Conclusion

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 の ()</p>

Analysis of Ψ DOs by Combining Analytic and Algebraic Techniques

Max Lein in collaboration with Marius Măntoiu and Serge Richard

University of Toronto

2014.01.21@University of Toronto

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Talk based on

- Magnetic pseudodifferential operators with coefficients in C*-algebras, Publ. RIMS Kyoto Univ. 46, pp. 755–788, 2010
- Magnetic twisted actions on general abelian C*-algebras, with F. Belmonte and M. Mňtoiu, Journal of Operator Theory 69 no. 1, pp. 33–58, 2013
- 3 Semiclassical Dynamics and Magnetic Weyl Calculus, PhD thesis

Connection

Conclusion

Basic idea

・ロト < 団ト < 三ト < 三ト < 三 ・ < 〇 へ ()

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ψ^* -algebras

```
Definition (\Psi^*-algebra Gramsch (1984))
```

Let \mathfrak{C} be a unital C^* -algebra and $\Psi \subseteq \mathfrak{C}$ a *-subalgebra with unit. Then Ψ is a Ψ^* -algebra if and only if

My motivation

- Analysis of magnetic pseudodifferential operators using algebraic methods.
- 2 Application to problems of solid state physics: Conduction properties of crystalline solids
- ③ Application to problems of optics: Light conduction properties of photonic crystals
- 4 Long-term goal »Adiabatic perturbation theory for random systems«: Combination of non-commutative geometry and magnetic \u00c0DO techniques

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

My motivation

- Analysis of magnetic pseudodifferential operators using algebraic methods.
- 2 Application to problems of solid state physics: Conduction properties of crystalline solids
- ③ Application to problems of optics: Light conduction properties of photonic crystals
- 4 Long-term goal »Adiabatic perturbation theory for random systems«: Combination of non-commutative geometry and magnetic \u00c0DO techniques

Conclusion

2 C*-algebras

<ロト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 1 回 の 0 0 0</p>

Conclusion

2 C*-algebras

C*-algebras

Connection

Conclusion

Pseudodifferential operators on \mathbb{R}^d

Building block operators

Weyl quantization is a functional calculus for

 $Q = \hat{x}$ $P = -i\nabla_x$

Commutation relations

$$i[Q_l, Q_j] = 0$$
 $i[P_l, Q_j] = \delta_{lj}$ $i[P_l, P_j] = 0$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 今 � ♡ � (♡

Connection

Conclusion

Weyl quantization

For suitable functions $h : \Xi \longrightarrow \mathbb{C}$ on phase space $\Xi = \mathbb{R}^d \times \mathbb{R}^{d^*}$, $u \in \mathcal{S}(\mathbb{R}^d) \subset L^2(\mathbb{R}^d)$:

$$(\mathfrak{Op}(h)u)(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} dy \int_{\mathbb{R}^{d^*}} d\eta \, e^{-i(y-x)\cdot\eta} \cdot h\left(\frac{1}{2}(x+y), \eta\right) u(y)$$
$$= \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, \mathcal{F}h\left(\frac{1}{2}(x+y), y-x\right) u(y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Connection

Conclusion

The Moyal product

$\mathfrak{Op}(f \sharp g) := \mathfrak{Op}(f) \mathfrak{Op}(g)$

$$(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^{2d}} \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} d\eta \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} dz \, \mathrm{d}\zeta \, \mathrm{e}^{-i(\eta \cdot y - y \cdot \zeta)} \cdot f\left(x - \frac{1}{2}y, \xi - \eta\right) g\left(x - \frac{1}{2}z, \xi - \zeta\right)$$

<ロト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 1 回 の 0 0 0</p>

Connection

Conclusion

The Moyal product

$$\mathfrak{Op}(f \sharp g) := \mathfrak{Op}(f) \mathfrak{Op}(g)$$

$$(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^{2d}} \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} d\eta \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} dz \, \mathrm{d}\zeta \, \mathrm{e}^{-i(\eta \cdot y - y \cdot \zeta)} \cdot f\left(x - \frac{1}{2}y, \xi - \eta\right) g\left(x - \frac{1}{2}z, \xi - \zeta\right)$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Connection

