# Spectral Analysis of $\Psi$ DOs by Combining Analytic and Algebraic Techniques

# Max Lein in collaboration with Marius Măntoiu and Serge Richard

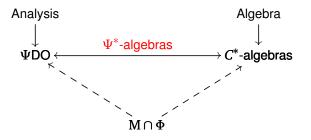
Kyushu University

2013.01.25@RIMS

## Talk based on

- Magnetic pseudodifferential operators with coefficients in C\*-algebras, Publ. RIMS Kyoto Univ., Volume 46 (2010), 755–788
- 2 Semiclassical Dynamics and Magnetic Weyl Calculus, PhD thesis

# Key idea



▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

#### The notion of $\Psi^*$ -algebra

```
Definition (\Psi^*-algebra Gramsch (1984))
```

```
Let \Psi\subset \mathfrak{C} be a unital *-subalgebra. Then \Psi is called a \Psi^*\text{-algebra} if and only if
```

- (i) if  $\Psi$  can be endowed with a Fréchet topology  $\tau_{\Psi}$  such that the embedding  $\Psi \hookrightarrow \mathfrak{C}$  is continuous and
- (ii)  $\Psi \cap \mathfrak{C}^{-1} = \Psi^{-1}$  holds.

# My motivation

- (1) Analysis of *magnetic*  $\Psi$ DOs using algebraic techniques.
- Application to problems in solid state physics: conduction properties in crystalline solids and photonic crystals (space-adiabatic perturbation theory, existence of an exponentially localized Wannier basis)
- Iltimate goal: »Adiabatic perturbation theory« for random media: Combination of non-commutative geometry with magnetic pseudodifferential calculus

# My motivation

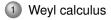
- (1) Analysis of *magnetic*  $\Psi$ DOs using algebraic techniques.
- Application to problems in solid state physics: conduction properties in crystalline solids and photonic crystals (space-adiabatic perturbation theory, existence of an exponentially localized Wannier basis)
- ③ Ultimate goal: »Adiabatic perturbation theory« for random media: Combination of non-commutative geometry with magnetic pseudodifferential calculus

Conclusion

# Simplified setup: B = 0

< □ ト < @ ト < E ト < E ト E のへで</p>

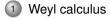
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ





3 Connection between the two points of view







3 Connection between the two points of view



# Pseudodifferential operators on $\mathbb{R}^d$

Building block operators

Weyl quantization is a functional calculus for

 $Q = \hat{x}$  $P = -i\nabla_x$ 

commutation relations

$$i[Q_l, Q_j] = 0$$
  $i[P_l, Q_j] = \delta_{lj}$   $i[P_l, P_j] = 0$ 

C\*-algebras

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Weyl quantization

For suitable functions  $h : \Xi \longrightarrow \mathbb{C}$  on phase space  $\Xi = \mathbb{R}^d \times \mathbb{R}^{d^*}$ ,  $u \in S(\mathbb{R}^d) \subset L^2(\mathbb{R}^d)$ :

$$(\mathfrak{Op}(h)u)(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} dy \int_{\mathbb{R}^{d^*}} d\eta \, e^{-i(y-x)\cdot\eta} \cdot h\left(\frac{1}{2}(x+y),\eta\right) u(y)$$
$$= \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, \mathcal{F}h\left(\frac{1}{2}(x+y),y-x\right) u(y)$$

## The Moyal product

# $\mathfrak{Op}(f \sharp g) := \mathfrak{Op}(f) \mathfrak{Op}(g)$

$$(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^{2d}} \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} d\eta \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} dz \, \mathrm{d}\zeta \, \mathrm{e}^{-i(\eta \cdot y - y \cdot \zeta)} \cdot f\left(x - \frac{1}{2}y, \xi - \eta\right) g\left(x - \frac{1}{2}z, \xi - \zeta\right)$$

