bigcup_{n \in \mathcal{I}}\left\{\omega_{n}(k)\right\}$ which
(1) only interact with states inside of $\sigma_{\text {rel }}(k)$,
(2) are potentially topologically non-trivial and
(3) have appreciable non-linear interaction.

Results by Babin \& Figotin

- Arguments based on 4 works by Babin \& Figotin (2001-2005)
- Uses stationary phase argument
- Focus on first non-linear response
- Arguments depend only on frequency spectrum (not band topology)
- Too early to consider PTIs (include discussion of C, though)

The First Non-Linear Response

The first two terms of the time-evolved coefficients

$$
\begin{aligned}
\left(\mathcal{F U}\left(\Psi_{0}\right)\right)(t, k) & =\sum_{n \in \mathbb{Z} \backslash\{0\}} g_{n}(t, k) \varphi_{n}(k) \\
g_{n}(t, k) & =\mathrm{e}^{-\mathrm{i} t \omega_{n}(k)} f_{n}(k)+\lambda^{q-1} \sum_{n^{\prime} \in(\mathcal{I})^{3}} g_{n, n^{\prime}}^{(q)}(t, k)+\mathcal{O}\left(\lambda^{q}\right)
\end{aligned}
$$

are the linearly evolved contribution and the first non-linear response.

The First Non-Linear Response

$$
g_{n, n^{\prime}}^{(q)}(t / \delta, k)=\frac{1}{\delta} \int_{0}^{t} \mathrm{~d} s \int_{\left(\mathbb{T}^{*}\right)^{q}} \mathrm{~d} k^{\prime} \delta_{\Gamma^{*}}\left(k-\sum_{j=1}^{3} k_{j}^{\prime}\right) \mathrm{e}^{+\frac{i}{\delta} s \phi_{n, n^{\prime}}\left(k, k^{\prime}\right)} A_{n, n^{\prime}}\left(k, k^{\prime}\right)
$$

describes the interaction of q incoming waves to give outgoing wave with frequency $\omega_{n}(k)$.

$$
\begin{aligned}
& \omega_{n_{1}^{\prime}}\left(k_{1}^{\prime}\right) \\
& \quad \vdots \\
& \omega_{n_{q}^{\prime}}\left(k_{q}^{\prime}\right)
\end{aligned}
$$

The First Non-Linear Response

$$
g_{n, n^{\prime}}^{(q)}(t / \delta, k)=\frac{1}{\delta} \int_{0}^{t} \mathrm{~d} s \int_{\left(\mathbb{T}^{*}\right)^{q}} \mathrm{~d} k^{\prime} \delta_{\Gamma^{*}}\left(k-\sum_{j=1}^{3} k_{j}^{\prime}\right) \mathrm{e}^{+\frac{i}{\delta} s \phi_{n, n^{\prime}}\left(k, k^{\prime}\right)} A_{n, n^{\prime}}\left(k, k^{\prime}\right)
$$

describes the interaction of q incoming waves to give outgoing wave with frequency $\omega_{n}(k)$.

The First Non-Linear Response

$$
g_{n, n^{\prime}}^{(q)}(t / \delta, k)=\frac{1}{\delta} \int_{0}^{t} \mathrm{~d} s \int_{\left(\mathbb{T}^{*}\right)^{q}} \mathrm{~d} k^{\prime} \delta_{\Gamma^{*}}\left(k-\sum_{j=1}^{3} k_{j}^{\prime}\right) \mathrm{e}^{+\frac{i}{\delta} s \phi_{n, n^{\prime}}\left(k, k^{\prime}\right)} A_{n, n^{\prime}}\left(k, k^{\prime}\right)
$$

describes the interaction of q incoming waves to give outgoing wave with frequency $\omega_{n}(k)$.