Conclusion

The Moyal product

$$\mathfrak{Op}(f\sharp g) := \mathfrak{Op}(f)\mathfrak{Op}(g)$$

$$(f \sharp g)(x,\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, \mathrm{e}^{+i\xi \cdot y} \cdot \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dz \, \mathcal{F}f\left(y, z - \frac{1}{2}(x-y)\right) \, \mathcal{F}g\left(x-y, z + \frac{1}{2}y\right)$$

◆□ ▶ ◆ 檀 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

Connection

Conclusion

Hörmander classes

Definition

The Fréchet space of Hörmander symbols of order m and type $\rho \in [0,1]$ are defined as

$$\begin{split} S^m_{\rho} &:= \Big\{ f \in \mathcal{C}^{\infty}(\Xi) \ \Big| \ \forall a, \alpha \in \mathbb{N}^d_0 \ \exists C_{a\alpha} > 0 : \\ & \Big| \partial^a_x \partial^\alpha_\xi f(x,\xi) \Big| \leq C_{a\alpha} \ \langle \xi \rangle^{m-|\alpha|\rho} \ \forall (x,\xi) \in \Xi \Big\}. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Connection

Conclusion

Hörmander classes

Theorem

 $S_{\rho}^{m_1} \sharp S_{\rho}^{m_2} \subseteq S_{\rho}^{m_1+m_2}$

Connection

Conclusion

Hörmander classes

Theorem (Bony)

Let $h = h^* \in S^m_\rho$ for $m \ge 0$. In case m > 0, we assume in addition that h is elliptic. Then for all $z \in \mathbb{C} \setminus \mathbb{R}$

$$(h-z)^{(-1)_{\sharp}} \in S_{\rho}^{-m}$$

holds where the Moyal resolvent $(h - z)^{(-1)_{\sharp}}$ is the inverse of h - z with respect to \sharp .

Ellipticity $\Rightarrow \mathfrak{Op}(h)^* = \mathfrak{Op}(h)$ with domain $H^m(\mathbb{R}^d)$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Hörmander classes

Theorem (Bony)

Let $h = h^* \in S^m_\rho$ for $m \ge 0$. In case m > 0, we assume in addition that h is elliptic. Then for all $z \in \mathbb{C} \setminus \mathbb{R}$

$$(h-z)^{(-1)_{\sharp}} \in S_{\rho}^{-m}$$

holds where the Moyal resolvent $(h - z)^{(-1)_{\sharp}}$ is the inverse of h - z with respect to \sharp .

Ellipticity $\Rightarrow \mathfrak{Op}(h)^* = \mathfrak{Op}(h)$ with domain $H^m(\mathbb{R}^d)$

Conclusion

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

C*-algebras

Connection

Conclusion

Simplest relevant C*-algebra

Definition $\mathfrak{B} := \mathfrak{O}\mathfrak{p}^{-1} \Big(\mathcal{B} \big(L^2(\mathbb{R}^d) \big) \Big) \text{ with}$ $\mathfrak{O} C^* \text{-norm } \|f\|_{\mathfrak{B}} := \|\mathfrak{O}\mathfrak{p}(f)\|_{\mathcal{B}(L^2(\mathbb{R}^d))},$ $\mathfrak{O} \text{ product } f \sharp g := \mathfrak{O}\mathfrak{p}^{-1} \big(\mathfrak{O}\mathfrak{p}(f) \mathfrak{O}\mathfrak{p}(g) \big) \text{ and}$ $\mathfrak{O} \text{ involution } f^* := \mathfrak{O}\mathfrak{p}^{-1} \big(\mathfrak{O}\mathfrak{p}(f)^* \big).$

f, g suitable: $f \ddagger g$ coincides with Moyal product and f^* is pointwise complex conjugation.

C*-algebras

Connection

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simplest relevant C*-algebra

Definition $\mathfrak{B} := \mathfrak{O}\mathfrak{p}^{-1} \Big(\mathcal{B} \big(L^2(\mathbb{R}^d) \big) \Big) \text{ with}$ $\mathfrak{O} \quad C^* \text{-norm } \|f\|_{\mathfrak{B}} := \Big\| \mathfrak{O}\mathfrak{p}(f) \Big\|_{\mathcal{B}(L^2(\mathbb{R}^d))},$ $2 \quad \text{product } f \sharp g := \mathfrak{O}\mathfrak{p}^{-1} \big(\mathfrak{O}\mathfrak{p}(f) \mathfrak{O}\mathfrak{p}(g) \big) \text{ and}$ $\mathfrak{O} \quad \text{involution } f^* := \mathfrak{O}\mathfrak{p}^{-1} \big(\mathfrak{O}\mathfrak{p}(f)^* \big).$

f, g suitable: $f \ddagger g$ coincides with Moyal product and f^* is pointwise complex conjugation.