## The Moyal product

$$\mathfrak{Op}(f\sharp g) := \mathfrak{Op}(f)\mathfrak{Op}(g)$$

$$(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^{2d}} \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} d\eta \int_{\mathbb{R}^d \times \mathbb{R}^{d^*}} d\zeta e^{-i(\eta \cdot y - y \cdot \zeta)} \cdot f\left(x - \frac{1}{2}y, \xi - \eta\right) g\left(x - \frac{1}{2}z, \xi - \zeta\right)$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

## The Moyal product

$$\mathfrak{Op}(f\sharp g) := \mathfrak{Op}(f)\mathfrak{Op}(g)$$

$$(f\sharp g)(x,\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} dy \, e^{+i\xi \cdot y} \cdot \int_{\mathbb{R}^d} dz \, \mathcal{F}f\left(x - \frac{1}{2}(y-z), y\right) \, \mathcal{F}g\left(x - \frac{1}{2}z, y - z\right)$$

#### Hörmander symbol classes

#### Definition

The Fréchet space of Hörmander symbols of order  $m \in \mathbb{R}$  and type  $\rho \in [0,1]$  are defined by

$$S_{\rho}^{m} := \left\{ f \in \mathcal{C}^{\infty}(\Xi) \mid \forall a, a \in \mathbb{N}_{0}^{d} \exists C_{aa} > 0 : \\ \left| \partial_{x}^{a} \partial_{\xi}^{a} f(x, \xi) \right| \leq C_{aa} \left\langle \xi \right\rangle^{m} \forall (x, \xi) \in \Xi \right\}.$$

#### Hörmander symbol classes

#### Theorem

 $S_{\rho}^{m_1} \sharp S_{\rho}^{m_2} \subseteq S_{\rho}^{m_1+m_2}$ 

## Hörmander symbol classes

Theorem (Bony)

Let  $h = h^* \in S^m_\rho$  for  $m \ge 0$ . If m > 0, we assume that in addition h is elliptic. Then for all  $z \in \mathbb{C} \setminus \mathbb{R}$ 

 $(h-z)^{(-1)_{\sharp}} \in S_{\rho}^{-m},$ 

where the Moyal resolvent  $(h-z)^{(-1)_{\sharp}}$  is the inverse of h-z with respect to  $\sharp$ .

Ellipticity  $\Rightarrow \mathfrak{Op}(h)^* = \mathfrak{Op}(h)$  with domain  $H^m(\mathbb{R}^d)$ 

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### Hörmander symbol classes

Theorem (Bony)

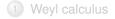
Let  $h = h^* \in S^m_\rho$  for  $m \ge 0$ . If m > 0, we assume that in addition h is elliptic. Then for all  $z \in \mathbb{C} \setminus \mathbb{R}$ 

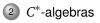
 $(h-z)^{(-1)_{\sharp}} \in S_{\rho}^{-m},$ 

where the Moyal resolvent  $(h-z)^{(-1)_{\sharp}}$  is the inverse of h-z with respect to  $\sharp$ .

Ellipticity  $\Rightarrow \mathfrak{Op}(h)^* = \mathfrak{Op}(h)$  with domain  $H^m(\mathbb{R}^d)$ 

・ロト・西ト・ヨト・ヨー もくの





3 Connection between the two points of view

#### 4 Conclusion

# Simplest relevant C\*-algebra

# Definition $\mathfrak{B} := \mathfrak{O}\mathfrak{p}^{-1} \left( \mathcal{B} \left( L^2(\mathbb{R}^d) \right) \right) \text{ mit}$ $\mathfrak{O} \quad C^* \text{-norm } \| f \|_{\mathfrak{B}} := \left\| \mathfrak{O}\mathfrak{p}(f) \right\|_{\mathcal{B}(L^2(\mathbb{R}^d))}$ $2 \quad \text{Product } f \sharp g := \mathfrak{O}\mathfrak{p}^{-1} \left( \mathfrak{O}\mathfrak{p}(f) \mathfrak{O}\mathfrak{p}(g) \right) \text{ und}$ $\mathfrak{O} \quad \text{Involution } f^* := \mathfrak{O}\mathfrak{p}^{-1} \left( \mathfrak{O}\mathfrak{p}(f)^* \right)$

f, g suitable:  $f \ddagger g$  agrees with Moyal product and  $f^*$  is the function which is the pointwise complex conjugate of f.