3 Matching Conditions

(1) Bloch momentum conservation (always)

$$
k=\sum_{j=1}^{q} k_{j}^{\prime} \bmod \Gamma^{*}
$$

(2) Group velocity matching (stationary phase $\delta \rightarrow 0$)

$$
\nabla_{k} \omega_{n_{1}^{\prime}}\left(k_{1}^{\prime}\right)=\ldots=\nabla_{k} \omega_{n_{q}^{\prime}}\left(k_{q}^{\prime}\right)
$$

(3) Frequency Matching (optional, stationary phase $\delta \rightarrow 0$)

$$
\omega_{n}(k)=\sum_{j=1}^{q} \omega_{n_{j}^{\prime}}\left(k_{j}^{\prime}\right)
$$

"Generic" Existence of Non-Linearly Interacting States

What do I mean by "generic"?
Existence of $\left\{f_{n}(k)\right\}$ satisfying 3 matching conditions ensured either by
(1) symmetry or
(2) by fundamental properties of the band spectrum.
\Rightarrow Stability under symmetry-preserving perturbations.

"Generic" Existence of Non-Linearly Interacting States

What do I mean by "generic"?
Existence of $\left\{f_{n}(k)\right\}$ satisfying 3 matching conditions ensured either by
(1) symmetry or
(2) by fundamental properties of the band spectrum.
\Rightarrow Stability under symmetry-preserving perturbations.

"Generic" Existence of Non-Linearly Interacting States

Symmetries and Non-Linearities

Symmetry	Action	$\omega_{n}(k) \in \sigma(M(k)) \Rightarrow$
Parity P	$P M(k) P=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
C	$C M(k) C=-M(-k)$	$\omega_{-n}(k)=-\omega_{n}(-k)$
$J=\sigma_{3} \otimes$ id	$J M(k) J=-M(+k)$	$\omega_{-n}(k)=-\omega_{n}(+k)$
$T=J C$	$T M(k) T=+M(-k)$	$\omega_{n}(k)=+\omega_{n}(-k)$

Symmetries and Non-Linearities

- Usually $q=2$ (first non-linear response is quadratic)
- Presence of parity $\Rightarrow q=3$ (medium is cubic)

Symmetries and Non-Linearities

- Usually $q=2$ (first non-linear response is quadr - Presence of parity $\Rightarrow \boldsymbol{q}=3$ (medium is cubic)

Candidates for Generic, Non-Linearly Coupling Modes

Properties	Cubic	Quadratic
Band indices	$n_{1}^{\prime}=n=n_{2}^{\prime}, n_{3}^{\prime}=-n$	$n_{1}^{\prime}=n, n_{2}^{\prime}=\mathrm{gs}$
Momenta	$k_{1}^{\prime}=k=k_{2}^{\prime}, k_{3}^{\prime}=-k$	$k_{1}^{\prime}=k, k_{2}^{\prime}=0$

$$
\rightsquigarrow \text { So far only this case is covered by existing theory! }
$$

Candidates for Generic, Non-Linearly Coupling Modes

Properties	Cubic	Quadratic
Band indices	$n_{1}^{\prime}=n=n_{2}^{\prime}, n_{3}^{\prime}=-n$	$n_{1}^{\prime}=n, n_{2}^{\prime}=\mathrm{gs}$
Momenta	$k_{1}^{\prime}=k=k_{2}^{\prime}, k_{3}^{\prime}=-k$	$k_{1}^{\prime}=k, k_{2}^{\prime}=0$

\rightsquigarrow So far only this case is covered by existing theory!

Candidates for Generic, Non-Linearly Coupling Modes

Part 4 Persistence of Topological Effects

Setting

For simplicity: cubic case ($q=3$, parity symmetry present)

Assumption (Choice of bands)

Assume we choose the relevant bands $\sigma_{\text {rel }}(k)=\bigcup_{n \in \mathcal{I}}\left\{\omega_{n}(k)\right\}$ so that
(1) they are separated by a local spectral gap,
(2) are symmetric with respect to all discrete symmetries of M, and
(3) for all $n \in \mathcal{I}$ the only modes which couple are of generic type.

Setting

For simplicity: cubic case ($q=3$, parity symmetry present)

Assumption (Choice of bands)

Assume we choose the relevant bands $\sigma_{\text {rel }}(k)=\bigcup_{n \in \mathcal{I}}\left\{\omega_{n}(k)\right\}$ so that
(1) they are separated by a local spectral gap,
(2) are symmetric with respect to all discrete symmetries of M, and
(3) for all $n \in \mathcal{I}$ the only modes which couple are of generic type.

