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1Chapter 1

Introduction

At the end of the 19th up until the late 1920s three (!) revolutionary physical theories were
developed: statistical mechanics which explains the physics of many particles in equilib-
rium, general relativitywhich governs the physics on the large scale and quantummechanics
which describes the physics on the microscopic scale. Einstein made seminal contribu-
tions to all three: he put statistical mechanics on firm grounds with his articles on Brown-
ian motion, he invented general relativity and explained the photo electric effect. For the
latter, the contribution to quantum mechanics, he received the Nobel Prize in 1921.

The aim of this course is to give an introduction to quantum mechanics with a focus
on the underlying mathematical structures. That means we will dedicate one or more
chapters to systematically study the notion of states, what observables are and the dynamical
equations. Each of these chapters gives insight into some interesting aspects relevant to
applications, e. g. we present some standard techniques to prove existence or absence of
bound states in quantum systems as part of the discussion of observables.

This course is located at the intersection ofmathematics and physics, so one of the tasks
is to establish a dictionary between the mathematics and physics community. Both com-
munities have benefitted from each other tremendously over the course of history: physi-
cists would often generate new problems for mathematicians while mathematicians build
and refine new tools to analyze problems from physics.

However, the course is not meant to be a comprehensive introduction to any of these
fields in particular, but is intended to give an overview, elucidate some of the connections
and whet the appetite for more.

Literature We make no attempts at completeness, and there are many very interesting
aspects of quantum theory or mathematics which are not covered. For readers who are
interested in the subject, a good standard physics textbook on the subject is [Sak94] while
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1 Introduction

the mathematics of quantummechanics is covered in more depth in [Tes09; GS11] and the
four-book Reed-Simon series [RS72; RS75; RS79; RS78]. In each of the chapters we will give
additional references specific to the topic. However, many topics will not be discussed at
all even though they are fascinating. One such omission is quantum electrodynamics, the
theory of quantized light coupled to matter (cf. [Spo04, Part II]).
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2Chapter 2

Paradigms of quantummechanics

The explanation of the photoelectric effect through light quanta is the name sake for quan-
tum mechanics. Quantization here refers to the idea that energy stored in light comes
in “chunks” known as photons, and that the energy per photon depends only on the fre-
quency. This is quite a departure from the classical theory of light through Maxwell’s
equations (cf. [Jac98]).

2.1 Two archetypical quantum systems

The simplest bona fide quantum system is that of a quantum spin, and it can be used to
give an effective description of the Stern-Gerlach experimentwhere a beam of neutral atoms
with magnetic moment g is sent through a magnet with inhomogeneous magnetic field
B = (B1, B2, B3). It was observed experimentally that the beam splits in two rather
than fan out with continuous distribution. Hence, the system behaves as if only two spin
configurations, spin-up ↑ and spin-down ↓, are realized. A simplified (effective) model
neglects the translational degree of freedom and focusses only on the internal spin degree
of freedom. Then the energy observable, the hamiltonian, is the matrix

H = gB · S

which involves the spin operator Sj := ℏ
2σj defined in terms of Planck’s constant ℏ and

the three Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ3 =

(
+1 0

0 −1

)
,

and the magnetic moment g and the magnetic fieldB. The prefactor of the Pauli matrices
are real, and thusH = H∗ is a hermitian matrix.

3



2 Paradigms of quantum mechanics

For instance, assume B = (0, 0, b) points in the x3-direction. Then spin-up and spin-
down (seen from the x3-direction) are the eigenvectors of

H =

(
+ℏgb

2 0

0 −ℏgb
2

)
,

i. e. ψ↑ = (1, 0) and ψ↓ = (0, 1). The dynamical equation is the Schrödinger equation

i ℏ ∂

∂t
ψ(t) = Hψ(t), ψ(0) = ψ0 ∈ H. (2.1.1)

The vector spaceH = C2 becomes a Hilbert space if we equip it with the scalar product

⟨ψ,φ⟩C2 :=
∑
j=1,2

ψj φj .

Moreover, the hermitian matrixH can always be diagonalized (cf. exercises 1–2), and the
eigenvectors to distinct eigenvalues are orthogonal. The complex-valued wave function ψ
encapsulates probabilities: for any ψ ∈ C2 normalized to 1 = ∥ψ∥C2 , the probability to
find the particle in the spin-up configuration is

P(S3 =↑) = |ψ1|2 =
∣∣⟨ψ↑, ψ⟩

∣∣2
since ψ↑ = (1, 0). The above notation comes from probability theory and means “the
probability of finding the random observable spin S3 in the spin-↑ configuration+ℏ

2 ”.
The second exemplary quantum system describes a non-relativistic particle of mass m
subjected to an electric field generated by the potential V . The classical Hamilton function
h(q, p) = 1

2mp
2 + V (q) is then “quantized” to

h
(
x̂,−iℏ∇x

)
= H =

1

2m

(
−iℏ∇x

)2
+ V (x̂)

by replacing momentum p by the momentum operator P = −iℏ∇x and position q by the
multiplication operator Q = x̂.1 The hamiltonian is now an operator on the Hilbert space
L2(Rd) whose action on suitable vectors ψ is

(Hψ)(x) = − ℏ2

2m
(∆xψ)(x) + V (x)ψ(x).

Quantum particles simultaneously have wave and particle character: the Schrödinger
1To find a consistent quantization procedure is highly non-trivial. One possibility is to use Weyl quantization
[Wey27; Wig32; Moy49; Fol89; Lei10]. Such a quantization procedure also yields a formulation of a semiclas-
sical limit, and the names for various operators (e. g. position, momentum and angular momentum) are then
justified via a semiclassical limit. For instance, the momentum operator is−iℏ∇x, because in the semiclas-
sical limit it plays the role of the classical momentum observable p (cf. e. g. [Lei10, Theorem 1.0.1] and [Lei10,
Theorem 7.0.1]).
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2.1 Two archetypical quantum systems

j / Bullets pass through a double
slit.

k / A water wave passes through
a double slit.

3.3 Wave-Particle Duality

i / Wave interference patterns
photographed by Prof. Lyman
Page with a digital camera. Laser
light with a single well-defined
wavelength passed through a
series of absorbers to cut down
its intensity, then through a set of
slits to produce interference, and
finally into a digital camera chip.
(A triple slit was actually used,
but for conceptual simplicity we
discuss the results in the main
text as if it was a double slit.) In
panel 2 the intensity has been
reduced relative to 1, and even
more so for panel 3.

How can light be both a particle and a wave? We are now
ready to resolve this seeming contradiction. Often in science when
something seems paradoxical, it’s because we either don’t define our
terms carefully, or don’t test our ideas against any specific real-world
situation. Let’s define particles and waves as follows:

• Waves exhibit superposition, and specifically interference phe-
nomena.

• Particles can only exist in whole numbers, not fractions

As a real-world check on our philosophizing, there is one partic-
ular experiment that works perfectly. We set up a double-slit inter-
ference experiment that we know will produce a di↵raction pattern
if light is an honest-to-goodness wave, but we detect the light with
a detector that is capable of sensing individual photons, e.g., a dig-
ital camera. To make it possible to pick out individual dots from
individual photons, we must use filters to cut down the intensity of
the light to a very low level, just as in the photos by Prof. Page in
section 3.1. The whole thing is sealed inside a light-tight box. The
results are shown in figure i. (In fact, the similar figures in section
3.1 are simply cutouts from these figures.)

Neither the pure wave theory nor the pure particle theory can
explain the results. If light was only a particle and not a wave, there
would be no interference e↵ect. The result of the experiment would
be like firing a hail of bullets through a double slit, j. Only two
spots directly behind the slits would be hit.

If, on the other hand, light was only a wave and not a particle,
we would get the same kind of di↵raction pattern that would happen

Section 3.3 Wave-Particle Duality 75

Figure 2.1.1: Images of a low-intensity triple slit experiment with photons (taken from
[Cro08]).

equation (2.1.1) is structurally very similar to a wave equation. The physical constant ℏ
relates the energy of a particle with the associated wave length and has units [energy ·
time]. The particle aspects come into play when one measures outcomes of experiments:
consider a version of the Stern-Gerlach experimentwhere the intensity of the atomic beam
is so low that single atoms pass through the magnet. If the modulus square of the wave
function |ψ(t, x)|2 were to describe the intensity of a matter wave, then one expects that
the two peaks build up slowly, but simultaneously. In actuality, one registers single impacts
of atoms and only if one waits long enough, two peaks emerge (similar to what one sees
in a low-intensity triple slit experiment in Figure 2.1.1). This is akin to tossing a coin: one
cannot see the probabilistic nature in a few coin tosses, let alone a single one. Probabilities
emerge only after repeating the experiment often enough. These experiments show that
|ψ(t, x)|2 is to be interpreted as a probability distribution, but more on that below.

Pure states are described by wave functions, i. e. complex-valued, square integrable
functions. Put more precisely, we are considering L2(Rd)made up of equivalence classes
of functions with scalar product

⟨φ,ψ⟩ =
∫
Rd

dxφ(x)ψ(x)

and norm ∥ψ∥ :=
√

⟨ψ,ψ⟩. In physics text books, one usually encounters the bra-ket nota-
tion: here |ψ⟩ is a state and ⟨x|ψ⟩ stands for ψ(x). The scalar product of ϕ, ψ ∈ L2(Rd) is
denoted by ⟨ϕ|ψ⟩ and corresponds to ⟨ϕ, ψ⟩. Although bra-ket notation can be ambiguous,
it is sometimes useful and is in fact used in mathematics every once in a while.

The fact that L2(Rd) consists of equivalence classes of functions is only natural from a
physical perspective: if ψ1 ∼ ψ2 are in the same equivalence class (i. e. they differ on a
set of measure 0), then the associated probabilities coincide: Physically, |ψ(t, x)|2 is inter-
preted as the probability to measure a particle at time t in (an infinitesimally small box located

5



2 Paradigms of quantum mechanics

in) location x. If we are interested in the probability that we can measure a particle in a
region Λ ⊆ Rd, we have to integrate |ψ(t, x)|2 over Λ,

P(X(t) ∈ Λ) =

∫
Λ

dx |ψ(t, x)|2 . (2.1.2)

If we want to interpret |ψ|2 as probability density, then the wave function has to be normal-
ized, i. e.

∥ψ∥2 =

∫
Rd

dx |ψ(x)|2 = 1.

This point of view is called Born rule: |ψ|2 could either be a mass or charge density – or a
probability density. To settle this, physicists have performed the double slit experiment
with an electron source of low flux (cf. Figure 2.1.1). If |ψ|2 were a density, one would see
the whole interference pattern building up slowly. Instead, onemeasures “single impacts”
of electrons and the result is similar to the data obtained from experiments in statistics
(e. g. the Dalton board). Hence, we speak of particles.

2.2 The mathematical framework of quantummechanics

To identify the structures common to all physical theories, let us study quantummechan-
ics in the abstract. We have to identify the notions of states, observables and dynamical
equations in Schrödinger and Heisenberg picture. Here, Schrödinger and Heisenberg picture
refer two equivalent formulations of the dynamics where on the one hand one can evolve
states or on the other develop observables in time.

2.2.1 Quantum observables

Quantities that can be measured are represented by selfadjoint (hermitian in physics par-
lance) operators F on the Hilbert spaceH (typically L2(Rd)), i. e. special linear maps

F : D(F ) ⊆ H −→ H.

Here, D(F ) is the domain of the operator since typical observables are not defined for all
ψ ∈ H. This is not a mathematical subtlety with no physical content, quite the contrary: con-
sider the observable energy, typically given by

H =
1

2m
(−iℏ∇x)

2 + V (x̂),

6



2.2 The mathematical framework of quantum mechanics

then states in the domain

D(H) :=
{
ψ ∈ L2(Rd)

∣∣ Hψ ∈ L2(Rd)
}
⊆ L2(Rd)

are those of finite energy. For all ψ in the domain of the hamiltonianD(H) ⊆ L2(Rd), the
energy expectation value ⟨

ψ,Hψ
⟩
<∞

is bounded. Well-defined observables have domains that are dense inH. Similarly, states
in the domainD(x̂j) of the jth component of the position operator are those that are “lo-
calized in a finite region” in the sense of expectation values. Boundary conditionsmay also
enter the definition of the domain: as seen in the example of the momentum operator on
[0, 1], different boundary conditions yield different momentum operators (see Chapter 4.3
for details).

The set of possible outcomes ofmeasurements ofH is its spectrum σ(H), namely the set
of complex numbers z so thatH−z is not invertible (cf. Definition 4.1.6). These can include
eigenvalues, but also other types of spectra are possible if H is defined on an infinite-
dimensional Hilbert space.

The energy observable is just a specific example, but it contains all the ingredientswhich
enter the definition of a quantum observable:

Definition 2.2.1 (Observable) A quantum observable F is a densely defined, selfadjoint oper-
ator on a Hilbert space. The spectrum σ(F ) (cf. Definition 4.1.6) is the set of outcomes of measure-
ments.