# Simplest relevant C\*-algebra

#### Definition

$$\mathfrak{B} := \mathfrak{Op}^{-1}\left(\mathcal{B}(L^2(\mathbb{R}^d))\right)$$
 mit

2 Product 
$$f \sharp g := \mathfrak{O}\mathfrak{p}^{-1} \big( \mathfrak{O}\mathfrak{p}(f) \mathfrak{O}\mathfrak{p}(g) \big)$$
 und

(3) Involution 
$$f^* := \mathfrak{Op}^{-1} (\mathfrak{Op}(f)^*)$$

f, g suitable:  $f \ddagger g$  agrees with Moyal product and  $f^*$  is the function which is the pointwise complex conjugate of f.

## Simplest relevant C\*-algebra

Problem

 $\mathfrak{B}$  is often »too big.«  $\rightsquigarrow$  twisted product  $C^*$ -algebras

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Simplest relevant C\*-algebra

Problem

 $\mathfrak{B}$  is often »too big.«  $\rightsquigarrow$  twisted product  $C^*$ -algebras

<ロト < 虚ト < 差ト < 差ト = 差 の < @</p>

# Anisotropy algebra

#### Definition

# Let $\mathcal{A} \subseteq \mathcal{C}_{bu}(\mathbb{R}^d)$ be a $C^*$ -subalgebra, which is stable under translations.

Encodes the behavior of the  $\Psi$ DO  $\mathfrak{Op}(h)$  in the x variable of  $h : \mathbb{R}^d \times \mathbb{R}^{d^*} \longrightarrow \mathbb{R}$ .

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○<</p>

# Anisotropy algebra

#### Definition

Let  $\mathcal{A} \subseteq \mathcal{C}_{bu}(\mathbb{R}^d)$  be a  $C^*$ -subalgebra, which is stable under translations.

Encodes the behavior of the  $\Psi$ DO  $\mathfrak{Op}(h)$  in the *x* variable of  $h : \mathbb{R}^d \times \mathbb{R}^{d^*} \longrightarrow \mathbb{R}$ .

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

#### Anisotropy algebra

The triple  $(\mathcal{A}, \mathbb{R}^d, \theta)$  forms a  $C^*$ -dynamical system, where  $\theta_x[\varphi] := \varphi(\cdot + x)$  is the group action by translation.

## *crossed product* C\*-algebra

#### Proposition

The triple  $(L^1(\mathbb{R}^d, \mathcal{A}), \star, \star)$  is a Banach- $\ast$ -algebra, where  $L^1(\mathbb{R}^d, \mathcal{A})$  is the Banach space of Bochner-integrable functions with

product

$$(F \star G)(x) := \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \mathrm{d}y \, \theta_{-\frac{1}{2}(x-y)} \big[ F(y) \big] \, \theta_{\frac{1}{2}y} \big[ G(x-y) \big] \in \mathcal{A}$$

and involution  $F^*(x) := F^*(-x)$ .

#### *crossed product C*\*-algebra

#### Proposition

The triple  $(L^1(\mathbb{R}^d, \mathcal{A}), \star, \star)$  is a Banach- $\ast$ -algebra, where  $L^1(\mathbb{R}^d, \mathcal{A})$  is the Banach space of Bochner-integrable functions with

product

$$(F \star G)(x,z) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, F\left(y, z - \frac{1}{2}(x-y)\right) \, G\left(x - y, z + \frac{1}{2}y\right)$$

and involution  $F^*(x) := F^*(-x)$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### *crossed product* C\*-algebra

#### Definition (crossed product C\*-algebra)

 $\mathcal{A} \rtimes \mathbb{R}^d$  is defined as the completion of the Banach-\* algebra  $(L^1(\mathbb{R}^d, \mathcal{A}), \star, \star)$  with respect to the  $C^*$ -norm