C*-algebras

Connection

Conclusion

Simplest relevant C*-algebra

Problem

 \mathfrak{B} is often »too large«. ---> twisted product algebras

< □ ト < @ ト < E ト < E ト E のへで</p>

C*-algebras

Connection

Conclusion

Simplest relevant C*-algebra

Problem

𝔅 is often »too large«. → twisted product algebras

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Connection

Conclusion

Anisotropy algebra

Definition

Let $\mathcal{A} \subseteq \mathcal{C}_{bu}(\mathbb{R}^d)$ be C^* -subalgebra with unit which is stable under translations.

Encodes the properties in the x variable of $h : \mathbb{R}^d \times \mathbb{R}^{d^*} \longrightarrow \mathbb{R}$.

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Connection

Conclusion

Anisotropy algebra

Definition

Let $\mathcal{A} \subseteq \mathcal{C}_{bu}(\mathbb{R}^d)$ be C^* -subalgebra with unit which is stable under translations.

Encodes the properties in the *x* variable of $h : \mathbb{R}^d \times \mathbb{R}^{d^*} \longrightarrow \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Anisotropy algebra

The triple $(\mathcal{A}, \mathbb{R}^d, \theta)$ forms a C^* -dynamical system where $\theta_x[\varphi] := \varphi(\cdot + x)$ is the group action of translations.

Connection

Conclusion

crossed product algebra

Proposition

The triple $(L^1(\mathbb{R}^d, \mathcal{A}), \star, \star)$ is a Banach-* algebra where $L^1(\mathbb{R}^d, \mathcal{A})$ is the Banach space of the Bochner-integrable functions with

product

$$(F \star G)(x) := \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, \theta_{-\frac{1}{2}(x-y)} [F(y)] \, \theta_{\frac{1}{2}y} [G(x-y)] \in \mathcal{A}$$

and involution $F^*(x) := F^*(-x)$.

Connection

Conclusion

crossed product algebra

Proposition

The triple $(L^1(\mathbb{R}^d, \mathcal{A}), \star, \star)$ is a Banach-* algebra where $L^1(\mathbb{R}^d, \mathcal{A})$ is the Banach space of the Bochner-integrable functions with

product

$$(F \star G)(x,z) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, F\left(y, z - \frac{1}{2}(x-y)\right) \, G\left(x-y, z + \frac{1}{2}y\right)$$

and involution $F^*(x) := F^*(-x)$.

Connection

Conclusion

crossed product algebra

Definition (crossed product algebra)

 $\mathcal{A} \rtimes \mathbb{R}^d$ is the completion of the Banach-* algebra $(L^1(\mathbb{R}^d, \mathcal{A}), \star, \star)$ with respect to the C^* -norm

 $\|F\|_{\rtimes} := \sup \Big\{ \Big\| \pi(F) \Big\|_{\mathcal{B}(\mathcal{H})} \mid \pi \text{ non-degenerate representation on } \mathcal{H} \Big\}.$

Conclusion

Fourier transformed crossed product algebra

Definition (Fourier transform
$$\mathcal{F}$$
)
 $\mathcal{F}^{-1}: L^1(\mathbb{R}^d, \mathcal{A}) \longrightarrow \mathcal{C}_{\infty}(\mathbb{R}^{d^*}, \mathcal{A})$
 $(\mathcal{F}^{-1}F)(\xi) := \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dx \ e^{+i\xi \cdot x} F(x) \in \mathcal{A}$