Physically, results of measurements are real which is reflected in the selfadjointness of
operators (cf. Chapter 5),H∗ = H , and one can show that spectra of selfadjoint operators
are necessarily subsets of the reals (cf. Theorem 5.2.11). Typically one “guesses” quantum
observables from classical observables: in d = 3, the angularmomentum operator is given
by

L = x̂× (−iℏ∇x).

In the simplest case, one uses Dirac’s recipe (replacex by x̂ and p by−iℏ∇x) on the classical
observable angular momentumL(x, p) = x×p. In other words,many quantum observables
are obtained as quantizations of classical observables: examples are position, momentum and
energy. Moreover, the interpretation of, say, L = x̂ × (−iℏ∇x) as angular momentum is
taken from classical mechanics.

In the definition of the domain, wehave already used the definition of expectation value:
the expectation value of an observable F with respect to a state ψ (which we assume to be
normalized, ∥ψ∥ = 1) is given by

Eψ(F ) :=
⟨
ψ, Fψ

⟩
. (2.2.1)

7



2 Paradigms of quantum mechanics

The expectation value is finite if the state ψ is in the domain D(F ). The Born rule of
quantum mechanics tells us that if we repeat an experiment measuring the observable F
many times for a particle that is prepared in the state ψ each time, the statistical average
calculated according to the relative frequencies converges to the expectation valueEψ(F ).

Hence, quantum observables, selfadjoint operators on Hilbert spaces, are bookkeeping
devices that have two components:

(i) a set of possible outcomes of measurements, the spectrum σ(F ), and

(ii) statistics contained in the spectral measure (cf. Chapter 6), i. e. how often a possible
outcome occurs.

Theuncertaintyprinciple One of the fundamentals of quantummechanics isHeisenberg’s
uncertainty principle, namely that one cannot arbitrarily localize wave functions in position
andmomentum space simultaneously. This is a particular case of amuchmore general fact
about non-commuting (quantum) observables:

Theorem 2.2.2 (Heisenberg’s uncertainty principle) LetA,B : H −→ H be twobounded
selfadjoint operators on the Hilbert spaceH. And we define the variance

σψ(A)
2 := Eψ

((
A− Eψ(A)

)2)
with respect to ψ ∈ H with ∥ψ∥ = 1. Then Heisenberg’s uncertainty relation holds:

1
2

∣∣Eψ(i[A,B]
)∣∣ ≤ σψ(A)σψ(B) (2.2.2)

Proof Let ψ ∈ H be an arbitrary normalized vector. Due to the selfadjointness of A and
B, the expectation values are real,

Eψ(A) =
⟨
ψ,Aψ

⟩
=
⟨
A∗ψ,ψ

⟩
=
⟨
Aψ,ψ

⟩
=
⟨
ψ,Aψ

⟩
= Eψ(A).

In general A and B will not have mean 0, but

Ã := A− Eψ(A)

and B̃ := B−Eψ(B) do. Hence, we can express the variance ofA as an expectation value:

σψ(A)
2 = Eψ

((
A− Eψ(A)

)2)
= Eψ

(
Ã2
)

Moreover, the commutator of Ã and B̃ coincides with that of A and B,[
Ã, B̃

]
=
[
A,B

]
−
[
Eψ(A), B

]
−
[
A,Eψ(B)

]
+
[
Eψ(A),Eψ(B)

]
= [A,B].

8



2.2 The mathematical framework of quantum mechanics

Then expressing the left-hand side of (2.2.2) in terms of the shifted observables Ã and B̃,
and using the Cauchy-Schwarz inequality as well as the selfadjointness yields Heisenberg’s
inequality,∣∣Eψ(i[A,B]

)∣∣ = ∣∣Eψ([Ã, B̃]
)∣∣ = ∣∣∣⟨ψ, ÃB̃ψ⟩− ⟨ψ, B̃Ãψ⟩∣∣∣

≤
∣∣⟨Ãψ, B̃ψ⟩∣∣+ ∣∣⟨B̃ψ, Ãψ⟩∣∣ ≤ 2

∥∥Ãψ∥∥ ∥∥B̃ψ∥∥
= 2

√⟨
Ãψ, Ãψ

⟩√⟨
B̃ψ, B̃ψ

⟩
= 2

√⟨
ψ, Ã2ψ

⟩√⟨
ψ, B̃2ψ

⟩
= 2σψ(A)σψ(B). □

Often Heisenberg’s inequality is just stated for the position observable xj (multiplication by
xj) and the momentum observable −iℏ∂xk

: even though these are unbounded selfadjoint
operators (cf. the discussion in Chapters 4.3 and 5), this introduces only technical compli-
cations on Rd. For instance, the above arguments hold verbatim if we require in addition
ψ ∈ C∞

c (Rd) ⊂ L2(Rd), and vectors of this type lie dense in L2(Rd). Then the left-hand
side of Heisenberg’s inequality reduces to ℏ/2 because[

xj , (−iℏ∂xk
)
]
ψ = xj (−iℏ∂xk

ψ)− (−iℏ)∂xk

(
xj ψ

)
= iℏ δkj ψ

and ψ is assumed to have norm 1,

σψ(xj)σψ
(
−iℏ∂xk

)
≥ ℏ

2 . (2.2.3)

Skipping over some of the details (there are technical difficulties defining the commutator
of two unbounded operators), we see that one cannot do better than ℏ/2 but there are cases
when the left-hand side of (2.2.3) is not even finite.

The physical interpretation of (2.2.2) is that one cannot measure non-commuting ob-
servables simultaneously with arbitrary precision. In his original book on quantum me-
chanics [Hei30], Heisenberg spends a lot of care to explain why in specific experiments
position and momentum along the same direction cannot be measured simultaneously
with arbitrary precision, i. e. why increasing the resolution of the position measurement
increases the error of the momentum measurement and vice versa.

2.2.2 Quantum states

Pure states are wave functionsψ ∈ Hwith ∥ψ∥ = 1, or rather, normalized wave functions
up to a total phase: just like one can measure only energy differences, only phase shifts are
accessible to measurements. Hence, one can think of pure states as orthogonal projections

Pψ := |ψ⟩⟨ψ| = ⟨ψ, ·⟩ψ.

9



2 Paradigms of quantum mechanics

Here, one can see the elegance of bra-ket notation vs. the notation that is “mathemati-
cally proper”. A generalization of this concept are density operators ρ (often called density
matrices with obvious abuse of terminology): density matrices are defined via the trace. If
ρ is a suitable linear operator and {φn}n∈N any orthonormal basis ofH, then we define

Tr ρ :=
∑
n∈N

⟨φn, ρφn⟩.

One can easily check that this definition is independent of the choice of basis (see home-
work problem 3). Clearly, Pψ has trace 1 and it is also positive in the sense that⟨

φ,Pψφ
⟩
≥ 0

for all φ ∈ H. This is also the good definition for quantum states:
Definition 2.2.3 (Quantum state) A quantum state (or density operator/matrix) ρ = ρ∗ is a
non-negative selfadjoint operator of trace 1, i. e.⟨

ψ, ρψ
⟩
≥ 0, ∀ψ ∈ H,

Tr ρ = 1.

If ρ is also an orthogonal projection, i. e. ρ2 = ρ, it is a pure state.2 Otherwise ρ is a mixed state.
Density operators are projections if and only if they are rank-1 projections, i. e. ρ = |ψ⟩⟨ψ|
for some ψ ∈ H of norm 1 (see problem 3).
Example Let ψj ∈ H be two wave functions normalized to 1. Then for any 0 < α < 1

ρ = αPψ1 + (1− α)Pψ2 = α|ψ1⟩⟨ψ1|+ (1− α)|ψ2⟩⟨ψ2|

is a mixed state as

ρ2 = α2|ψ1⟩⟨ψ1|+ (1− α)2|ψ2⟩⟨ψ2|+
+ α(1− α)

(
|ψ1⟩⟨ψ1||ψ2⟩⟨ψ2|+ |ψ2⟩⟨ψ2||ψ1⟩⟨ψ1|

)
̸= ρ.

Even if ψ1 and ψ2 are orthogonal to each other, since α2 ̸= α and similarly (1 − α)2 ̸=
(1 − α), ρ cannot be a projection. Nevertheless, it is a state if ψ1 ⊥ ψ2 since Tr ρ =

α+ (1− α) = 1. Keep in mind that ρ does not project on αψ1 + (1− α)ψ2!
Also the expectation value of an observable F with respect to a state ρ is defined in terms
of the trace,

Eρ(F ) := Tr (ρF ),

which for pure states ρ = |ψ⟩⟨ψ| reduces to
⟨
ψ,Fψ

⟩
.

2Note that the condition Tr ρ = 1 implies that ρ is a bounded operator while the positivity implies the selfad-
jointness. Hence, if ρ is a projection, i. e. ρ2 = ρ, it is automatically also an orthogonal projection.
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2.2 The mathematical framework of quantum mechanics

2.2.3 Time evolution

The time evolution is determined through the Schrödinger equation,

iℏ ∂
∂t
ψ(t) = Hψ(t), ψ(t) ∈ H, ψ(0) = ψ0, ∥ψ0∥ = 1. (2.2.4)

Alternatively, one can write ψ(t) = U(t)ψ0 with U(0) = idH. Then, we have

iℏ ∂
∂t
U(t) = HU(t), U(0) = idH.

IfH were a number, one would immediately use the ansatz

U(t) = e−i tℏH (2.2.5)

as solution to the Schrödinger equation. IfH is a selfadjoint operator, this is still true, but
takes a lot of work to justify (2.2.5) rigorously if the domain ofH is not all ofH (the case
of unbounded operators, the generic case). We will do that in Chapter 6.

As has already been mentioned, we can evolve either states or observables in time and
one speaks of the Schrödinger or Heisenberg picture, respectively. In the Schrödinger
picture, pure states evolve according to

ψ(t) = U(t)ψ0

while observables remain fixed. Conversely, in the Heisenberg picture, states are kept
fixed in time and observables evolve according to

F (t) := U(t)∗ F U(t) = e+i tℏHF e−i tℏH . (2.2.6)

Heisenberg observables satisfy Heisenberg’s equation of motion,

d
dtF (t) =

i
ℏ
[
H,F (t)

]
, F (0) = F, (2.2.7)

which can be checked by plugging in the definition of F (t) and elementary formalmanip-
ulations. It is no coincidence that this equation looks structurally similar to the analogous
equation in classical mechanics,

d
dtf(t) =

{
h, f(t)

}
, f(0) = f,

where {f, g} = ∇pf · ∇qg −∇qf · ∇pg is the Poisson bracket.
Density operators have to be evolved backwards in time,meaning thatρ(t) = U(t) ρU(t)∗

satisfies
d
dtρ(t) = − i

ℏ
[
H, ρ(t)

]
, ρ(0) = ρ.

11



2 Paradigms of quantum mechanics

The equivalence of Schrödinger and Heisenberg picture is seen by comparing expectation
values: the cyclicity of the trace, Tr (AB) = Tr (BA), yields

Eρ(t)(F ) = Tr
(
ρ(t)F

)
= Tr

(
U(t) ρU(t)∗ F

)
= Tr

(
ρU(t)∗ F U(t)

)
= Tr

(
ρF (t)

)
= Eρ

(
F (t)

)
.

As a last point, we mention the conservation of probability: if ψ(t) solves the Schrödinger
equation for some selfadjointH , then we can check at least formally that the time evolu-
tion is unitary and thus preserves probability,

d
dt
∥∥ψ(t)∥∥2 =

d
dt
⟨
ψ(t), ψ(t)

⟩
=
⟨

1
iℏHψ(t), ψ(t)

⟩
+
⟨
ψ(t), 1

iℏHψ(t)
⟩

=
i
ℏ

(⟨
ψ(t),H∗ψ(t)

⟩
−
⟨
ψ(t), Hψ(t)

⟩)
=

i
ℏ
⟨
ψ(t), (H∗ −H)ψ(t)

⟩
= 0.

We see that the conditionH∗ = H is the key here: selfadjoint operators generate unitary
evolution groups. As a matter of fact, there are cases when one wants to violate conserva-
tion of proability: one has to introduce so-called optical potentials which simulate particle
creation and annihilation.

The time evolution e−i tℏH is not the only unitary group of interest, other commonly
used examples are translations in position or momentum which are generated by the mo-
mentum and position operator, respectively (the order is reversed!), as well as rotations
which are generated by the angular momentum operators.2014.09.12

2.2.4 Comparison to classical mechanics onRd

We have juxtaposed the framework of classical and quantum mechanics in Table 2.2.1,
and we can elaborate on the differences and similarities of both theories. For instance,
observables form an algebra (a vector space with multiplication): in classical mechanics,
we use the pointwise product of functions,

· : C∞(R2n)× C∞(R2n) −→ C∞(R2n), (f, g) 7→ f · g
(f · g)(x, p) := f(x, p) g(x, p),

which is obviously commutative. We also admit complex-valued functions and add com-
plex conjugation as involution (i. e. f∗∗ = f ). Lastly, we add the Poisson bracket to make
C∞(R2n) into a so-called Poisson algebra. As we have seen, the notion of Poisson bracket
gives rise to dynamics as soon as we choose an energy function (hamiltonian).