 $\|F\|_{\rtimes} := \sup \Big\{ \|\pi(F)\|_{\mathcal{B}(\mathcal{H})} \mid \pi \text{ non-degenerate representation on } \mathcal{H} \Big\}.$ 

# Fourier-transformed crossed product C\*-algebra

# Definition (Fourier transformation $\mathcal{F}$ ) $\mathcal{F}^{-1}: L^1(\mathbb{R}^d, \mathcal{A}) \longrightarrow \mathcal{C}_0(\mathbb{R}^{d^*}, \mathcal{A})$ $(\mathcal{F}^{-1}F)(\xi) := \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dx \ e^{+i\xi \cdot x} F(x) \in \mathcal{A}$

- イロト 4 個 ト 4 注 ト 4 注 ト つくぐ

# Fourier-transformed crossed product C\*-algebra

#### Definition

$$\mathfrak{C}_{\mathcal{A}} := \mathcal{F}^{-1} \big( \mathcal{A} 
times \mathbb{R}^d \big)$$
 mit

$$(f \sharp g)(x,\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, e^{+i\xi \cdot y} \cdot \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dz \, \mathcal{F}f\left(x - \frac{1}{2}(y-z), y\right) \, \mathcal{F}g\left(x - \frac{1}{2}z, y - z\right)$$

#### and

3 Involution 
$$f^{\sharp} := \mathcal{F}^{-1}((\mathcal{F}f)^{\star}) = f^{\star}$$

f, g suitable:  $f \ddagger g$  coincides with Moyal produkt

・ロト・西ト・ヨト・ヨー もくの

# Fourier-transformed crossed product C\*-algebra

#### Definition

$$\mathfrak{C}_{\mathcal{A}} := \mathcal{F}^{-1} \big( \mathcal{A} 
times \mathbb{R}^d \big)$$
 mit

$$(f \sharp g)(x,\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dy \, e^{+i\xi \cdot y} \cdot \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} dz \, \mathcal{F}f\left(x - \frac{1}{2}(y-z), y\right) \, \mathcal{F}g\left(x - \frac{1}{2}z, y - z\right)$$

#### and

3 Involution 
$$f^{\sharp} := \mathcal{F}^{-1}((\mathcal{F}f)^{\star}) = f^{\star}$$

f,g suitable:  $f \ddagger g$  coincides with Moyal produkt

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

# Representations of $\mathfrak{C}_{\mathcal{A}}$

#### Theorem

- (1)  $\mathfrak{O}\mathfrak{p}$  is the position representation of  $\mathfrak{C}_{\mathcal{A}}$  on  $L^2(\mathbb{R}^d)$ .
- (2)  $\mathcal{F}\mathfrak{Op}\mathcal{F}^{-1}$  is the momentum representation of  $\mathfrak{C}_{\mathcal{A}}$  on  $L^2(\mathbb{R}^{d^*})$

#### $\Rightarrow \mathfrak{C}_{\mathcal{A}} \hookrightarrow \mathfrak{B}$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

# Representations of $\mathfrak{C}_{\mathcal{A}}$

#### Theorem

- (1)  $\mathfrak{O}\mathfrak{p}$  is the position representation of  $\mathfrak{C}_{\mathcal{A}}$  on  $L^2(\mathbb{R}^d)$ .
- ②  $\mathcal{F}\mathfrak{Op}\mathcal{F}^{-1}$  is the momentum representation of  $\mathfrak{C}_{\mathcal{A}}$  on  $L^2(\mathbb{R}^{d^*})$ .

#### $\Rightarrow \mathfrak{C}_{\mathcal{A}} \hookrightarrow \mathfrak{B}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - り へ (~)

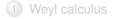
# Representations of $\mathfrak{C}_{\mathcal{A}}$

#### Theorem

- (1)  $\mathfrak{O}\mathfrak{p}$  is the position representation of  $\mathfrak{C}_{\mathcal{A}}$  on  $L^2(\mathbb{R}^d)$ .
- ②  $\mathcal{F}\mathfrak{Op}\mathcal{F}^{-1}$  is the momentum representation of  $\mathfrak{C}_{\mathcal{A}}$  on  $L^2(\mathbb{R}^{d^*})$ .

