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The notion of Ψ∗-algebra

Definition (Ψ∗-algebra Gramsch (1984))

Let Ψ⊂ C be a unital ∗-subalgebra. Then Ψ is called a Ψ∗-algebra if
and only if

(i) if Ψ can be endowed with a Fréchet topology τΨ such that the
embedding Ψ ,→ C is continuous and

(ii) Ψ∩ C−1 =Ψ−1 holds.
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My motivation

1 Analysis of magnetic ΨDOs using algebraic techniques.
2 Application to problems in solid state physics: conduction

properties in crystalline solids and photonic crystals
(space-adiabatic perturbation theory, existence of an exponentially
localized Wannier basis)

3 Ultimate goal: »Adiabatic perturbation theory« for random media:
Combination of non-commutative geometry with magnetic
pseudodifferential calculus
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Simplified setup: B= 0
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Pseudodifferential operators on Rd

Building block operators
Weyl quantization is a functional calculus for

Q= x̂

P=−i∇x

commutation relations

i[Ql, Qj] = 0 i[Pl, Qj] = δlj i[Pl, Pj] = 0
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Weyl quantization

For suitable functions h : Ξ−→ C on phase space Ξ = Rd×Rd∗,
u ∈ S(Rd)⊂ L2(Rd):

�

Op(h)u
�

(x) =
1

(2π)d

∫

Rd

dy

∫

Rd∗
dη e−i(y−x)·η·

· h
�

1
2
(x+ y),η

�

�

u(y)

=
1

(2π)d/2

∫

Rd

dy Fh
�

1
2
(x+ y), y− x

�

�

u(y)
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The Moyal product

Op
�

f]g
�

:=Op(f)Op(g)

�

f]g
�

(x,ξ) =
1

(2π)2d

∫

Rd×Rd∗
dy dη

∫

Rd×Rd∗
dz dζ e−i(η·y−y·ζ) ·

· f
�

x− 1
2
y,ξ−η

�

g
�

x− 1
2
z,ξ− ζ

�
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The Moyal product

Op
�

f]g
�

:=Op(f)Op(g)

�

f]g
�

(x,ξ) =
1

(2π)d

∫

Rd

dy e+iξ·y·

·
∫

Rd

dz F f
�

x− 1
2
(y− z), y

�

Fg
�

x− 1
2
z, y− z

�
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Hörmander symbol classes

Definition
The Fréchet space of Hörmander symbols of order m ∈ R and type
ρ ∈ [0,1] are defined by

Sm
ρ :=

n

f ∈ C∞(Ξ)
�

� ∀a,α ∈ Nd
0 ∃Caα > 0 :

�

�∂ a
x ∂

α
ξ f(x,ξ)

�

�≤ Caα 〈ξ〉
m ∀(x,ξ) ∈ Ξ

o

.
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Hörmander symbol classes

Theorem

Sm1
ρ ]S

m2
ρ ⊆ Sm1+m2

ρ
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Hörmander symbol classes

Theorem (Bony)

Let h= h∗ ∈ Sm
ρ for m≥ 0. If m> 0, we assume that in addition h is

elliptic. Then for all z ∈ C \R

(h− z)(−1)] ∈ S−m
ρ ,

where the Moyal resolvent (h− z)(−1)] is the inverse of h− z with
respect to ].

Ellipticity⇒ Op(h)∗ =Op(h) with domain Hm(Rd)
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Simplest relevant C∗-algebra

Definition

B :=Op−1
�

B
�

L2(Rd)
�

�

mit

1 C∗-norm ‖f‖B :=


Op(f)




B(L2(Rd))

2 Product f]g :=Op−1�Op(f)Op(g)
�

und
3 Involution f ∗ :=Op−1�Op(f)∗

�

f , g suitable: f]g agrees with Moyal product and f ∗ is the function which
is the pointwise complex conjugate of f .
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Anisotropy algebra

Definition

Let A⊆ Cb u(Rd) be a C∗-subalgebra, which is stable under
translations.

Encodes the behavior of the ΨDO Op(h) in the x variable of
h : Rd×Rd∗ −→ R.
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Anisotropy algebra

The triple
�

A,Rd,θ
�

forms a C∗-dynamical system, where
θx[ϕ] := ϕ(·+ x) is the group action by translation.
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crossed product C∗-algebra

Proposition

The triple
�

L1(Rd,A),?, ?
�

is a Banach-∗-algebra, where L1(Rd,A) is
the Banach space of Bochner-integrable functions with

1 product

(F ?G)(x) :=
1

(2π)d/2

∫

Rd

dy θ− 1
2
(x−y)

�

F(y)
�

θ 1
2

y
�

G(x− y)
�

∈A

2 and involution F?(x) := F∗(−x).
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crossed product C∗-algebra

Proposition

The triple
�

L1(Rd,A),?, ?
�

is a Banach-∗-algebra, where L1(Rd,A) is
the Banach space of Bochner-integrable functions with

1 product

(F ?G)(x, z) =
1

(2π)d/2

∫

Rd

dy F
�

y, z− 1
2
(x− y)

�

G
�

x− y, z+ 1
2
y
�

2 and involution F?(x) := F∗(−x).
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crossed product C∗-algebra

Definition (crossed product C∗-algebra)

AoRd is defined as the completion of the Banach-∗ algebra
�

L1(Rd,A),?, ?
�

with respect to the C∗-norm

‖F‖o := sup
n



π(F)




B(H) | π non-degenerate representation on H
o

.
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Fourier-transformed crossed product C∗-algebra

Definition (Fourier transformation F )

F−1 : L1(Rd,A)−→ C0
�

Rd∗,A
�

�

F−1F
�

(ξ) :=
1

(2π)d/2

∫

Rd

dx e+iξ·x F(x) ∈A
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Fourier-transformed crossed product C∗-algebra

Definition

CA := F−1�AoRd� mit
1 Norm ‖f‖CA

:= ‖F f‖o,
2 Produkt f]g := F−1�F f ?Fg
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Representations of CA

Theorem
1 Op is the position representation of CA on L2(Rd).
2 FOpF−1 is the momentum representation of CA on L2(Rd∗).