12



2.2 The mathematical framework of quantum mechanics

Classical Quantum
Observables f ∈ C∞(R2n,R) selfadjoint operators acting on

Hilbert spaceH
Building block
observables

position x and momentum p position x̂ and momentum p̂

operators
Possible results of
measurements

im(f) σ(F )

States probability measures µ on
phase space R2n

density operators ρ onH

Pure states points in phase space R2n wave functions ψ ∈ H
Generator of evolution hamiltonian function

H : R2n −→ R
hamiltonian operatorH

Infinitesimal time
evolution equation

d
dtf(t) = {H, f(t)} d

dtF (t) = i
ℏ [H,F (t)]

Integrated time
evolution

hamiltonian flow ϕt e+i tℏH □ e−i tℏH

Table 2.2.1: Comparison of classical and quantum framework

On the quantum side, bounded operators (see Chapter 4.1) form an algebra. This algebra
is non-commutative, i. e.

F ·G ̸= G · F.

Exactly this is what makes quantum mechanics different. Taking adjoints is the involution
here and the commutator plays the role of the Poisson bracket. Again, once a hamilto-
nian (operator) is chosen, the dynamics of Heisenberg observables F (t) is determined by
the commutator of the F (t) with the hamiltonian H . If an operator commutes with the
hamiltonian, it is a constant of motion. This is in analogy with classical mechanics where an
observable is a constant of motion if and only if its Poisson bracket with the hamiltonian
(function) vanishes.

2.2.5 Representations

Linear algebra distinguishes abstract linear mapsH : X −→ Y and their representations
asmatrices using a basis in initial and target space: any pair of bases {xn}Nn=1 and {yk}Kk=1

of X ∼= CN and Y ∼= CK induces a matrix representation h = (hnk) ∈ MatC(N,K) ofH
(called basis representation) via

Hxn =

K∑
k=1

hnk yk.

13



2 Paradigms of quantum mechanics

The basis now identifies coordinates on the vector spaces: x =
∑N
n=1 ξn xn ∈ X has the

coordinate ξ = (ξ1, . . . , ξn) ∈ CN , and similarly y =
∑K
k=1 ηk yk ∈ Y is expressed in

terms of the coordinate η ∈ CK . Using these coordinates, the equationHx = y becomes
the matrix equation hξ = η.

A change in basis can now be described in the same way: if {x′n}Nj=1 and {y′k}Kk=1 are
two other orthonormal bases, then the coordinate representations of the maps

Uxx′ : xn 7→ x′n

Uyy′ : yk 7→ y′k

are unitary matrices uxx′ ∈ U(CN ) and uyy′ ∈ U(CK), and these matrices connect the
coordinate representations ofH with respect to {xn}Nn=1, {yk}Kk=1 and {x′n}Nn=1, {y′k}Kk=1,

h′ = uyy′ hu
−1
xx′ .

u−1
xx′ maps ξ′ onto ξ, hmaps ξ onto η and uyy′ maps η onto η′.
Similarly, we can represent operators on infinite-dimensional Hilbert spaces such as

L2(Rd) in much the same way: for instance, consider the free Schrödinger operatorH =

−1
2∆x : D ⊂ L2(Rdx) −→ L2(Rdx). Then the Fourier transform F : L2(Rdx) −→ L2(Rdξ)

is such a unitary which changes from one “coordinate system” to another, and the free
Schrödinger operator in this new representation becomes a simple multiplication opera-
tor

HF := F H F−1 = 1
2 ξ̂

2.

Because initial and target space are one and the same, F appears twice.
Another unitary is a rescaling which can be seen as a change of units: for λ > 0 one

defines

(Uλφ)(x) := λ
d/2 φ(λx)

where the scaling factor λ relates the two scales. Similarly, other linear changes of the
underlying configuration space Rd (e. g. rotations) induce a unitary operator on L2(Rd).

One can exploit this freedom of representation to simplify a problem: Just like choosing
spherical coordinates for a problem with spherical symmetry, we can work in a repre-
sentation which simplifies the problem. For instance, the Fourier transform exploits the
translational symmetry of the free Schrödinger operator (H commutes with translations).

Another examplewould be to use an eigenbasis: assumeH = H∗ ≥ 0 as a set of eigenvec-
tors {ψn}n∈N which span all ofH, i. e. the ψn are linearly independent andHψn = En ψn
where En ∈ R is the eigenvalue. The eigenvalues are enumerated by magnitude and re-
peated according to theirmultiplicity, i. e.E1 ≤ E2 ≤ . . .. Just like in the case of hermitian

14



2.3 Magnetic fields

matrices, the eigenvectors to distinct eigenvalues of selfadjoint operators are trivial, and
hence, we can choose the {ψn}n∈N to be orthonormal. Then the suitable unitary is

U : H −→ ℓ2(N), ψ =
∞∑
n=1

ψ̂(n)ψn 7→ ψ̂ ∈ ℓ2(N)

where ψ̂ =
(
ψ̂(1), ψ̂(2), . . .

)
is the sequence of coefficients and ℓ2(N) is the prototypical

Hilbert space defined in Definition 3.1.2; moreover, the definition of orthonormal basis
(Definition 3.2.2) implies that ψ̂ is necessarily square summable.

In this representation,H can be seen as an “infinite diagonal matrix”

H =
∞∑
n=1

En Pψn 7→ HU = U H U−1 =

E1 0 · · · · · ·
0 E2 0 · · ·
... . . . . . .


where Pψφ := ⟨ψ,φ⟩ ψ are the rank-1 projections onto ψ. Put another way, HU acts on
ψ̂ ∈ ℓ2(N) as

HU ψ̂ =
(
E1 ψ̂(1), E2 ψ̂(2), . . .

)
.

The simple structure of this operator allows one to compute the unitary evolution group
explicitly in terms of the projections Pψn ,

e−i tℏH =
∞∑
n=1

e−i tℏEn Pψn .

Sadly, most Schrödinger operatorsH do not have a basis of eigenvectors.

2.3 Magnetic fields

Classically, there are two ways to include magnetic fields: either by minimal substitution
p 7→ p−A(x)which involves themagnetic vector potentialA or onemodifies the symplec-
tic form to include themagnetic fieldB = ∇x×A. Note that the physical observable is the
magnetic field rather than the vector potential, because there are many vector potentials
which represent the same magnetic field. For instance, if A is a vector potential to the
magnetic field B = ∇x × A, then also A′ = A + ∇xϕ is another vector potential to B,
because∇x ×∇xϕ = 0. The scalar function ϕ generates a gauge transformation.

In contrast, one always needs to choose a vector potential in quantum mechanics, and
the hamiltonian for a non-relativistic particle subjected to an external electromagnetic
field (E,B) =

(
−∇xV,∇x ×A

)
is obtained by minimal substitution as well,

HA =
(
−i∇x −A

)2
+ V. (2.3.1)
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2 Paradigms of quantum mechanics

What happens if we choose an equivalent gauge A′ = A+∇xϕ? It turns out thatHA and
HA+∇xϕ are unitarily equivalent operators, and the unitary which connects the two is e−iϕ,

e+iϕHA e−iϕ = HA+∇xϕ

Using the lingo of Chapter 2.2.5, e−iϕ is a unitary that connects two different representa-
tions. This has several very important ramifications. The spectrum σ(HA), for instance,
only depends on the magnetic field B = ∇x × A because unitarily equivalent operators
necessarily have the same spectrum. Moreover, the gauge freedom is essential to solv-
ing problems, because some gauges are nicer to work with than others. One such condition is
∇x ·A = 0, known as Coulomb gauge.

2.4 Bosons vs. fermions

The extension of single-particle quantummechanics tomulti-particle quantummechanics
is highly non-trivial. To simplify the presentation, let us focus on the case of two identical
particles moving in Rd. Two options are arise: either the compound wave function Ψ is
a function on Rd, i. e. it acts like a density, or it is a function of Rd × Rd where each set
of coordinates x = (x1, x2) is associated to one particle. It turns out that wave functions
depend on RNd whereN is the number of particles.

However, that is not all, there is an added complication: classically, we can label iden-
tical particles by tracking their trajectory. This is impossible in the quantum framework,
because the uncertainty principle forbids any such tracking procedure. Given that the
probability density

∣∣Ψ(x1, x2)
∣∣2 is a physical observable, the inability to distinguish par-

ticles implies ∣∣Ψ(x1, x2)
∣∣2 =

∣∣Ψ(x2, x1)
∣∣2,

and hence, Ψ(x1, x2) = e+iθ Ψ(x2, x1). However, seeing as exchanging variables twice
must give the same wave function, the only two admissible phase factors are e+iθ = ±1.

Particles for which Ψ(x1, x2) = Ψ(x2, x1) holds are bosons (integer spin) while those
for which Ψ(x1, x2) = −Ψ(x2, x1) are fermions (half-integer spin). Examples are bosonic
photons and fermionic electrons. This innocent looking fact has very, very strong con-
sequences on the physical and mathematical properties of quantum systems. The most
immediate implication is Pauli’s exclusion principle for fermions,

Ψ(x, x) = 0,

a fact that is colloquially summarized by saying that bosons are social (because they like
to bunch together) while sociophobic fermions tend to avoid one another.

16



2.4 Bosons vs. fermions

To make this more rigorous, let us consider the splitting

L2(Rd × Rd) ∼= L2
s (Rd × Rd)⊕ L2

as(Rd × Rd)

into symmetric and antisymmetric part induced via f = fs + fas where

fs(x1, x2) :=
1
2

(
f(x1, x2) + f(x2, x1)

)
,

fas(x1, x2) :=
1
2

(
f(x1, x2)− f(x2, x1)

)
.

Then one can proceed and restrict the two-particle Schrödinger operator

H =
∑
j=1,2

(
−∆xj + V (xj)

)
to either the bosonic space L2

s (Rd ×Rd). The kinetic energy−
∑
j=1,2 ∆xj preserves the

(anti-)symmetry, e. g. in the antisymmetric (fermionic case) it defines a bounded linear
map

H : L2
as(Rd × Rd) ∩H2(Rd × Rd) −→ L2

as(Rd × Rd).
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3Chapter 3

Hilbert spaces

First, we take a closer mathematical look at the mathematical description of states. Stan-
dard courses on quantum mechanics often use Dirac’s “bra-ket” notation [Sak94, Chap-
ter 1.2] where states are “kets” |ψ⟩ that are elements of a complex (as opposed to real) Hilbert
space, and kets have a “dual” called “bras” ⟨ψ|. Many details such as the “dual correspon-
dence” |ψ⟩ ↔ ⟨ψ| between kets and bras is introduced in an ad-hoc manner. The ab-
breviation “bra(c)ket” ⟨ψ|φ⟩ comes from the fact that one encloses common expressions
(scalar products, expectation values) in angular brackets. Bra-ket notation can by system-
atically transliterated to Hilbert space notation that is more common in mathematics and
sometimes also used theoretical physics.

Hence, in order to elucidate the connection between bras and kets with Hilbert spaces,
we will introduce Hilbert spaces in this chapter and study some of their basic properties.
Note that this is not intended to be a replacement for a lecture on functional analysis. For
a more in depth look on the subject, we refer to [RS72; Tes09; LL01].

So let us start with the basic definition: A Hilbert space is a vector space over C with
inner product that is complete with respect to the induced norm.

Definition 3.0.1 (Pre-Hilbert space and Hilbert space) Apre-Hilbert space is a complex vec-
tor spaceH with scalar product

⟨·, ·⟩ : H×H −→ C,

i. e. a mapping with properties

(i) ⟨φ,φ⟩ ≥ 0 and ⟨φ,φ⟩ = 0 implies φ = 0 (positive definiteness),

(ii) ⟨φ,ψ⟩ = ⟨ψ,φ⟩, and

(iii) ⟨φ, αψ + χ⟩ = α ⟨φ,ψ⟩+ ⟨φ, χ⟩
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3 Hilbert spaces

for all φ,ψ, χ ∈ H and α ∈ C. This induces a natural norm ∥φ∥ :=
√
⟨φ,φ⟩ and metric

d(φ,ψ) := ∥φ− ψ∥, φ,ψ ∈ H. If H is complete with respect to the induced metric, it is a
Hilbert space.
Let us proceed and study some examples in more detail.

3.1 Prototypical Hilbert spaces: Cn, L2(Rd) and ℓ2(Zd)
The simplest case of a Hilbert space is Cn with scalar product

⟨z, w⟩ :=
n∑
j=1

zj wj .

Not all inner product spaces need to be complete: C([a, b],C) with scalar product

⟨f, g⟩ :=
∫ b

a

dx f(x) g(x)

is just a pre-Hilbert space, since it is not complete: L2-limits of continuous functions need
not be continuous.