 $\Rightarrow \mathfrak{C}_{\mathcal{A}} \hookrightarrow \mathfrak{B}$ 

<ロト < 虚ト < 差ト < 差ト = 差 の < @</p>







#### 3 Connection between the two points of view



Connection between the two points of view

Conclusion

$$\Psi^*$$
-property of  $S^0_
ho$ 

Proposition  $S^0_\rho \hookrightarrow \mathfrak{B} \text{ is a } \Psi^*\text{-algebra.}$ 



Connection between the two points of view

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\Psi^*$$
-property of  $S^0_{
ho}$ 

#### Proof.

## $\textcircled{0} \ \mathfrak{Op}: S^0_{\rho} \hookrightarrow \mathcal{B}\bigl(L^2(\mathbb{R}^d)\bigr) \text{ continuous (Caldéron-Vaillancourt)}$

(a) 
$$S^0_{\rho} \sharp S^0_{\rho} \subseteq S^0_{\rho}$$
 (closedness under  $\sharp$ )

$$\bigcirc S^0_{
ho} \cap \mathfrak{B}^{(-1)_\sharp} = \left(S^0_{
ho}
ight)^{(-1)_\sharp}$$
 (corollary of Bony criterion)

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

### $\Psi^*$ -property of $S^0_{ ho}$

#### Proof.

- $\mathfrak{Op}: S^0_{\rho} \hookrightarrow \mathcal{B}(L^2(\mathbb{R}^d)) \text{ continuous (Caldéron-Vaillancourt)}$
- (2)  $S^0_{\rho} \sharp S^0_{\rho} \subseteq S^0_{\rho}$  (closedness under  $\sharp$ )
- ③  $S^0_{
  ho} \cap \mathfrak{B}^{(-1)_{\sharp}} = \left(S^0_{
  ho}
  ight)^{(-1)_{\sharp}}$  (corollary of Bony criterion)

## $\Psi^*$ -property of $S^0_ ho$

#### Proof.

(2) 
$$S^0_{\rho} \sharp S^0_{\rho} \subseteq S^0_{\rho}$$
 (closedness under  $\sharp$ )

(a) 
$$S^0_{
ho} \cap \mathfrak{B}^{(-1)_{\sharp}} = \left(S^0_{
ho}\right)^{(-1)_{\sharp}}$$
 (corollary of Bony criterion)

#### Anistropic Hörmander symbol classes

Definition 
$$(S^m_{\rho}(\mathcal{A}))$$
  
 $S^m_{\rho}(\mathcal{A}) := \left\{ f \in S^m_{\rho} \mid \forall a, a \in \mathbb{N}^d_0, \xi \in \mathbb{R}^{d^*} x \mapsto \partial_x^a \partial_{\xi}^a f(x, \xi) \in \mathcal{A} \right\}$ 

 $\Psi^*$ -property of  $S^0_
ho(\mathcal{A})$ 

## Theorem (L.-Măntoiu-Richard (2010)) $S^0_{\rho}(\mathcal{A}) \hookrightarrow \mathfrak{B} \text{ is a } \Psi^*\text{-algebra.}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

$$\Psi^*$$
-property of  $S^0_{\rho}(\mathcal{A})$ 

#### Proof.

- $\mathfrak{Op}: S^0_{\rho}(\mathcal{A}) \hookrightarrow \mathcal{B}(L^2(\mathbb{R}^d)) \text{ continuous } (S^m_{\rho}(\mathcal{A}) \subseteq S^m_{\rho})$
- 2  $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$  (L.-Măntoiu-Richard (2010), easy)

$$\Psi^*$$
-property of  $S^0_{\rho}(\mathcal{A})$ 

#### Proof.

- $\mathfrak{Op}: S^0_{\rho}(\mathcal{A}) \hookrightarrow \mathcal{B}(L^2(\mathbb{R}^d)) \text{ continuous } (S^m_{\rho}(\mathcal{A}) \subseteq S^m_{\rho})$
- (2)  $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$  (L.-Măntoiu-Richard (2010), easy)

(2)  $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$  (L.-Măntoiu-Richard (2010), easy)

Proof.