Setting

For simplicity: cubic case ($q=3$, parity symmetry present)

Assumption (Choice of bands)

Assume we choose the relevant bands $\sigma_{\text {rel }}(k)=\bigcup_{n \in \mathcal{I}}\left\{\omega_{n}(k)\right\}$ so that
(1) they are separated by a local spectral gap,
(2) are symmetric with respect to all discrete symmetries of M, and
(3) for all $n \in \mathcal{I}$ the only modes which couple are of generic type.

The Effective Non-Linear Dynamics

Ingredient from analysis

Consider approximate dynamics

$$
\begin{aligned}
& \left(\mathcal{U}_{\text {FNLR }}(\Psi)\right)(t, k)=\sum_{n \in \mathcal{I}} \mathrm{e}^{-\mathrm{i} \mathrm{t} \omega_{n}(k)}\left(f_{n}(k)+\right. \\
& \quad+\lambda \delta^{2} t C \frac{\mathrm{e}^{+i \frac{\pi}{4} \operatorname{sgn} \operatorname{Hess}_{k^{\prime}} \phi_{n,(n, n,-n)}(k,(k, k,-k))}}{\left|\operatorname{det} \operatorname{Hess}_{k^{\prime}} \phi_{n,(n, n,-n)}(k,(k, k,-k))\right|^{1 / 2}} . \\
& \left.\quad \cdot A_{\text {eff }}\left(\left\{f_{n}\right\}_{n \in \mathcal{I}} ; k,(k, k,-k)\right)\right) \varphi_{n}(k)
\end{aligned}
$$

which include the first non-linear response.

The Effective Non-Linear Dynamics

Ingredient from analysis

Consider approximate dynamics

$$
\mathcal{U}_{\text {FNLR }}(\Psi)=U_{\operatorname{lin}}(\Psi)+\lambda \delta^{2} U_{\text {FNLR }}(\Psi)
$$

which include the first non-linear response.
Combine Assumption (3) with additional assumption

$$
\left|\operatorname{det} \operatorname{Hess}_{k^{\prime}} \phi_{n, n^{\prime}}(k, k)\right| \geq C>0
$$

$\Rightarrow(t, k) \mapsto \mathcal{U}_{F N L R}(t, k)$ is continuous and maps the range of

$$
P_{\mathcal{I}}:=\int_{\mathbb{T}^{*}}^{\oplus} \mathrm{d} k \sum_{n \in \mathcal{I}}\left|\varphi_{n}(k)\right\rangle\left\langle\varphi_{n}(k)\right|
$$

onto itself.

The Effective Non-Linear Dynamics

Ingredient from analysis

Consider approximate dynamics

$$
\begin{aligned}
& \left(\mathcal{U}_{\text {FNLR }}(\Psi)\right)(t, k)=\sum_{n \in \mathcal{I}} \mathrm{e}^{-\mathrm{i} t \omega_{n}(k)}\left(f_{n}(k)+\right. \\
& \quad+\lambda \delta^{2} t C \frac{\mathrm{e}^{+\mathrm{i} \frac{\pi}{4} \operatorname{sgn} \operatorname{Hess}_{k^{\prime}} \phi_{n,(n, n,-n)}(k,(k, k,-k))}}{\left|\operatorname{det} \operatorname{Hess}_{k^{\prime}} \phi_{n,(n, n,-n)}(k,(k, k,-k))\right|^{1 / 2}} . \\
& \left.\quad \cdot A_{\text {eff }}\left(\left\{f_{n}\right\}_{n \in \mathcal{I}} ; k,(k, k,-k)\right)\right) \varphi_{n}(k)
\end{aligned}
$$

which include the first non-linear response.
$\Rightarrow(t, k) \mapsto \mathcal{U}_{F N L R}(t, k)$ is continuous and maps the range of

$$
P_{\mathcal{I}}:=\int_{\mathbb{T}^{*}}^{\oplus} \mathrm{d} k \sum_{n \in \mathcal{I}}\left|\varphi_{n}(k)\right\rangle\left\langle\varphi_{n}(k)\right|
$$

Essential Ingredient

- Frame bundle $\mathcal{E}_{S(B)}$ associated to \mathcal{E}_{B}
- $\mathcal{E}_{\widetilde{S(B)}}$ "Deformed frame bundle"
- $\mathcal{U}_{\text {FNLR }}(t)=U_{\operatorname{lin}}(t)+\mathcal{O}\left(\lambda \delta^{2}\right)$ frame bundle isomorphism
independent)