Instead the space of square integrable functions on Rd

L2(Rd) :=
{
φ : Rd −→ C

∣∣ φmeasurable,
∫
Rd

dx |φ(x)|2 <∞
}
,

which appears when talking about wave functions onRd is well-defined for functions that
are just measurable. The Born rule states that |ψ(x)|2 is to be interpreted as a probability
density onRd for position. Hence, we are interested in solutions to the Schrödinger equa-
tion which are also square integrable with respect to the Lebesgue measure [LL01, p. 6 ff.].
L2(Rd) is a C-vector space, but

∥φ∥2 :=

∫
Rd

dx |φ(x)|2

does not define a norm: there are functions φ ̸= 0 for which ∥φ∥ = 0. Instead, ∥φ∥ = 0

only ensures

φ(x) = 0 almost everywhere (with respect to the Lebesgue measure dx).

Almost everywhere is sometimes abbreviated with a. e. and the terms “almost surely”
and “for almost all x ∈ Rd” can be used synonymously. If we introduce the equivalence
relation

φ ∼ ψ :⇔ ∥φ− ψ∥ = 0,

then we can define the vector space L2(Rd):
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3.2 Orthonormal bases and orthogonal subspaces

Definition 3.1.1 (L2(Rd)) We define L2(Rd) as

L2(Rd)/ ∼

where∼ is the equivalence relation that identifies φ and ψ if ∥φ− ψ∥ = 0.

Ifφ1 ∼ φ2 are two normalized functions inL2(Rd), then we get the same probabilities for
both: if Λ ⊆ Rd is a measurable set, then

P1(X ∈ Λ) =

∫
Λ

dx |φ1(x)|2 =

∫
Λ

dx |φ2(x)|2 = P2(X ∈ Λ).

This is proven via the triangle inequality and the Cauchy-Schwartz inequality (we will
prove the latter in the next chapter):

0 ≤
∣∣P1(X ∈ Λ)− P2(X ∈ Λ)

∣∣ = ∣∣∣∣∫
Λ

dx |φ1(x)|2 −
∫
Λ

dx |φ2(x)|2
∣∣∣∣

=

∣∣∣∣∫
Λ

dx
(
φ1(x)− φ2(x)

)
φ1(x)−

∫
Λ

dxφ2(x)
(
φ1(x)− φ2(x)

)∣∣∣∣
≤
∫
Λ

dx
∣∣φ1(x)− φ2(x)

∣∣ ∣∣φ1(x)
∣∣− ∫

Λ

dx
∣∣φ2(x)

∣∣ ∣∣φ1(x)− φ2(x)
∣∣

≤ ∥φ1 − φ2∥ ∥φ1∥+ ∥φ2∥ ∥φ1 − φ2∥ = 0

Very often, another space is used in applications (e. g. in tight-binding models):

Definition 3.1.2 (ℓ2(S)) Let S be a countable set. Then

ℓ2(S) :=
{
c : S −→ C

∣∣ ∑
j∈S cj cj <∞

}
is the space of square-summable sequences.

On ℓ2(S) the scalar product ⟨c, c′⟩ :=
∑
j∈S cj c

′
j induces the norm ∥c∥ :=

√
⟨c, c′⟩. With

respect to this norm, ℓ2(S) is complete.

3.2 Orthonormal bases and orthogonal subspaces

Hilbert spaces have the important notion of orthonormal vectors and sequences which do
not exist in Banach spaces.

Definition 3.2.1 (Orthonormal set) LetI be a countable index set. A family of vectors{φk}k∈I
is called orthonormal set if for all k, j ∈ I

⟨φk, φj⟩ = δkj

holds.
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As we will see, all vectors in a separable Hilbert spaces can be written in terms of a count-
able orthonormal basis. Especially when we want to approximate elements in a Hilbert
space by elements in a proper closed subspace, the vector of best approximation can be
written as a linear combination of basis vectors.

Definition 3.2.2 (Orthonormal basis) Let I be a countable index set. An orthonormal set of
vectors {φk}k∈I is called orthonormal basis if and only if for all ψ ∈ H, we have

ψ =
∑
k∈I

⟨φk, ψ⟩φk.

If I is countably infinite, I ∼= N, then this means the sequence ψn :=
∑n
j=1⟨φj , ψ⟩φj of partial

converges in norm to ψ,

lim
n→∞

∥∥∥ψ −
∑n
j=1⟨φj , ψ⟩φj

∥∥∥ = 0

With this general notion of orthogonality, we have a Pythagorean theorem:

Theorem 3.2.3 (Pythagoras) Given a finite orthonormal family {φ1, . . . , φn} in a pre-Hilbert
spaceH and φ ∈ H, we have

∥φ∥2 =
∑n
k=1

∣∣⟨φk, φ⟩∣∣2 + ∥∥φ−
∑n
k=1⟨φk, φ⟩φk

∥∥2.
Proof It is easy to check that ψ :=

∑n
k=1⟨φk, φ⟩φk and ψ⊥ := φ−

∑n
k=1⟨φk, φ⟩φk are

orthogonal and φ = ψ + ψ⊥. Hence, we obtain

∥φ∥2 = ⟨φ,φ⟩ = ⟨ψ + ψ⊥, ψ + ψ⊥⟩ = ⟨ψ,ψ⟩+ ⟨ψ⊥, ψ⊥⟩

=
∥∥∑n

k=1⟨φk, φ⟩φk
∥∥2 + ∥∥φ−

∑n
k=1⟨φk, φ⟩φk

∥∥2.
This concludes the proof. □

A simple corollary are Bessel’s inequality and the Cauchy-Schwarz inequality.

Theorem 3.2.4 LetH be a pre-Hilbert space.

(i) Bessel’s inequality holds: let
{
φ1, . . . φn

}
be a finite orthonormal sequence. Then

∥ψ∥2 ≥
n∑
j=1

|⟨φj , ψ⟩|2.

holds for all ψ ∈ H.
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3.2 Orthonormal bases and orthogonal subspaces

(ii) The Cauchy-Schwarz inequality holds, i. e.

|⟨φ,ψ⟩| ≤ ∥φ∥∥ψ∥

is valid for all φ,ψ ∈ H

Proof (i) This follows trivially from the previous Theorem as ∥ψ⊥∥2 ≥ 0.

(ii) Pick φ,ψ ∈ H. In case φ = 0, the inequality holds. So assume φ ̸= 0 and define

φ1 :=
φ

∥φ∥

which has norm 1. We can apply (i) for n = 1 to conclude

∥ψ∥2 ≥ |⟨φ1, ψ⟩|2 =
1

∥φ∥2
|⟨φ,ψ⟩|2 .

This is equivalent to the Cauchy-Schwarz inequality. □

An important corollary says that the scalar product is continuouswith respect to the norm
topology. This is not at all surprising, after all the norm is induced by the scalar product!

Corollary 3.2.5 Let H be a Hilbert space. Then the scalar product is continuous with respect
to the norm topology, i. e. for two sequences (φn)n∈N and (ψm)m∈N that converge to φ and ψ,
respectively, we have

lim
n,m→∞

⟨φn, ψm⟩ = ⟨φ,ψ⟩.

Proof Let (φn)n∈N and (ψm)m∈N be two sequences inH that converge toφ andψ, respec-
tively. Then by Cauchy-Schwarz, we have

lim
n,m→∞

∣∣⟨φ,ψ⟩ − ⟨φn, ψm⟩
∣∣ = lim

n,m→∞

∣∣⟨φ− φn, ψ⟩ − ⟨φn, ψm − ψ⟩
∣∣

≤ lim
n,m→∞

∣∣⟨φ− φn, ψ⟩
∣∣+ lim

n,m→0

∣∣⟨φn, ψm − ψ⟩
∣∣

≤ lim
n,m→∞

∥φ− φn∥ ∥ψ∥+ lim
n,m→∞

∥φn∥ ∥ψm − ψ∥ = 0

since there exists some C > 0 such that ∥φn∥ ≤ C for all n ∈ N. □

Definition 3.2.6 (Separable Hilbert space) A Hilbert spaceH is called separable if there ex-
ists a countable dense subset.
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Before we prove that a Hilbert space is separable exactly if it admits a countable basis, we
need to introduce the notion of orthogonal complement: if A is a subset of a pre-Hilbert
spaceH, then we define

A⊥ :=
{
φ ∈ H | ⟨φ,ψ⟩ = 0 ∀ψ ∈ A

}
.

The following few properties of the orthogonal complement follow immediately from its
definition:

(i) {0}⊥ = H andH⊥ = {0}.

(ii) A⊥ is a closed linear subspace ofH for any subset A ⊆ H.

(iii) If A ⊆ B, then B⊥ ⊆ A⊥.

(iv) If we denote the sub vector space spanned by the elements in A by spanA, we have

A⊥ =
(
spanA

)⊥
=
(
spanA

)⊥
where spanA is the completion of spanA with respect to the norm topology.2014.09.19

If (H, d) is a metric space, we can define the distance between a point φ ∈ H and a subset
A ⊆ H as

d(φ,A) := inf
ψ∈A

d(φ,ψ).

If there exists φ0 ∈ A which minimizes the distance, i. e. d(φ,A) = d(φ,φ0), then φ0 is
called element of best approximation for φ in A. This notion is helpful to understand why
and how elements in an infinite-dimensional Hilbert space can be approximated by finite
linear combinations – something that is used in numerics all the time.

If A ⊂ H is a convex subset of a Hilbert spaceH, then one can show that there always
exists an element of best approximation. In caseA is a linear subspace ofH, it is given by
projecting an arbitrary ψ ∈ H down to the subspace A.

Theorem 3.2.7 Let A be a closed convex subset of a Hilbert spaceH. Then there exists for each
φ ∈ H exactly one φ0 ∈ A such that

d(φ,A) = d(φ,φ0).

Proof We choose a sequence (ψn)n∈N in A with d(φ,ψn) = ∥φ− ψn∥ → d(φ,A). This
sequence is also a Cauchy sequence: we add and subtract φ to get∥∥ψn − ψm

∥∥2 =
∥∥(ψn − φ) + (φ− ψm)

∥∥2.
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3.2 Orthonormal bases and orthogonal subspaces

If H were a normed space, we could have to use the triangle inequality to estimate the
right-hand side from above. However,H is a Hilbert space and by using the parallelogram
identity,1 we see that the right-hand side is actually equal to∥∥ψn − ψm

∥∥2 = 2
∥∥ψn − φ

∥∥2 + 2
∥∥ψm − φ

∥∥2 − ∥∥ψn + ψm − 2φ
∥∥2

= 2
∥∥ψn − φ

∥∥2 + 2
∥∥ψm − φ

∥∥2 − 4
∥∥ 1
2 (ψn + ψm)− φ

∥∥2
≤ 2
∥∥ψn − φ

∥∥2 + 2
∥∥ψm − φ

∥∥2 − 4d(φ,A)
n,m→∞−−−−−→ 2d(φ,A) + 2d(φ,A)− 4d(φ,A) = 0.

By convexity, 1
2 (ψn + ψm) is again an element of A. This is crucial once again for the

uniqueness argument. Letting n,m → ∞, we see that (ψn)n∈N is a Cauchy sequence in
A which converges in A as it is a closed subset of H. Let us call the limit point φ0 :=

limn→∞ ψn. Then φ0 is an element of best approximation,∥∥φ− φ0

∥∥ = lim
n→∞

∥∥φ− ψn
∥∥ = d(φ,A).

To show uniqueness, we assume that there exists another element of best approximation
φ′
0 ∈ A. Define the sequence (ψ̃n)n∈N by ψ̃2n := φ0 for even indices and ψ̃2n+1 := φ′

0

for odd indices. By assumption, we have ∥φ− φ0∥ = d(φ,A) = ∥φ− φ′
0∥ and thus, by

repeating the steps above, we conclude (ψ̃n)n∈N is a Cauchy sequence that converges to
some element. However, since the sequence is alternating, the two elements φ′

0 = φ0 are
in fact identical. □

As we have seen, the condition that the set is convex and closed is crucial in the proof.
Otherwise the minimizer may not be unique or even contained in the set.

Corollary 3.2.8 Let E be a closed subvector space of the Hilbert spaceH. Then for any φ ∈ H,
there exists φ0 ∈ E such that d(φ,E) = d(φ,φ0).

This is all very abstract. For the case of a closed subvector space E ⊆ H, we can express
the element of best approximation in terms of the basis: not surprisingly, it is given by
the projection of φ onto E.

Theorem 3.2.9 LetE ⊆ H be a closed subspace of a Hilbert space that is spanned by countably
many orthonormal basis vectors {φk}k∈I . Then for anyφ ∈ H, the element of best approximation
φ0 ∈ E is given by

φ0 =
∑
k∈I

⟨φk, φ⟩φk.