Fourier transformed crossed product algebra

Definition $\mathfrak{C}_A := \mathcal{F}^{-1}(\mathcal{A} \rtimes \mathbb{R}^d)$ with 1 norm $||f||_{\mathfrak{C}_A} := ||\mathcal{F}f||_{\rtimes},$ 2 product $f \sharp g := \mathcal{F}^{-1}(\mathcal{F}f \star \mathcal{F}g)$. $(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{T}^{nd}} dy \, \mathrm{e}^{+i\xi \cdot y} \cdot$ $\cdot \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{T}^d} \mathrm{d}z \, \mathcal{F}f\left(y, z - \frac{1}{2}(x - y)\right) \mathcal{F}g\left(x - y, z + \frac{1}{2}y\right)$

and

3 involution
$$f^{\sharp} := \mathcal{F}^{-1}((\mathcal{F}f)^{\star}) = f^{\star}$$
.

f, g suitable: $f \ddagger g$ coincides with Moyal product

◆ロト ◆得 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Fourier transformed crossed product algebra

Definition $\mathfrak{C}_A := \mathcal{F}^{-1}(\mathcal{A} \rtimes \mathbb{R}^d)$ with 1 norm $||f||_{\mathfrak{C}_A} := ||\mathcal{F}f||_{\rtimes}$, 2 product $f \sharp g := \mathcal{F}^{-1}(\mathcal{F}f \star \mathcal{F}g)$. $(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{T}^{nd}} dy \, \mathrm{e}^{+i\xi \cdot y} \cdot$ $\cdot \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{T}^d} \mathrm{d}z \, \mathcal{F}f\left(y, z - \frac{1}{2}(x-y)\right) \mathcal{F}g\left(x-y, z + \frac{1}{2}y\right)$

and

3 involution
$$f^{\sharp} := \mathcal{F}^{-1}((\mathcal{F}f)^{\star}) = f^{\star}$$
.

f,g suitable: $f \ddagger g$ coincides with Moyal product

 C^* -algebras

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Representations of $\mathfrak{C}_{\mathcal{A}}$

Theorem

- (1) $\mathfrak{O}\mathfrak{p}$ is the »position representation« of $\mathfrak{C}_{\mathcal{A}}$ on $L^2(\mathbb{R}^d)$.
- (2) $\mathfrak{FOp}\mathfrak{F}^{-1}$ is the »momentum representation« of $\mathfrak{C}_{\mathcal{A}}$ on $L^2(\mathbb{R}^{d^*})$.

$\Rightarrow \mathfrak{C}_{\mathcal{A}} \hookrightarrow \mathfrak{B}$

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Representations of $\mathfrak{C}_{\mathcal{A}}$

Theorem

- (1) $\mathfrak{O}\mathfrak{p}$ is the »position representation« of $\mathfrak{C}_{\mathcal{A}}$ on $L^2(\mathbb{R}^d)$.
- 2 $\mathfrak{FD}\mathfrak{p}\mathfrak{F}^{-1}$ is the »momentum representation« of $\mathfrak{C}_{\mathcal{A}}$ on $L^2(\mathbb{R}^{d^*})$.

$\Rightarrow \mathfrak{C}_{\mathcal{A}} \hookrightarrow \mathfrak{B}$

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Representations of $\mathfrak{C}_{\mathcal{A}}$

Theorem

- (1) $\mathfrak{O}\mathfrak{p}$ is the »position representation« of $\mathfrak{C}_{\mathcal{A}}$ on $L^2(\mathbb{R}^d)$.
- 2 $\mathfrak{FD}\mathfrak{p}\mathfrak{F}^{-1}$ is the »momentum representation« of $\mathfrak{C}_{\mathcal{A}}$ on $L^2(\mathbb{R}^{d^*})$.

 $\Rightarrow \mathfrak{C}_{\mathcal{A}} \hookrightarrow \mathfrak{B}$

Conclusion

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 C^* -algebras

Connection

Conclusion

Proposition

$$S^0_{\rho} \hookrightarrow \mathfrak{B} \text{ is a } \Psi^*\text{-algebra.}$$

Connection

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ψ^* -property of S^0_{ρ}

Proof.