Essential Ingredient

－Frame bundle $\mathcal{E}_{S(B)}$ associated to \mathcal{E}_{B}
－ $\mathcal{E}_{\widetilde{S(B)}}$＂Deformed frame bundle＂
－ $\mathcal{U}_{\text {FNLR }}(t)=U_{\text {lin }}(t)+\mathcal{O}\left(\lambda \delta^{2}\right)$ frame bundle isomorphism independent）

Essential Ingredient

- Frame bundle $\mathcal{E}_{S(B)}$ associated to \mathcal{E}_{B}
- $\mathcal{E}_{\widetilde{S(B)}}$ "Deformed frame bundle"
- $\mathcal{U}_{\text {FNLR }}(t)=\mathcal{U}_{\text {lin }}(t)+\mathcal{O}\left(\lambda \delta^{2}\right)$ frame bundle isomorphism

Essential Ingredient

$$
\mathcal{E}_{\mathrm{B}} \stackrel{1-\mathrm{to-1}}{\longleftrightarrow} \mathcal{E}_{S(B)} \stackrel{\mathcal{U}_{\mathrm{FLNR}}(t)}{\longleftrightarrow} \mathcal{E}_{\widetilde{S(B)}} \stackrel{1-\mathrm{to-1}}{\longleftrightarrow} \mathcal{E}_{\mathrm{B}}
$$

- Frame bundle $\mathcal{E}_{S(B)}$ associated to \mathcal{E}_{B}
- $\mathcal{E}_{\widetilde{S(B)}}$ "Deformed frame bundle"
- $\mathcal{U}_{\text {FNLR }}(t)=U_{\text {lin }}(t)+\mathcal{O}\left(\lambda \delta^{2}\right)$ frame bundle isomorphism (changes length and orientation of vectors, remain linearly independent)

Essential Ingredient

$$
\mathcal{E}_{\mathrm{B}} \stackrel{1-\mathrm{to}-1}{\longleftrightarrow} \mathcal{E}_{S(B)} \stackrel{\mathcal{U}_{\mathrm{FLNR}}(t)}{\longleftrightarrow} \mathcal{E}_{\widetilde{S(B)}} \stackrel{1 \text { to- }-1}{\longleftrightarrow} \mathcal{E}_{\mathrm{B}}
$$

"Non-linear dynamics do not alter topology of the Bloch bundle."

Essential Ingredient

$$
\mathcal{E}_{\mathrm{B}} \stackrel{1-\mathrm{to-1}}{\longleftrightarrow} \mathcal{E}_{S(B)} \stackrel{\mathcal{U}_{\mathrm{FLNR}}(t)}{\longleftrightarrow} \mathcal{E}_{\widetilde{S(B)}} \stackrel{1-\mathrm{to-1}}{\longleftrightarrow} \mathcal{E}_{\mathrm{B}}
$$

Technical Complications

- $\mathcal{U}_{\text {FNLR }}(t)$ acts "not quite" fiber-wise evaluates at $\pm k$ \rightsquigarrow Replace $\mathcal{E}_{\mathrm{B}} \cong \mathcal{E}_{+} \oplus \mathcal{E}_{-}$with $\mathcal{E}_{+} \oplus f^{*} \mathcal{E}_{-}$where $f: k \mapsto-k$ - Include symmetries

Essential Ingredient

$$
\mathcal{E}_{\mathrm{B}} \stackrel{1-\mathrm{to-1}}{\longleftrightarrow} \mathcal{E}_{S(B)} \stackrel{\mathcal{U}_{\mathrm{FLNR}}(t)}{\longleftrightarrow} \mathcal{E}_{\widetilde{S(B)}} \stackrel{1-\mathrm{to-1}}{\longleftrightarrow} \mathcal{E}_{\mathrm{B}}
$$

Technical Complications

- $\mathcal{U}_{\text {FNLR }}(t)$ acts "not quite" fiber-wise evaluates at $\pm k$ \rightsquigarrow Replace $\mathcal{E}_{\mathrm{B}} \cong \mathcal{E}_{+} \oplus \mathcal{E}_{-}$with $\mathcal{E}_{+} \oplus f^{*} \mathcal{E}_{-}$where $f: k \mapsto-k$
- Include symmetries

Topological Invariants

Then we immediately deduce

Theorem

All topological invariants of class X are left invariant by the non-linear dynamics.