1For all φ,ψ ∈ H, the identity 2 ∥φ∥2 + 2 ∥ψ∥2 = ∥φ+ ψ∥2 + ∥φ− ψ∥2 holds.
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Proof It is easy to show that φ−φ0 is orthogonal to any ψ =
∑
k∈I λk φk ∈ E: we focus

on the more difficult case whenE is not finite dimensional: then, we have to approximate
φ0 and ψ by finite linear combinations and take limits. We call φ(n)

0 :=
∑n
k=1⟨φk, φ⟩φk

and ψ(m) :=
∑m
j=1 λj φj . With that, we have

⟨
φ− φ

(n)
0 , ψ(m)

⟩
=
⟨
φ−

∑n
k=1⟨φk, φ⟩φk,

∑m
j=1λj φj

⟩
=

m∑
j=1

λj ⟨φ,φj⟩ −
n∑
k=1

m∑
j=1

λj ⟨φk, φ⟩ ⟨φk, φj⟩

=
m∑
j=1

λj ⟨φ,φj⟩
(
1−

∑n
k=1 δkj

)
.

By continuity of the scalar product, Corollary 3.2.5, we can take the limit n,m→ ∞. The
term in parentheses containing the sum is 0 exactly when j ∈ {1, . . . ,m} and 1 otherwise.
Specifically, if n ≥ m, the right-hand side vanishes identically. Hence, we have⟨

φ− φ0, ψ
⟩
= lim
n,m→∞

⟨
φ− φ

(n)
0 , ψ(m)

⟩
= 0,

in other words φ− φ0 ∈ E⊥. This, in turn, implies by the Pythagorean theorem that

∥φ− ψ∥2 = ∥φ− φ0∥2 + ∥φ0 − ψ∥2 ≥ ∥φ− φ0∥2

and hence ∥φ− φ0∥ = d(φ,E). Put another way, φ0 is an element of best approximation.
Let us now show uniqueness. Assume, there exists another element of best approximation
φ′
0 =

∑
k∈I λ

′
k φk. Then we know by repeating the previous calculation backwards that

φ − φ′
0 ∈ E⊥ and the scalar product with respect to any of the basis vectors φk which

span E has to vanish,

0 =
⟨
φk, φ− φ′

0

⟩
= ⟨φk, φ⟩ −

∑
j∈I

λ′j ⟨φk, φj⟩ = ⟨φk, φ⟩ −
∑
j∈I

λ′j δkj

= ⟨φk, φ⟩ − λ′k.

This means the coefficients with respect to the basis {φk}k∈I all agree with those of φ0.
Hence, the element of approximation is unique, φ0 = φ′

0, and given by the projection of
φ onto E. □

Theorem 3.2.10 LetE be a closed linear subspace of a Hilbert spaceH. Then

(i) H = E ⊕ E⊥, i. e. every vector φ ∈ H can be uniquely decomposed as φ = ψ + ψ⊥ with
ψ ∈ E, ψ⊥ ∈ E⊥.
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3.2 Orthonormal bases and orthogonal subspaces

(ii) E⊥⊥ = E.

Proof (i) By Theorem 3.2.7, for each φ ∈ H, there exists φ0 ∈ E such that d(φ,E) =

d(φ,φ0). From the proof of the previous theorem, we see that φ⊥
0 := φ− φ0 ∈ E⊥.

Hence, φ = φ0 + φ⊥
0 is a decomposition of φ. To show that it is unique, assume

φ′
0 + φ′

0
⊥

= φ = φ0 + φ⊥
0 is another decomposition. Then by subtracting, we are

led to conclude that

E ∋ φ′
0 − φ0 = φ⊥

0 − φ′
0
⊥ ∈ E⊥

holds. On the other hand, E ∩ E⊥ = {0} and thus φ0 = φ′
0 and φ⊥

0 = φ′
0
⊥, the

decomposition is unique.

(ii) It is easy to see that E ⊆ E⊥⊥. Let φ̃ ∈ E⊥⊥. By the same arguments as above, we
can decompose φ̃ ∈ E⊥⊥ ⊆ H into

φ̃ = φ̃0 + φ̃⊥
0

with φ̃0 ∈ E ⊆ E⊥⊥ and φ̃⊥
0 ∈ E⊥. Hence, φ̃− φ̃0 ∈ E⊥⊥ ∩ E⊥ = (E⊥)⊥ ∩ E⊥ =

{0} and thus φ̃ = φ̃0 ∈ E. □

Now we are in a position to prove the following important Proposition:

Proposition 3.2.11 AHilbert spaceH is separable if and only if there exists a countable orthonor-
mal basis.

Proof ⇐: The set generated by the orthonormal basis {φj}j∈I , I countable, and coeffi-
cients z = q + ip, q, p ∈ Q, is dense inH,{∑n

j=1zjφj ∈ H
∣∣ N ∋ n ≤ |I| , φj ∈ {φk}k∈N, zj = qj + ipj , qj , pj ∈ Q

}
.

⇒: Assume there exists a countable dense subsetD, i. e.D = H. IfH is finite dimensional,
the induction terminates after finitely many steps and the proof is simpler. Hence, we will
assume H to be infinite dimensional. Pick a vector φ̃1 ∈ D \ {0} and normalize it. The
normalized vector is then calledφ1. Note that φ1 need not be inD. By Theorem 3.2.10, we
can split anyψ ∈ D intoψ1 andψ⊥

1 such thatψ1 ∈ span {φ1} := E1,ψ⊥
1 ∈ span {φ1}⊥ :=

E⊥
1 and

ψ = ψ1 + ψ⊥
1 .
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pick a second φ̃2 ∈ D\E1 (which is non-empty). Nowwe apply Theorem 3.2.9 (which is in
essence Gram-Schmidt orthonormalization) to φ̃2, i. e. we pick the part which is orthogo-
nal to φ1,

φ′
2 := φ̃2 − ⟨φ1, φ̃2⟩φ2

and normalize to φ2,

φ2 :=
φ′
2

∥φ′
2∥
.

This defines E2 := span {φ1, φ2} andH = E2 ⊕ E⊥
2 .

Now we proceed by induction: assume we are given En = span {φ1, . . . , φn}. Take
φ̃n+1 ∈ D \ En and apply Gram-Schmidt once again to yield φn+1 which is the obtained
from normalizing the vector

φ′
n+1 := φ̃n+1 −

n∑
k=1

⟨φk, φ̃n+1⟩φk.

This induction yields an orthonormal sequence {φn}n∈N which is by definition an or-
thonormal basis of E∞ := span {φn}n∈N a closed subspace of H. If E∞ ⊊ H, we can
split the Hilbert space into H = E∞ ⊕ E⊥

∞. Then either D ∩ (H \ E∞) = ∅ – in which
case D cannot be dense in H – or D ∩ (H \ E∞) ̸= ∅. But then we have terminated the
induction prematurely. □

3.3 Direct sums (⊕) and tensor products (⊗) of Hilbert
spaces

There are several ways to split Hilbert spaces: in direct sums and direct products. With
the same techniques, we can construct new ones from existing Hilbert spaces. In Theo-
rem 3.2.10, we have shown that ifE is a closed subspace, thenH decomposes into a direct
sum

H = E ⊕ E⊥.

That means any vector φ = ψ + ψ⊥ ∈ H can be uniquely decomposed into ψ ∈ E and
ψ⊥ ∈ E⊥. We now define the direct sum of two Hilbert spaces:

Definition 3.3.1 (Direct sum ⊕) LetH1 andH2 be Hilbert spaces with scalar products ⟨·, ·⟩1
and ⟨·, ·⟩2. Then we defineH1 ⊕H2 as the carteisan productH1 ×H2 of vector spaces endowed
with the structure of a vector space in the following way: for any φ = (φ1, φ2), ψ = (ψ1, ψ2) ∈
H1 ×H2 and α ∈ C, we define
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(i) addition component-wise, φ+ ψ = (φ1, φ2) + (ψ1, ψ2) := (φ1 + ψ1, φ2 + ψ2),

(ii) scalar multiplication component-wise, αφ = α(φ1, φ2) := (αφ1, αφ2),

(iii) and the scalar product onH1 ⊕H2 is the sum of the two scalar products,

⟨φ,ψ⟩ := ⟨φ1, ψ1⟩1 + ⟨φ2, ψ2⟩2.

Proposition 3.3.2 The direct sumH1 ⊕H2 of two Hilbert spaces is a Hilbert space.

Proof One immediately checks that H1 ⊕ H2 is a vector space. Completeness also fol-
lows from the completeness of the components: let {φ(n)}n∈N be a Cauchy sequence with
respect to the norm induced by ⟨·, ·⟩. Writing out the definition, it is clear that this also
means each component {φ(n)

j }n∈N, j = 1, 2, is a Cauchy sequence inHj which converges
to some φj ∈ Hj . Hence, φ(n) −→ (φ1, φ2) as n→ ∞. □

The other way to construct new Hibert spaces is taking tensor products: if φ1 ∈ H1 and
φ2 ∈ H2 are two vectors from two vector spaces, we can characterize φ1 ⊗φ2, the tensor
product of φ1 and φ2, by the following defining properties: for any φ1, ψ1 ∈ H1 and
φ2, ψ2 ∈ H2

φ1 ⊗ (φ2 + ψ2) = φ1 ⊗ φ2 + φ1 ⊗ ψ2

(φ1 + ψ1)⊗ φ2 = φ1 ⊗ φ2 + ψ1 ⊗ φ2

holds. Scalars can be pushed back and forth between factors,

α(φ1 ⊗ φ2) = (αφ1)⊗ φ2 = φ1 ⊗ (αφ2).

The formal definition is a lot more complicated: one has to construct a big space where
vectors such as (αφ1) ⊗ φ2 and φ1 ⊗ (αφ2) are distinct and then use equivalence rela-
tions to implement the above characteristics. The constructed space is defined only up to
isomorphism.

Definition 3.3.3 (Tensor product ⊗) LetH1 andH2 be two Hilbert spaces with scalar prod-
ucts ⟨·, ·⟩1 and ⟨·, ·⟩2. Then the tensor productH1⊗H2 is defined as the completion of the algebraic
tensor product

H1 ⊙H2 :=
{∑n

k=1λkφ1 k ⊗ φ2 k

∣∣ n ∈ N, φ1 k ∈ H1, φ2 k ∈ H2, λk ∈ C ∀1 ≤ k ≤ n
}

with respect to the norm induced by the scalar product⟨
φ1 ⊗ φ2 , ψ1 ⊗ ψ2

⟩
:= ⟨φ1, ψ1⟩1 ⟨φ2, ψ2⟩2, ∀φ1, ψ1 ∈ H1, φ2, ψ2 ∈ H2.
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3 Hilbert spaces

If {φ1 k}k∈I1 and {φ2 j}j∈I2 are orthonormal bases of two separable Hilbert spaces H1

andH2, respectively, then {
φ1 k ⊗ φ2 j

}
k∈I1,j∈I2

is an orthonormal basis inH1 ⊗H2, i. e. every vectorΨ ∈ H1 ⊗H2 can be written as∑
k∈I1
j∈I2

⟨
φ1 k ⊗ φ2 j ,Ψ

⟩
φ1 k ⊗ φ2 j .

Example (i) A non-relativistic spin-1/2 particle lives in the Hilbert space L2(Rd,C2).
An easy, but very helpful exercise is to show the following equivalence (which cor-
respond to different physical points of views):

L2(Rd,C2) ∼= L2(Rd)⊕ L2(Rd) ∼= L2(Rd)⊗ C2

Depending on the physical situation, these identificationmay be very helpful in solv-
ing a problem.

(ii) ConsiderL2(Rd)⊗L2(Rd). This is the Hilbert space of two particles. If they are iden-
tical, we have to restrict ourselves to the symmetric and antisymmetric subspace,
depending on whether the particle in question is a boson or a fermion. Keep in mind
that in general, elementsΨ ∈ L2(Rd)⊗ L2(Rd) cannot be written as the product of
two wave functions φ1, φ2 ∈ L2(Rd),

Ψ ̸= φ1 ⊗ φ2.

We will show in an exercise that L2(Rd)⊗ L2(Rd) ∼= L2(Rd × Rd).

3.4 Linear functionals, dual space and weak convergence

The two main points of this section is to properly introduce the notion of linear function-
als and show the connection between functionals and the bra-ket notation introduced by
Dirac [Dir30]. “Kets” |ψ⟩ are elements of the Hilbert space H while “bras” ⟨ψ| are in the
dualH∗. We will explain this in more detail below.

Definition 3.4.1 (Bounded linear functional) Let X be a normed space. Then a map

L : X −→ C

is a bounded linear functional if and only if
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(i) there exists C > 0 such that |L(x)| ≤ C ∥x∥ and

(ii) L(x+ µy) = L(x) + µL(y)

hold for all x, y ∈ X and µ ∈ C.

A very basic fact is that boundedness of a linear functional is equivalent to its continuity.

Theorem 3.4.2 Let L : X −→ C be a linear functional on the normed space X . Then the
following statements are equivalent:

(i) L is continuous at x0 ∈ X .