②
$$S^0_
ho \sharp S^0_
ho \subseteq S^0_
ho$$
 (closedness under \sharp)

$$\textcircled{3} S^0_{
ho} \cap \mathfrak{B}^{(-1)_\sharp} = \left(S^0_{
ho}
ight)^{(-1)_\sharp}$$
 (corollary of the Bony criterion)

 C^* -algebras

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Ψ^* -property of $S^0_{ ho}$

- $\mathfrak{Op}(S^0_{\rho}) \hookrightarrow \mathcal{B}(L^2(\mathbb{R}^d)) \text{ continuous (Caldéron-Vaillancourt)}$
- (2) $S^0_{\rho} \sharp S^0_{\rho} \subseteq S^0_{\rho}$ (closedness under \sharp)
- $\textcircled{3} \hspace{0.1 cm} S^{0}_{
 ho} \cap \mathfrak{B}^{(-1)_{\sharp}} = \left(S^{0}_{
 ho}
 ight)^{(-1)_{\sharp}}$ (corollary of the Bony criterion)

C*-algebras

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Ψ^* -property of $S^0_{ ho}$

- $\mathfrak{Op}(S^0_{\rho}) \hookrightarrow \mathcal{B}(L^2(\mathbb{R}^d)) \text{ continuous (Caldéron-Vaillancourt)}$
- (2) $S^0_{\rho} \sharp S^0_{\rho} \subseteq S^0_{\rho}$ (closedness under \sharp)
- $3 S^0_{\rho} \cap \mathfrak{B}^{(-1)_{\sharp}} = (S^0_{\rho})^{(-1)_{\sharp}}$ (corollary of the Bony criterion)

C*-algebras

Connection

Conclusion

Anisotropic Hörmander classes

Definition
$$(S^m_{\rho}(\mathcal{A}))$$

 $S^m_{\rho}(\mathcal{A}) := \left\{ f \in S^m_{\rho} \mid \forall a, a \in \mathbb{N}^d_0, \xi \in \mathbb{R}^{d^*} x \mapsto \partial_x^a \partial_{\xi}^a f(x, \xi) \in \mathcal{A} \right\}$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

 C^* -algebras

Connection

Conclusion

 Ψ^* -property of $S^0_
ho(\mathcal{A})$

Theorem (L.-Măntoiu-Richard (2010)) $S^0_{\rho}(\mathcal{A}) \hookrightarrow \mathfrak{B} \text{ is a } \Psi^*\text{-algebra.}$

・ロト・西ト・ヨト・ヨー もくの

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

 Ψ^* -property of $S^0_{\rho}(\mathcal{A})$

- ② $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$ (L.-Măntoiu-Richard (2010), simple)
- 3 ???

C*-algebras

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Ψ^* -property of $S^0_{\rho}(\mathcal{A})$

C*-algebras

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Ψ^* -property of $S^0_{\rho}(\mathcal{A})$

- ② $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$ (L.-Măntoiu-Richard (2010), simple) ③ ???

Connection

Conclusion

 Ψ^* -property of $S^0_o(\mathcal{A})$

The crucial ingredient is the following

Theorem (Lauter (1998)) Let $\Psi \hookrightarrow \mathfrak{B}$ be a Ψ^* -algebra and $\Psi' \subset \Psi$ a closed *-subalgebra with unit. Then $\Psi' \hookrightarrow \mathfrak{B}$ endowed with the topology induced by Ψ is also a Ψ^* -algebra.

Conclusion

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\Psi^*$$
-property of $S^0_{\rho}(\mathcal{A})$

- (2) $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$ (L.-Măntoiu-Richard (2010), simple)
- (3) follows from Ψ^* -property of S^0_ρ and result by Lauter

Connection

Conclusion

What have we won?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Determination of the essential spectrum of a Ψ DOs

Ψ DO $H = \mathfrak{Op}(h)$ associated to h whose x-behavior is encoded in \mathcal{A}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Determination of the essential spectrum of a Ψ DOs

Essential spectrum of an operator $H = H^* \in \mathcal{B}(\mathcal{H})$ \rightsquigarrow Calkin-Algebra $\mathcal{C}(\mathcal{H}) := \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Determination of the essential spectrum of a Ψ DOs

What is $[\mathfrak{Op}(h)]_{\mathcal{K}(\mathcal{H})} \in \mathcal{C}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$?

Conclusion

< □ ト < @ ト < E ト < E ト E のへで</p>

How do you link both points of views?