Conclusion

Covered in the talk today

Part 1

Classification of Linear PTIs

- Schrödinger formalism of electromagnetism
\rightsquigarrow application of CAZ scheme for TIs
- Complete classification table in publication
- Ordinary material in class BDI (3 symmetries) \rightsquigarrow different from time-reversal-invariant quantum systems!
\rightsquigarrow each symmetry can be broken individually

Dynamics and Symmetries of Non-Linear PhCs

- For small coupling: existence and uniqueness of solutions
- Explicit expression of first non-linear response

Covered in the talk today

Part 1

Classification of Linear PTIs

- Schrödinger formalism of electromagnetism
\rightsquigarrow application of CAZ scheme for Tls
- Complete classification table in publication
- Ordinary material in class BDI (3 symmetries)
\rightsquigarrow different from time-reversal-invariant quantum systems!
\rightsquigarrow each symmetry can be broken individually

Dynamics and Symmetries of Non-Linear PhCs

- For small coupling: existence and uniqueness of solutions
- Explicit expression of first non-linear response

Covered in the talk today

Part 1

Classification of Linear PTIs

- Schrödinger formalism of electromagnetism
\rightsquigarrow application of CAZ scheme for TIs
- Complete classification table in publication
- Ordinary material in class BDI (3 symmetries)
\rightsquigarrow different from time-reversal-invariant quantum systems!
\rightsquigarrow each symmetry can be broken individually

Part 2

Dynamics and Symmetries of Non-Linear PhCs

- For small coupling: existence and uniqueness of solutions
- Explicit expression of first non-linear response

Covered in the talk today

Part 3

Candidates for Relevant States

- Notion of non-linearly coupling modes which exist "generically"
- Cubic case: generic non-linearly coupling modes exist
- Quadratic case: generic non-linearly coupling modes exist \rightsquigarrow outside of current theory

Part 4

Topological Invariants \& Non-Linear Dynamics

- How to prove stability of topological invariance in presence of non-linearities

Thank you for your attention!

References

- A. Babin and A. Figotin. Nonlinear Maxwell Equations in Inhomogeneous Media. Commun. Math. Phys. 241, 519-581, 2003
- A. Babin and A. Figotin. Nonlinear photonic crystals: I. Quadratic nonlinearity. Waves in Random Media 11, R31-R102, 2001.
- A. Babin and A. Figotin. Nonlinear photonic crystals: II. Interaction classification for quadratic nonlinearities. Waves in Random Media 12, R25-R52, 2002.
- A. Babin and A. Figotin. Nonlinear photonic crystals: III. Cubic nonlinearity. Waves in Random Media 13, R41-R69, 2003.
- A. Babin and A. Figotin. Nonlinear photonic crystals: IV. Nonlinear Schrödinger equation regime. Waves in Random and Complex Media 15, 145-228, 2005.

References

- M. Onoda, S. Murakami and N. Nagaosa. Geometrical aspects in optical wave-packet dynamics. Phys. Rev. E. 74, 066610, 2010.
- S. Raghu and F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834, 2008.
- S. Raghu and F. D. M. Haldane. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 100, 013904, 2008.

References

- Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772-5, 2009.
- M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit. Photonic Floquet topological insulators. Nature 496, 196-200, 2013.
- M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev. Topological Creation and Destruction of Edge States in Photonic Graphene. Phys. Rev. Lett. 111, 103901, 2013.

References

- Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, A. Szameit, N. Malkova, Z. Chen, and M. Segev. Observation of dispersion-free edge states in honeycomb photonic lattices. In: Conference on Lasers and Electro-Optics 2012. Op- tical Society of America, 2012, QF2H.6.
- Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J. M. Zeuner, S. Nolte, Y. Lumer, N. Malkova, J. Xu, A. Szameit, Z. Chen, and M. Segev. Observation of unconventional edge states in "photonic graphene". Nature Materials 13, 57-62, 2014.