(ii) L is continuous.

(iii) L is bounded.

Proof (i)⇔ (ii): This follows immediately from the linearity.

(ii) ⇒ (iii): Assume L to be continuous. Then it is continuous at 0 and for ε = 1, we can
pick δ > 0 such that

|L(x)| ≤ ε = 1

for all x ∈ X with ∥x∥ ≤ δ. By linearity, this implies for any y ∈ X \ {0} that∣∣L( δ
∥y∥y

)∣∣ = δ
∥y∥
∣∣L(y)∣∣ ≤ 1.

Hence, L is bounded with bound 1/δ, ∣∣L(y)∣∣ ≤ 1
δ ∥y∥ .

(iii)⇒ (ii): Conversely, if L is bounded by C > 0,∣∣L(x)− L(y)
∣∣ ≤ C ∥x− y∥ ,

holds for all x, y ∈ X . This means, L is continuous: for ε > 0 pick δ = ε/C so that∣∣L(x)− L(y)
∣∣ ≤ C ∥x− y∥ ≤ C ε

C = ε

holds for all x, y ∈ X such that ∥x− y∥ ≤ ε/C. □

Definition 3.4.3 (Dual space) LetX be a normed space. The dual spaceX ∗ is the vector space
of bounded linear functionals endowed with the norm

∥L∥∗ := sup
x∈X\{0}

|L(x)|
∥x∥

= sup
x∈X
∥x∥=1

|L(x)| .
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Independently of whether X is complete, X ∗ is a Banach space.

Proposition 3.4.4 The dual space to a normed linear space X is a Banach space.

Proof Let (Ln)n∈N be a Cauchy sequence in X ∗, i. e. a sequence for which

∥Lk − Lj∥∗
k,j→∞−−−−−→ 0.

We have to show that (Ln)n∈N converges to some L ∈ X ∗. For any ε > 0, there exists
N(ε) ∈ N such that

∥Lk − Lj∥∗ < ε

for all k, j ≥ N(ε). This also implies that for any x ∈ X ,
(
Ln(x)

)
n∈N converges as well,∣∣Lk(x)− Lj(x)

∣∣ ≤ ∥∥Lk − Lj
∥∥
∗ ∥x∥ < ε ∥x∥ .

The field of complex numbers is complete and
(
Ln(x)

)
n∈N converges to some L(x) ∈ C.

We now define

L(x) := lim
n→∞

Ln(x)

for any x ∈ X . Clearly,L inherits the linearity of the (Ln)n∈N. ThemapL is also bounded:
for any ε > 0, there existsN(ε) ∈ N such that ∥Lj − Ln∥∗ < ε for all j, n ≥ N(ε). Then∣∣(L− Ln)(x)

∣∣ = lim
j→∞

∣∣(Lj − Ln)(x)
∣∣ ≤ lim

j→∞

∥∥Lj − Ln
∥∥
∗ ∥x∥

< ε ∥x∥

holds for all n ≥ N(ε). Since we can write L as L = Ln + (L− Ln), we can estimate the
norm of the linear map L by ∥L∥∗ ≤ ∥Ln∥∗ + ε < ∞. This means L is a bounded linear
functional on X . □

In case of Hilbert spaces, the dualH∗ can be canonically identified withH itself:

Theorem 3.4.5 (Riesz’ Lemma) Let H be a Hilbert space. Then for all L ∈ H∗ there exist
ψL ∈ H such that

L(φ) = ⟨ψL, φ⟩.

In particular, we have ∥L∥∗ = ∥ψL∥.

Riesz’ Lemma justifies the bra-ket notation of physics: to translate between physics and
math notation, let us consider a “ket” |ψ⟩which is an element in a Hilbert spaceH. Math-
ematicians would write ψ ∈ H. The associated “bra” ⟨ψ| is functional onH, meaning that
if a bra ⟨ψ| and a ket |φ⟩ meet, ⟨ψ|φ⟩ ∈ C, one obtains a complex number. Put another
way, ⟨ψ| is just the functional Lψ(φ) = ⟨ψ,φ⟩.
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Proof Let kerL :=
{
φ ∈ H | L(φ) = 0

}
be the kernel of the functional L and as such is

a closed linear subspace ofH. If kerL = H, then 0 ∈ H is the associated vector,

L(φ) = 0 = ⟨0, φ⟩.

So assume kerL ⊊ H is a proper subspace. Then we can splitH = kerL⊕ (kerL)⊥. Pick
φ0 ∈ (kerL)⊥, i. e. L(φ0) ̸= 0. Then define

ψL :=
L(φ0)

∥φ0∥2
φ0.

We will show that L(φ) = ⟨ψL, φ⟩. If φ ∈ kerL, then L(φ) = 0 = ⟨ψL, φ⟩. One easily
shows that for φ = αφ0, α ∈ C,

L(φ) = L(αφ0) = αL(φ0)

= ⟨ψL, φ⟩ =
⟨
L(φ0)
∥φ0∥2φ0, α φ0

⟩
= αL(φ0)

⟨φ0, φ0⟩
∥φ0∥2

= αL(φ0).

Every φ ∈ H can be written as

φ =

(
φ− L(φ)

L(φ0)
φ0

)
+

L(φ)

L(φ0)
φ0.

Then the first term is in the kernel of L while the second one is in the orthogonal com-
plement of kerL. Hence, L(φ) = ⟨ψL, φ⟩ for all φ ∈ H. If there exists a second ψ′

L ∈ H,
then for any φ ∈ H

0 = L(φ)− L(φ) = ⟨ψL, φ⟩ − ⟨ψ′
L, φ⟩ = ⟨ψL − ψ′

L, φ⟩.

This implies ψ′
L = ψL and thus the element ψL is unique.

To show ∥L∥∗ = ∥ψL∥, assume L ̸= 0. Then, we have

∥L∥∗ = sup
∥φ∥=1

∣∣L(φ)∣∣ ≥ ∣∣L( ψL

∥ψL∥
)∣∣

=
⟨
ψL,

ψL

∥ψL∥
⟩
= ∥ψL∥.

On the other hand, the Cauchy-Schwarz inequality yields

∥L∥∗ = sup
∥φ∥=1

∣∣L(φ)∣∣ = sup
∥φ∥=1

∣∣⟨ψL, φ⟩∣∣
≤ sup

∥φ∥=1

∥ψL∥∥φ∥ = ∥ψL∥. □

Putting these two together, we conclude ∥L∥∗ = ∥ψL∥. 2014.09.26
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Remark 3.4.6 The bidual of a Hilbert space H∗∗ can be canonically identified with H it-
self, i. e. Hilbert spaces are reflexive.

Definition 3.4.7 (Weak convergence) LetX be a Banach space. Then a sequence (xn)n∈N in
X is said to converge weakly to x ∈ X if for all L ∈ X ∗

L(xn)
n→∞−−−−→ L(x)

holds. In this case, one also writes xn ⇀ x.

Weak convergence, as the name suggests, is really weaker than convergence in norm. The
reason why “more” sequences converge is that, a sense, uniformity is lost. IfX is a Hilbert
space, then applying a functional is the same as computing the inner product with respect
to some vector ψL. If the “non-convergent part” lies in the orthogonal complement to
{ψL}, then this particular functional does not notice that the sequence has not converged
yet.

The distinction between weak and ordinary convergence can become important when
doing numerics: very often only expectation values ⟨φn, Aφn⟩ converge as n → ∞ while
ψn ̸→ ψ∗.

Example LetH be a separable infinite-dimensional Hilbert space and {φn}n∈N an ortho-
normal basis. Then the sequence (φn)n∈N does not converge in norm, for as long as n ̸= k

∥φn − φk∥ =
√
2,

but it does converge weakly to 0: for any functionalL = ⟨ψL, ·⟩, we see that
(
|L(φn)|

)
n∈N

is a sequence in R that converges to 0. Since {φn}n∈N is a basis, we can write

ψL =
∞∑
n=1

⟨φn, ψL⟩φn

and for the sequence of partial sums to converge to ψL, the sequence of coefficients(
⟨φn, ψL⟩

)
n∈N =

(
L(φn)

)
n∈N

must converge to 0. Since this is true for any L ∈ H∗, we have proven that φn ⇀ 0

(i. e. φn → 0 weakly).

3.5 Important facts on Lp(Rd)

For future reference, we collect a few facts on Lp(Rd) spaces. In particular, we will make
use of dominated convergence frequently. We will give them without proof, they can be
found in standard text books on analysis, see e. g. [LL01].
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3.5 Important facts on Lp(Rd)

Definition 3.5.1 (Lp(Rd)) Let 1 ≤ p <∞. Then we define

Lp(Rd) :=
{
f : Rd −→ C

∣∣ f measurable,
∫
Rd

dx |f(x)|p <∞
}

as the vector space of functions whose pth power is integrable. Then Lp(Rd) is the vector space

Lp(Rd) := Lp(Rd)/ ∼

consisting of equivalence classes of functions that agree almost everywhere. With the p norm

∥f∥p :=
(∫

Rd

dx |f(x)|p
)1/p

it forms a normed space.

In case p = ∞, we have to modify the definition a little bit.

Definition 3.5.2 (L∞(Rd)) We define

L∞(Rd) :=
{
f : Rd −→ C

∣∣ f measurable, ∃0 < K <∞ : |f(x)| ≤ K almost everywhere
}

to be the space of functions that are bounded almost everywhere and

∥f∥∞ := ess sup
x∈Rd

∣∣f(x)∣∣ := inf
{
K ≥ 0

∣∣ |f(x)| ≤ K for almost all x ∈ Rd
}
.

Then the space L∞(Rd) := L∞(Rd)/ ∼ is defined as the vector space of equivalence classes
where two functions are identified if they agree almost everywhere.

Theorem 3.5.3 (Riesz-Fischer) For any 1 ≤ p ≤ ∞, Lp(Rd) is complete with respect to the
∥·∥p norm and thus a Banach space. If p = 2, L2(Rd) is also a Hilbert space with scalar product

⟨f, g⟩ =
∫
Rd

dx f(x) g(x).

Theorem 3.5.4 For any 1 ≤ p ⪇ ∞, the Banach space Lp(Rd) is separable.

Proof We refer to [LL01, Lemma 2.17] for an explicit construction. The idea is to approx-
imate arbitrary functions by functions which are constant on cubes and take only values
in the rational complex numbers. □

Theorem 3.5.5 (Monotone Convergence) Let (fk)k∈N be a sequence of non-decreasing func-
tions in L1(Rd) with pointwise limit f defined almost everywhere. Define Ik :=

∫
Rd dx fk(x);
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3 Hilbert spaces

then the sequence (Ik) is non-decreasing aswell. If I := limk→∞ Ik <∞, then I =
∫
Rd dx f(x),

i. e.

lim
k→∞

∫
Rd

dx fk(x) =
∫
Rd

dx lim
k→∞

fk(x) =

∫
Rd

dx f(x)

holds.

Theorem 3.5.6 (Dominated Convergence) Let (fk)k∈N be a sequence of functions inL1(Rd)
that converges almost everywhere pointwise to some f : Rd −→ C. If there exists a non-negative
g ∈ L1(Rd) such that |fk(x)| ≤ g(x) holds almost everywhere for all k ∈ N, then g also bounds
|f |, i. e. |f(x)| ≤ g(x) almost everywhere, and f ∈ L1(Rd). Furthermore, the limit k → ∞ and
integration with respect to x commute and we have

lim
k→∞

∫
Rd

dx fk(x) =
∫
Rd

dx lim
k→∞

fk(x) =

∫
Rd

dx f(x).

In case of Lp(Rd), there are three basic mechanisms for when a sequence of functions
(fk)∈N does not converge in norm, but only weakly:

(i) fk oscillates to death: take fk(x) = sin(kx) for 0 ≤ x ≤ 1 and zero otherwise.

(ii) fk goes up the spout: pick g ∈ Lp(R) and define fk(x) := k1/p g(kx). This sequence
explodes near x = 0 for large k.

(iii) fk wanders off to infinity: this is the case when for some g ∈ Lp(R), we define fk(x) :=
g(x+ k).

All of these sequences converge weakly to 0, but do not converge in norm.
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4Chapter 4

Bounded linear operators

The previous chapter concerned itself with what states are, now we shift our attention
to observables. Observables are selfadjoint operators which are a special case of linear
operators. While most physically relevant observables are unbounded operators, we post-
pone the technical complications associated to the unboundedness and try to understand
bounded operators first.

4.1 Bounded operators

The simplest operators are bounded operators.

Definition 4.1.1 (Bounded operator) Let X and Y be normed spaces. A linear operator T :

X −→ Y is called bounded if there existsM ≥ 0 with ∥Tx∥Y ≤M ∥x∥X for all x ∈ X .

Just as in the case of linear functionals, we have

Theorem 4.1.2 Let T : X −→ Y be a linear operator between two normed spaces X and Y .
Then the following statements are equivalent:

(i) T is continuous at x0 ∈ X .