⇒ CA ,→B
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Ψ∗-property of S0
ρ

Proposition

S0
ρ ,→B is a Ψ∗-algebra.
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Ψ∗-property of S0
ρ

Proof.
1 Op : S0

ρ ,→ B
�

L2(Rd)
�

continuous (Caldéron-Vaillancourt)

2 S0
ρ]S

0
ρ ⊆ S0

ρ (closedness under ])

3 S0
ρ ∩B

(−1)] =
�

S0
ρ

�(−1)] (corollary of Bony criterion)
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Anistropic Hörmander symbol classes

Definition (Sm
ρ (A))

Sm
ρ (A) :=

n

f ∈ Sm
ρ

�

� ∀a,α ∈ Nd
0,ξ ∈ Rd∗ x 7→ ∂ a

x ∂
α
ξ f(x,ξ) ∈A

o
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Ψ∗-property of S0
ρ(A)

Theorem (L.-Măntoiu-Richard (2010))

S0
ρ(A) ,→B is a Ψ∗-algebra.
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Ψ∗-property of S0
ρ(A)

Proof.
1 Op : S0

ρ(A) ,→ B
�

L2(Rd)
�

continuous (Sm
ρ (A)⊆ Sm

ρ )

2 S0
ρ(A)]S

0
ρ(A)⊆ S0

ρ(A) (L.-Măntoiu-Richard (2010), easy)

3 S0
ρ(A)∩B
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ρ(A)

�(−1)] ???
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Ψ∗-property of S0
ρ(A)

Proving spectral invariance is not necessary:

Theorem (Lauter (1998))

Let Ψ ,→B be a Ψ∗-algebra and Ψ′ ⊂Ψ a closed unital ∗-subalgebra.
Then Ψ′ ,→B endowed with the restricted topology τΨ|Ψ′ is also a
Ψ∗-algebra.
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Ψ∗-property of S0
ρ(A)

Proof.
1 Op : S0

ρ(A) ,→ B
�

L2(Rd)
�

continuous (Sm
ρ (A)⊆ Sm

ρ )

2 S0
ρ(A)]S

0
ρ(A)⊆ S0

ρ(A) (L.-Măntoiu-Richard (2010), easy)

3 follows immediately from Ψ∗-property of S0
ρ and Theorem by

Lauter
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What have we gained?
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Determining the essential spectrum of a ΨDO

ΨDO H =Op(h) associated to the function h with certain properties

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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Determining the essential spectrum of a ΨDO

Essential spectrum of an operator H = H∗ ∈ B(H)  Calkin-Algebra
C(H) := B(H)/K(H)

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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Determining the essential spectrum of a ΨDO

What is [Op(h)]K(H) ∈ C(H) = B(H)/K(H)?

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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How do you combine
both points of view?
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Determining the essential spectrum of a ΨDO

1 Let h be an anisotropic Hörmander symbol, e. g. S0
ρ(A).

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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Determining the essential spectrum of a ΨDO

2 Identification of S0
ρ(A) with a subalgebra of CA ⊂B.

Analysis

ΨDO
��

Algebra

C∗-algebras
��

ΨDO C∗-algebras
Ψ∗-algebras

//
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Determining the essential spectrum of a ΨDO

3 Analysis of the quotient algebra
A/C0(Rd)∼= C0(SA \Rd)∼=

⋃

j∈I C(Q∞,j)

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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Determining the essential spectrum of a ΨDO

4 AoRd/C0(Rd)oRd ∼=
�

A/C0(Rd)
�

oRd ∼=
⋃

j∈I C(Q∞,j)oRd

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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Determining the essential spectrum of a ΨDO

5 Morphism CA 3 h 7→ h∞,j ∈ CC(Q∞,j)

Analysis

ΨDO
��

Algebra

C∗-algebras
��
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Determining the essential spectrum of a ΨDO

6 The h∞,j are again functions on Rd×Rd∗   analysis of the
spectra of the Op(h∞,j).

Analysis

ΨDO
��

Algebra

C∗-algebras
��

ΨDO C∗-algebrasoo
Ψ∗-algebras
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Concrete result

Theorem (L., Măntoiu, Richard (2010))

Suppose the components of B are of class A∞, m> 0, ρ ∈ [0, 1] and
h ∈ Sm

ρ (A) be elliptic. Then

σess
�

OpA(h)
�

=
⋃

j∈I
σ
�

OpA∞,j(h∞,j)
�

where
⋃

j∈I Q∞,j is a covering of the points at infinity ΩA \ ı(Rd).
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Further results

1 Inclusion of magnetic fields B with components in A∞

2 Asymtptotic expansions of ] are compatible with anisotropic
Hörmander classes.

3 Extension of more general anisotropy algebras A= C(Ω) are
available.
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Take-away message

1 The notion of Ψ∗-algebras mediates between analytic and
algebraic point of view.

2 Allows applications of algebraic tools to problems from M∩Φ.
3 Algebraic point of view sometimes simplifies arguments involving

pseudodifferential calculus.
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