C\*-algebras

Connection between the two points of view

 $\Psi^*$ -property of  $S^0_o(\mathcal{A})$ 

Proving spectral invariance is not necessary:

Theorem (Lauter (1998)) Let  $\Psi \hookrightarrow \mathfrak{B}$  be a  $\Psi^*$ -algebra and  $\Psi' \subset \Psi$  a closed unital \*-subalgebra. Then  $\Psi' \hookrightarrow \mathfrak{B}$  endowed with the restricted topology  $\tau_{\Psi}|_{\Psi'}$  is also a  $\Psi^*$ -algebra.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

$$\Psi^*$$
-property of  $S^0_{\rho}(\mathcal{A})$ 

#### Proof.

- (2)  $S^0_{\rho}(\mathcal{A}) \sharp S^0_{\rho}(\mathcal{A}) \subseteq S^0_{\rho}(\mathcal{A})$  (L.-Măntoiu-Richard (2010), easy)
- 3 follows immediately from  $\Psi^*\text{-property}$  of  $S^0_\rho$  and Theorem by Lauter

# What have we gained?

< □ ト < @ ト < E ト < E ト E のへで</p>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Determining the essential spectrum of a $\Psi$ DO

#### $\Psi$ DO $H = \mathfrak{Op}(h)$ associated to the function h with certain properties



<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 の ()</p>

#### Determining the essential spectrum of a $\Psi$ DO

Essential spectrum of an operator  $H = H^* \in \mathcal{B}(\mathcal{H}) \rightsquigarrow Calkin-Algebra$  $\mathcal{C}(\mathcal{H}) := \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ 



< □ ト < @ ト < E ト < E ト E のへで</p>

#### Determining the essential spectrum of a $\Psi$ DO

#### What is $[\mathfrak{Op}(h)]_{\mathcal{K}(\mathcal{H})} \in \mathcal{C}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ ?



# How do you combine both points of view?

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の � @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Determining the essential spectrum of a $\Psi$ DO

(1) Let *h* be an anisotropic Hörmander symbol, e. g.  $S_{\rho}^{0}(\mathcal{A})$ .



イロト 不得 トイヨト イヨト

= 900

#### Determining the essential spectrum of a $\Psi$ DO

(2) Identification of  $S^0_{\rho}(\mathcal{A})$  with a subalgebra of  $\mathfrak{C}_{\mathcal{A}} \subset \mathfrak{B}$ .



#### Determining the essential spectrum of a $\Psi$ DO

#### 3 Analysis of the quotient algebra $\mathcal{A}/\mathcal{C}_0(\mathbb{R}^d) \cong \mathcal{C}_0(\mathcal{S}_{\mathcal{A}} \setminus \mathbb{R}^d) \cong \bigcup_{j \in \mathcal{I}} \mathcal{C}(\mathcal{Q}_{\infty,j})$



#### Determining the essential spectrum of a $\Psi$ DO

#### 





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Determining the essential spectrum of a $\Psi$ DO

$$I Morphism \mathfrak{C}_{\mathcal{A}} \ni h \mapsto h_{\infty,j} \in \mathfrak{C}_{\mathcal{C}(\mathcal{Q}_{\infty,j})}$$



▲□▶▲舂▶▲≧▶▲≧▶ 差 のへで

イロト 不得 トイヨト イヨト

E nar

#### Determining the essential spectrum of a $\Psi$ DO

6 The  $h_{\infty,j}$  are again functions on  $\mathbb{R}^d \times \mathbb{R}^{d^*} \rightsquigarrow$  analysis of the spectra of the  $\mathfrak{Op}(h_{\infty,j})$ .