(ii) T is continuous.

(iii) T is bounded.

Proof We leave it to the reader to modify the proof of Theorem 3.4.2. □

We can introduce a norm on the operators which leads to a natural notion of convergence:
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4 Bounded linear operators

Definition 4.1.3 (Operator norm) Let T : X −→ Y be a bounded linear operator between
normed spaces. Then we define the operator norm of T as

∥T∥ := sup
x∈X
∥x∥=1

∥Tx∥Y .

The space of all bounded linear operators between X and Y is denoted by B(X ,Y).

One can show that ∥T∥ coincides with

inf
{
M ≥ 0 | ∥Tx∥Y ≤M ∥x∥X ∀x ∈ X

}
= ∥T∥ .

The product of two bounded operators T ∈ B(Y,Z) and S ∈ B(X ,Y) is again a bounded
operator and its norm can be estimated from above by

∥TS∥ ≤ ∥T∥ ∥S∥ .

IfY = X = Z , this implies that the product is jointly continuous with respect to the norm
topology on X .

The set of boundedoperators naturally forms anormedvector space: LetT, S be bounded
linear operators between the normed spaces X and Y . If we define

(T + S)x := Tx+ Sx

as addition and (
λ · T

)
x := λTx

as scalar multiplication, the set of bounded linear operators forms a vector space.

Proposition 4.1.4 The vector spaceB(X ,Y) of bounded linear operators betweennormed spaces
X and Y with operator norm forms a normed space. If Y is complete, B(X ,Y) is a Banach space.

Proof The fact B(X ,Y) is a normed vector space follows directly from the definition.
To show that B(X ,Y) is a Banach space whenever Y is, one has to modify the proof of
Theorem 3.4.4 to suit the current setting. This is left as an exercise. □

Very often, it is easy to define an operator T on a “nice” dense subset D ⊆ X . Then the
next theorem tells us that if the operator is bounded, there is a unique bounded extension
of the operator to the whole space X . For instance, this allows us to instantly extend the
Fourier transform from Schwartz functions toL2(Rd) functions [Lei10, Proposition 5.1.9].

Theorem 4.1.5 LetD ⊆ X be a dense subset of a normed space and Y be a Banach space. Fur-
thermore, let T : D −→ Y be a bounded linear operator. Then there exists a unique bounded
linear extension T̃ : X −→ Y and ∥T̃∥ = ∥T∥D .
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4.1 Bounded operators

Proof We construct T̃ explicitly: let x ∈ X be arbitrary. Since D is dense in X , there
exists a sequence (xn)n∈N inD which converges to x. Then we set

T̃ x := lim
n→∞

Txn.

First of all, T̃ is linear. It is also well-defined: (Txn)n∈N is a Cauchy sequence in Y ,∥∥Txn − Txk
∥∥
Y ≤ ∥T∥D ∥xn − xk∥X

n,k→∞−−−−−→ 0,

where the norm of T is defined as

∥T∥D := sup
x∈D\{0}

∥Tx∥Y
∥x∥X

.

This Cauchy sequence in Y converges to some unique y ∈ Y as the target space is com-
plete. Let (x′n)n∈N be a second sequence inD that converges to x and assume the sequence
(Tx′n)n∈N converges to some y′ ∈ Y . We define a third sequence (zn)n∈N which alternates
between elements of the first sequence (xn)n∈N and the second sequence (x′n)n∈N, i. e.

z2n−1 := xn

z2n := x′n

for all n ∈ N. Then (zn)n∈N also converges to x and
(
Tzn

)
forms a Cauchy sequence that

converges to, say, ζ ∈ Y . Subsequences of convergent sequences are also convergent and
they must converge to the same limit point. Hence, we conclude that

ζ = lim
n→∞

Tzn = lim
n→∞

Tz2n = lim
n→∞

Txn = y

= lim
n→∞

Tz2n−1 = lim
n→∞

Tx′n = y′

holds and T̃ x does not depend on the particular choice of sequence which approximates
x inD. It remains to show that ∥T̃∥ = ∥T∥D: we can calculate the norm of T̃ on the dense
subsetD and use that T̃ |D = T to obtain

∥T̃∥ = sup
x∈X
∥x∥=1

∥T̃ x∥ = sup
x∈X\{0}

∥T̃ x∥
∥x∥

= sup
x∈D\{0}

∥T̃ x∥
∥x∥

= sup
x∈D\{0}

∥Tx∥
∥x∥

. □

Hence, the norm of the extension T̃ is equal to the norm of the original operator T . 2014.09.30
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4 Bounded linear operators

The spectrum of an operator has been related to the set of possible outcomes of measure-
ments (if the operator is selfadjoint).

Definition 4.1.6 (Spectrum) Let T ∈ B(X ) be a bounded linear operator on a Banach space
X . We define:

(i) The resolvent of T is the set ρ(T ) :=
{
z ∈ C | T − z is bijective

}
.

(ii) The spectrum σ(T ) := C \ ρ(T ) is the complement of ρ(T ) inC.

(iii) The set of all eigenvalues is called point spectrum

σp(T ) :=
{
z ∈ C | T − z is not injective

}
.

(iv) The continuous spectrum is defined as

σcont(T ) :=
{
z ∈ C | T − z is injective, im (T − z) ⊆ X dense

}
.

(v) The remainder of the spectrum is called residual spectrum,

σr :=
{
z ∈ C | T − z is injective, im (T − z) ⊆ X not dense

}
One can show that for all z ∈ ρ(T ), the map (T − z)−1 is a bounded operator (this is
a non-trivial fact and follows from the Open Mapping Theorem [RS72, Theorem III.10])
and the spectrum is a closed subset of C. Moreover, σ(T ) is compact and contained in{
z ∈ C | |z| ≤ ∥T∥

}
⊂ C.

4.2 Adjoint operator

If X is a normed space, then we have defined X ∗, the space of bounded linear functionals
onX . IfT : X −→ Y is a bounded linear operator between twonormed spaces, it naturally
defines the adjoint operator T ′ : Y∗ −→ X ∗ via

(T ′L)(x) := L(Tx) (4.2.1)

for all x ∈ X and L ∈ Y∗. In case of Hilbert spaces, one can associate the Hilbert space
adjoint. We will almost exclusively work with the latter and thus drop “Hilbert space”
most of the time.

Definition 4.2.1 (Hilbert space adjoint) LetH be aHilbert space andT ∈ B(H)be a bounded
linear operator onH. The antilinear isomorphism C : H −→ H∗ taken from Theorem 3.4.5 maps
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4.2 Adjoint operator

functionals onH onto the corresponding vectors, i. e. Cψ := ⟨ψ, ·⟩ = Lψ . Then the Hilbert space
adjoint is defined as

T ∗ := C−1T ′C,

or put differently

⟨T ∗φ,ψ⟩ := ⟨φ, Tψ⟩

for all φ,ψ ∈ H.

Proposition 4.2.2 LetA,B ∈ B(H) be two bounded linear operators on a Hilbert spaceH and
α ∈ C. Then, we have:

(i) (A+B)∗ = A∗ +B∗

(ii) (αA)∗ = αA∗

(iii) (AB)∗ = B∗A∗

(iv) ∥A∗∥ = ∥A∥

(v) A∗∗ = A

(vi) ∥A∗A∥ = ∥AA∗∥ = ∥A∥2

(vii) kerA = (ranA∗)⊥, kerA∗ = (ranA)⊥

Proof Properties (i)-(iii) follow directly from the defintion.
To show (iv), we note that ∥A∥ ≤ ∥A∗∥ follows from

∥Aφ∥ =
∣∣∣⟨ Aφ

∥Aφ∥ , Aφ
⟩∣∣∣ ∗

= sup
∥L∥∗=1

|L(Aφ)|

= sup
∥ψL∥=1

|⟨A∗ψL, φ⟩| ≤ ∥A∗∥ ∥φ∥

where in the stepmarkedwith ∗, we have used thatwe can calculate the norm frompicking
the functional associated to Aφ

∥Aφ∥ : for a functional with norm 1, ∥L∥∗ = 1, the norm of
L(Aφ) cannot exceed that of Aφ

|L(Aφ)| = |⟨ψL, Aφ⟩| ≤ ∥ψL∥∥Aφ∥ = ∥Aφ∥.

Here, ψL is the vector such that L = ⟨ψL, ·⟩ which exists by Theorem 3.4.5. This theorem
also ensures ∥L∥∗ = ∥ψL∥. On the other hand, from∥∥A∗ψL

∥∥ =
∥∥LA∗ψL

∥∥
∗ = sup

∥φ∥=1

∣∣⟨A∗ψL, φ
⟩∣∣

≤ sup
∥φ∥=1

∥ψL∥ ∥Aφ∥ = ∥A∥ ∥L∥∗ = ∥A∥ ∥ψL∥
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4 Bounded linear operators

we conclude ∥A∗∥ ≤ ∥A∥. Hence, ∥A∗∥ = ∥A∥.
(v) is clear. For (vi), we remark

∥A∥2 = sup
∥φ∥=1

∥Aφ∥2 = sup
∥φ∥=1

⟨
φ,A∗Aφ

⟩
≤ sup

∥φ∥=1

∥A∗Aφ∥ = ∥A∗A∥ .

This means

∥A∥2 ≤ ∥A∗A∥ ≤ ∥A∗∥ ∥A∥ = ∥A∥2 .

which combined with (iv),

∥A∥2 = ∥A∗∥2 ≤ ∥AA∗∥ ≤ ∥A∥ ∥A∗∥ = ∥A∥2

implies ∥A∗A∥ = ∥A∥2 = ∥AA∗∥. (vii) is left as an exercise. □

Definition 4.2.3 LetH be a Hilbert space and T ∈ B(H). Then T is called

(i) normal if T ∗ T = T T ∗.

(ii) selfadjoint (or hermitian) if T ∗ = T .

(iii) unitary if T ∗ T = idH = T T ∗.

(iv) an orthogonal projection if T 2 = T and T ∗ = T .

(v) positive if
⟨
φ, Tφ

⟩
≥ 0 for all φ ∈ H.

4.3 Unitary operators

More generally, unitary operators U : H1 −→ H2 between two Hilbert spaces are char-
acterized by

⟨Uφ,Uψ⟩H2
= ⟨φ,U∗Uψ⟩H1

= ⟨φ,ψ⟩H1
, φ, ψ ∈ H,

combinedwith the factUH1 = H2. Note that here, the adjointU∗ : H2 −→ H1 maps onto
H1, so that the definition of a unitary is still U∗ = U−1. This more general definition is
necessary to understand commonunitary operators such as the discrete Fourier transform

F : L2([0, 2π]d) −→ ℓ2(Zd),

(Fψ)(k) := 1

(2π)d

∫
[0,2π]d

dx e−ik·x ψ(x).

Physically, one important consequence is the conservation of probability under unitary
maps.
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4.3 Unitary operators

4.3.1 Representations and bra-ket notation

Let us reconsider the bra-ket notation physicists use and the topic of representationswhich
is the generalization of a choice of basis in linear algebra (see also the discussion in Chap-
ter 2.2.5). Let us start with a few examples: for a particle on Rd, the most common repre-
sentation is the position representationwhere position operatorQ andmomentum operator
P are

(Qψ)(x) = xψ(x),

(Pψ)(x) = −iℏ∇xψ(x),

i. e. the position operator is multiplication by x and while momentum is −iℏ times the
gradient. These two operators are characterized by algebraic relations called commutation
relations,

[Qj ,Qk] = 0, [Pj , Pk] = 0, [Qj , Pk] = iℏδjk.

Here, |ψ(x)|2 is a probability density on (real) space, i. e. the units of ψ(x) are 1/[length]d/2.
Position representation is the “eigenbasis representation” of the position operator,mean-

ing Qj is multiplication by xj . However, Qj seen as an operator on L2(Rd) has purely con-
tinuous spectrum,

σ(Qj) = σcont(Qj) = R,

meaning that to each λ ∈ R the tempered distribution δ
(
x−λ ej

)
is a pseudoeigenfunction

– it is a bona fide tempered distribution, and thus, cannot be an element of L2(Rd) (see
[Lei13, Chapter 7]).

While position Qj is diagonal in position representation, momentum Pj = −iℏ∂xj is
not. However, one can change to the momentum representation via the Fourier transform

F : L2(Rdx) −→ L2(Rdξ),

(Fψ)(ξ) := 1

(2π)d/2

∫
Rd

dx e−iξ·x ψ(x). (4.3.1)

The indices in the L2-spaces mean nothing mathematically, they are included to empha-
size that the variables x in the original space are spatial variables while the ones in the
target space are momenta ξ. A note to mathematicians: The integral expression is first
defined on the dense subspace L1(Rd) ∩ L2(Rd) and then extended by continuity (see
[LL01, Chapter 5.4] for a more “hands-on” way to implement the extension). Formally,
(4.3.1) can be written as

“ψ̂(ξ) =
⟨
e+iξ·x, ψ

⟩
= ⟨ξ|ψ⟩ ”,
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4 Bounded linear operators

and it is this what physicists mean when they write ψ̂(ξ) = ⟨ξ|ψ⟩, because |ξ⟩ is under-
stood to be the (pseudo)eigenvector of−iℏ∇x, namely e+iξ·x. However, planewaves e+iξ·x

are not square-integrable, and thus, they are not elements of L2(Rd) and the associated
spectrum is purely continuous,

σ
(
−iℏ∂xj

)
= σcont

(
−iℏ∂xj

)
.