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Determination of the essential spectrum of a Ψ DO

Determination of the essential spectrum of a Ψ DO

(2) Identify $S^0_{\rho}(\mathcal{A})$ with a subalgebra of $\mathfrak{C}_{\mathcal{A}} \subset \mathfrak{B}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Determination of the essential spectrum of a Ψ DO

Determination of the essential spectrum of a Ψ DO

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

Conclusion

Determination of the essential spectrum of a Ψ DO

$$I Morphisms \mathfrak{C}_{\mathcal{A}} \ni f \mapsto f_{\infty,j} \in \mathfrak{C}_{\mathcal{C}(\mathcal{Q}_{\infty,j})}$$

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへぐ

< ロト < 団 ト < 注 ト < 注 ト -

€ 9 Q (°

Determination of the essential spectrum of a Ψ DO

Connection

Conclusion

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Exact statement

Theorem (L.-Măntoiu-Richard (2010))

Let m > 0 and $\rho \in [0, 1]$ and let $Q \subset Q_A$ define a covering of the points at infinity F_A . Moreover, assume the components of the magnetic field B are elements of A^{∞} . Then for any real-valued elliptic element h of $S_{\rho}^{m}(A)$, one has

$$\operatorname{spec}_{\operatorname{ess}}(\mathfrak{Op}^{A}(h)) = \bigcup_{\mathcal{Q}\in Q} \operatorname{spec}(\mathfrak{Op}^{A_{\mathcal{Q}}}(h))$$

where A and A_Q are continuous vector potentials of B and B_Q , respectively, and $h_Q \in S^m_\rho(\mathcal{A}_Q)$ is the image of h through π_Q .

Connection

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further results

1 Magnetic fields *B* with components of class \mathcal{A}^{∞}

- Aysmptotic developments of # are compatible with anisotropic Hörmander classes ---> perturbation theory
- ③ Extension to more general anisotropy algebras $\mathcal{A} = \mathcal{C}(\Omega)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further results

- (1) Magnetic fields *B* with components of class \mathcal{A}^{∞}
- ③ Extension to more general anisotropy algebras $\mathcal{A} = \mathcal{C}(\Omega)$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 の ()</p>

Further results

- (1) Magnetic fields *B* with components of class \mathcal{A}^{∞}
- (a) Extension to more general anisotropy algebras $\mathcal{A} = \mathcal{C}(\Omega)$

Conclusion

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Take-away message

1 The notion of Ψ^* -algebra mediates between analytic and algebraic point of view.

- Allows for application of algebraic techniques to analytic problems (e. g. from mathematical physics).
- 3 Algebraic point of view provides more systematic overview of pseudodifferential calculus and simplifies arguments.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Take-away message

- 1 The notion of Ψ^* -algebra mediates between analytic and algebraic point of view.
- Allows for application of algebraic techniques to analytic problems (e. g. from mathematical physics).
- 3 Algebraic point of view provides more systematic overview of pseudodifferential calculus and simplifies arguments.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Take-away message

- 1 The notion of Ψ^* -algebra mediates between analytic and algebraic point of view.
- Allows for application of algebraic techniques to analytic problems (e. g. from mathematical physics).
- 3 Algebraic point of view provides more systematic overview of pseudodifferential calculus and simplifies arguments.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

References

- Spectral and Propagation Results for Magnetic Schroedinger Operators; a C*-Algebraic Framework, M.Măntoiu, R. Purice, S. Richard, Journal of Functional Analysis, Vol. 250, Issue 1 (2007)
- Commutator Criteria for Magnetic Pseudodifferential Operators, V. Iftimie, M. Măntoiu, R. Purice, Communications in Partial Differential Equations, Vol. 35, No. 6 (2010), 1058–1094
- Twisted Crossed Products and Magnetic Pseudodifferential Operators, M. Măntoiu, R. Purice, S. Richard, arxiv:math-ph/0403016, Journal of Functional Analysis, Vol. 250, No. 1 (2007), 42–67

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

References

- An Operator Theoretical Approach to Enveloping Ψ*- and C*-Algebras of Melrose Algebras of Totally Characteristic Pseudodifferential Operators, R. Lauter, Mathematische Nachrichten, Vol. 196, pp. 141-166 (1998)
- Magnetic pseudodifferential operators with coefficients in C*-algebras, Publ. RIMS Kyoto Univ., Volume 46 (2010), 755–788
- Semiclassical Dynamics and Magnetic Weyl Calculus, PhD thesis