#### Concrete result

#### Theorem (L., Măntoiu, Richard (2010))

Suppose the components of *B* are of class  $\mathcal{A}^{\infty}$ , m > 0,  $\rho \in [0, 1]$  and  $h \in S_{\rho}^{m}(\mathcal{A})$  be elliptic. Then

$$\sigma_{\mathrm{ess}}(\mathfrak{O}\mathfrak{p}^{A}(h)) = \bigcup_{j \in \mathcal{I}} \sigma(\mathfrak{O}\mathfrak{p}^{A_{\infty,j}}(h_{\infty,j}))$$

where  $\bigcup_{j \in \mathcal{I}} \mathcal{Q}_{\infty,j}$  is a covering of the points at infinity  $\Omega_{\mathcal{A}} \setminus \iota(\mathbb{R}^d)$ .

#### Further results

#### (1) Inclusion of magnetic fields *B* with components in $\mathcal{A}^{\infty}$

- Asymtptotic expansions of # are compatible with anisotropic Hörmander classes.
- 3 Extension of more general anisotropy algebras  $\mathcal{A} = \mathcal{C}(\Omega)$  are available.

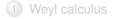
#### Further results

- (1) Inclusion of magnetic fields *B* with components in  $\mathcal{A}^{\infty}$
- Asymtptotic expansions of # are compatible with anisotropic Hörmander classes.
- (3) Extension of more general anisotropy algebras  $\mathcal{A} = \mathcal{C}(\Omega)$  are available.

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 の ()</p>

#### Further results

- 1 Inclusion of magnetic fields *B* with components in  $\mathcal{A}^{\infty}$
- Asymtptotic expansions of # are compatible with anisotropic Hörmander classes.
- (3) Extension of more general anisotropy algebras  $\mathcal{A} = \mathcal{C}(\Omega)$  are available.





3 Connection between the two points of view



▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Take-away message

# (1) The notion of $\Psi^*$ -algebras mediates between analytic and algebraic point of view.

- ② Allows applications of algebraic tools to problems from  $M \cap \Phi$ .
- Algebraic point of view sometimes simplifies arguments involving pseudodifferential calculus.

#### Take-away message

- 1 The notion of  $\Psi^*$ -algebras mediates between analytic and algebraic point of view.
- ② Allows applications of algebraic tools to problems from  $M \cap \Phi$ .
- 3 Algebraic point of view sometimes simplifies arguments involving pseudodifferential calculus.

#### Take-away message

- 1 The notion of  $\Psi^*$ -algebras mediates between analytic and algebraic point of view.
- ② Allows applications of algebraic tools to problems from  $M \cap \Phi$ .
- 3 Algebraic point of view sometimes simplifies arguments involving pseudodifferential calculus.

#### Referenzen

- Spectral and Propagation Results for Magnetic Schroedinger Operators; a C\*-Algebraic Framework, M.Măntoiu, R. Purice, S. Richard, Journal of Functional Analysis, Vol. 250, Issue 1 (2007)
- Commutator Criteria for Magnetic Pseudodifferential Operators, V. Iftimie, M. Măntoiu, R. Purice, Communications in Partial Differential Equations, Vol. 35, No. 6 (2010), 1058–1094
- Twisted Crossed Products and Magnetic Pseudodifferential Operators, M. Măntoiu, R. Purice, S. Richard, arxiv:math-ph/0403016, Journal of Functional Analysis, Vol. 250, No. 1 (2007), 42–67

#### Referenzen

- An Operator Theoretical Approach to Enveloping Ψ\*- and C\*-Algebras of Melrose Algebras of Totally Characteristic Pseudodifferential Operators, R. Lauter, Mathematische Nachrichten, Vol. 196, pp. 141-166 (1998)
- Magnetic pseudodifferential operators with coefficients in C\*-algebras, Publ. RIMS Kyoto Univ., Volume 46 (2010), 755–788
- Semiclassical Dynamics and Magnetic Weyl Calculus, PhD thesis