One can show thatF is a unitary (Parseval formula) and thus, norm-preserving (Plancherel
identity). Moreover, for suitable functions (e. g. C∞

c (Rd)) for all multiindices a, α ∈ Nd0

F
(
xa(−i∂x)αψ

)
= (+i∂ξ)aξαFψ

holds. We can use the Fourier transform to switch from position to momentum represen-
tation: here, the momentum operator

PF := F PF−1 = ℏξ̂

becomes just multiplication with ξ while the position operator

QF := F QF−1 = +i∇ξ

involves the derivative now. Note that the commutation relations of position andmomen-
tum operators in momentum representation are identical,

[QF
j ,Q

F
k ] = 0, [PFj , P

F
k ] = 0, [QF

j , P
F
k ] = iℏδjk,

unitary transformations cannot change these algebraic relations. In fact, physically rele-
vant quantities cannot depend on the representation, e. g. the spectrum of an operator is
independent of it:

Lemma 4.3.1 Let T be a bounded operator on a Hilbert spaceH1 andU : H1 −→ H2 a unitary.
Then σ(T ) = σ

(
U T U−1

)
and similarly σ♯(T ) = σ♯

(
U T U−1

)
where ♯ = c, p, r

Proof This is left as an exercise. □

One last thing about notation: ifH is a separable, infinite-dimensional Hilbert space and
{φn}n∈N an orthonormal basis, then one can show

idH =
∑
n∈N

|φn⟩⟨φn|

since any vector ψ =
∑
n∈N ⟨φn, ψ⟩ φn can be expressed in terms of the basis {φn}n∈N.

Such an expression is known as a resolution of the identity. Analogously, physicists alsowrite

idL2(R) =

∫
R
dx |x⟩⟨x|
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4.3 Unitary operators

where |x⟩ = δ(· − x) are the pseudoeigenvectors of the position operator x̂ on L2(R) and
the sum is replaced by an integral. The purpose of this is to expand vectors in L2(R) in
terms of the “eigenbasis” of the position operator. For instance, ⟨x|ψ⟩ stands for ψ(x).
To define this expression mathematically requires a lot more machinery and will require
functional calculus (see Chapter 6). It turns out that |x⟩⟨x| stands for a projection-valued
measure.

Similarly, expansions into plane waves (“eigenfunctions” of the momentum operator)
also exists,

idL2(R) =

∫
R
dξ |ξ⟩⟨ξ|,

and corresponds to a plane wave expansion, ψ̂(ξ) = ⟨ξ|ψ⟩.

4.3.2 Unitary evolution groups

In case of quantummechanics, we are interested in solutions to the Schrödinger equation

i ddtψ(t) = Hψ(t), ψ(t) = ψ0,

for a hamilton operator which satisfiesH∗ = H . Assume thatH is bounded (this is really
the case for many simple quantum systems). Then the unitary group generated byH ,

U(t) = e−itH ,

can be written as a power series,

e−itH =
∞∑
n=0

1

n!
(−it)nHn

where H0 := id by convention. The sequence of partial sums converges in the operator
norm to e−itH ,

N∑
n=0

1

n!
(−it)nHn N→∞−−−−→ e−itH ,

since we can make the simple estimate∥∥∥∥∥
∞∑
n=0

1

n!
(−it)nHnψ

∥∥∥∥∥ ≤
∞∑
n=0

1

n!
|t|n ∥Hnψ∥ ≤

∞∑
n=0

1

n!
|t|n ∥H∥n ∥ψ∥

= e|t|∥H∥ ∥ψ∥ <∞.
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4 Bounded linear operators

This shows that the power series of the exponential converges in the operator norm in-
dependently of the choice of ψ to a bounded operator. Given a unitary evolution group, it
is suggestive to obtain the hamiltonian which generates it by derivingU(t)ψ with respect
to time. This is indeed the correct idea. The left-hand side of the Schrödinger equation
(modulo a factor of i) can be expressed as a limit

d
dtψ(t) = lim

δ→0

1
δ

(
ψ(t+ δ)− ψ(t)

)
.

This limit really exists, but before we compute it, we note that since

ψ(t+ δ)− ψ(t) = e−i(t+δ)Hψ0 − e−itHψ0 = e−itH(e−iδH − 1
)
ψ0,

it suffices to consider differentiability at t = 0: taking limits in norm ofH, we get2014.10.03

d
dtψ(0) = lim

δ→0

1
δ

(
ψ(δ)− ψ0

)
= lim
δ→0

1

δ

( ∞∑
n=0

(−i)n
n!

δnHnψ0 − ψ0

)

= lim
δ→0

∞∑
n=1

(−i)n
n!

δn−1Hnψ0 = −iHψ0.

Hence, wehave established that e−itHψ0 solves the Schrödinger conditionwithψ(0) = ψ0,

i ddtψ(t) = Hψ(t).

However, this procedure does not work if H is unbounded (i. e. the generic case)! Before
we proceed, we need to introduce several different notions of convergence of sequences
of operators which are necessary to define derivatives of U(t).

Definition 4.3.2 (Convergence of operators) LetAn ∈ B(H) be a sequence of bounded op-
erators. We say that the sequence converges toA ∈ B(H)

(i) uniformly/in norm if limn→∞
∥∥An −A

∥∥ = 0.

(ii) strongly if limn→∞
∥∥Anψ −Aψ

∥∥ = 0 for all ψ ∈ H.

(iii) weakly if limn→∞
⟨
φ,Anψ −Aψ

⟩
= 0 for all φ,ψ ∈ H.

Convergence of a sequence of operators in norm implies strong and weak convergence,
but not the other way around. In the tutorials, we will also show explicitly that weak
convergence does not necessarily imply strong convergence.

Example With the arguments above, we have shown that if H = H∗ is selfadjoint and
bounded, then t 7→ e−itH is uniformly continuous.
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4.3 Unitary operators

If ∥H∥ = ∞ on the other hand, uniform continuity is too strong a requirement. If H =

−1
2∆x is the free Schrödinger operator onL2(Rdx), then the Fourier transformF links the

position representation on L2(Rdx) to the momentum representation on L2(Rdξ). In this
representation, the free Schrödinger operatorH simplifies to the multiplication operator

Ĥ = 1
2 ξ̂

2

acting on L2(Rdξ). More elaborate mathematical arguments show that for any t ∈ R, the
norm of the difference between Û(t) = e−it 12 ξ̂

2 and Û(0) = id∥∥Û(t)− id
∥∥ = sup

ξ∈Rd
ξ

∣∣e−it 12 ξ
2

− 1
∣∣ = 2

is exactly 2 and Û(t) cannot be uniformly continuous in t. However, if ψ̂ ∈ L2(Rdξ) is a
wave function, the estimate∥∥Û(t)ψ̂ − ψ̂

∥∥2 =

∫
Rd

ξ

dξ
∣∣e−it 12 ξ

2

− 1
∣∣2 ∣∣ψ̂(ξ)∣∣2

≤ 22
∫
Rd

ξ

dξ
∣∣ψ̂(ξ)∣∣2 = 4

∥∥ψ̂∥∥2
shows we can invoke the Theorem of Dominated Convergence to conclude Û(t) is strongly
continuous in t ∈ R.

Definition 4.3.3 (Strongly continuous one-parameter unitary group) A family of unitary
operators {U(t)}t∈R on a Hilbert space H is called a strongly continuous one-parameter unitary
group – or unitary group for short – if

(i) t 7→ U(t) is strongly continuous and

(ii) U(t)U(t′) = U(t+ t′) as well as U(0) = idH
hold for all t, t′ ∈ Rt.

This is again a group representation ofRt just as in the case of the classical flowΦ. The form
of the Schrödinger equation,

i ddtψ(t) = Hψ(t),

also suggests that strong continuity/differentiability is the correct notion. Let us once
more consider the free hamiltonian H = −1

2∆x on L2(Rdx). We have shown in the tuto-
rials that its domain is

D(H) =
{
φ ∈ L2(Rdx) | −∆xφ ∈ L2(Rdx)

}
.
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4 Bounded linear operators

Using
(
F
(
(−i∂x)αf

))
(ξ) = ξα (Ff)(ξ), α ∈ Nd0, we see that D(H) is mapped by the

Fourier transform onto

D(Ĥ) =
{
ψ̂ ∈ L2(Rdξ) | ξ̂2ψ̂ ∈ L2(Rdξ)

}
.

Dominated Convergence can oncemore be used tomake the following claims rigorous: for
any ψ̂ ∈ D(Ĥ), we have

lim
t→0

∥∥ i
t

(
Û(t)− id)ψ̂ − 1

2 ξ̂
2ψ̂
∥∥ ≤ lim

t→0

∥∥ i
t

(
Û(t)− id)ψ̂

∥∥+ ∥∥ 1
2 ξ̂

2ψ̂
∥∥. (4.3.2)

The second term is finite since ψ̂ ∈ D(Ĥ) and we have to focus on the first term. On the
level of functions,

lim
t→0

i
t

(
e−it 12 ξ

2

− 1
)
= i ddte

−it 12 ξ
2
∣∣∣
t=0

= 1
2ξ

2

holds pointwise. Furthermore, by the mean value theorem, for any finite t ∈ R with
|t| ≤ 1, for instance, then there exists 0 ≤ t0 ≤ t such that

1
t

(
e−it 12 ξ

2

− 1
)
= ∂te−it 12 ξ

2 ∣∣
t=t0

= −i12ξ
2 e−it0 1

2 ξ
2

.

This can be bounded uniformly in t by 1
2ξ

2. Thus, also the first term can be bounded by∥∥ 1
2 ξ̂

2ψ̂
∥∥ uniformly. By Dominated Convergence, we can interchange the limit t → 0 and

integration with respect to ξ on the left-hand side of equation (4.3.2). But then the inte-
grand is zero and thus the domain where the free evolution group is differentiable coin-
cides with the domain of the Fourier transformed hamiltonian,

lim
t→0

∥∥∥ i
t

(
Û(t)− id)ψ̂ − 1

2 ξ̂
2ψ̂
∥∥∥ = 0.

This suggests to use the following definition:

Definition 4.3.4 (Generator of a unitary group) Adensely defined linear operator on aHilbert
spaceH with domainD(H) ⊆ H is called generator of a unitary evolution group U(t), t ∈ R, if

(i) the domain coincides with

D̃(H) =
{
φ ∈ H

∣∣ t 7→ U(t)φ differentiable
}
= D(H)

(ii) and for all ψ ∈ D(H), the Schrödinger equation holds,

i ddtU(t)ψ = HU(t)ψ.
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4.3 Unitary operators

This is only one of the two implications: usually we are given a hamiltonian H and we2014.10.07
would like to knowunderwhich circumstances this operator generates a unitary evolution
group. Wewill answer this question conclusively in the next sectionwith Stone’s Theorem.

Theorem 4.3.5 Let H be the generator of a strongly continuous evolution group U(t), t ∈ R.
Then the following holds:

(i) D(H) is invariant under the action of U(t), i. e. U(t)D(H) = D(H) for all t ∈ R.

(ii) H commutes with U(t), i. e. [U(t), H]ψ := U(t)Hψ − H U(t)ψ = 0 for all t ∈ R and
ψ ∈ D(H).

(iii) H is symmetric, i. e. ⟨Hφ,ψ⟩ = ⟨φ,Hψ⟩ holds for all φ,ψ ∈ D(H).

(iv) U(t) is uniquely determined byH .

(v) H is uniquely determined by U(t).

Proof (i) Let ψ ∈ D(H). To show that U(t)ψ is still in the domain, we have to show
that the norm ofHU(t)ψ is finite. SinceH is the generator of U(t), it is equal to

Hψ = i ddsU(s)ψ

∣∣∣∣
s=0

= lim
s→0

i
s

(
U(s)− id

)
ψ.

Let us start with s > 0 and omit the limit. Then∥∥∥ i
s

(
U(s)− id

)
U(t)ψ

∥∥∥ =
∥∥∥U(t) i

s

(
U(s)− id

)
ψ
∥∥∥ =

∥∥∥ i
s

(
U(s)− id

)
ψ
∥∥∥ <∞

holds for all s > 0. Taking the limit on left and right-hand side yields that we can
estimate the norm of HU(t)ψ by the norm of Hψ – which is finite since ψ is in the
domain. This means U(t)D(H) ⊆ D(H). To show the converse, we repeat the proof
for U(−t) = U(t)−1 = U(t)∗ to obtain

D(H) = U(−t)U(t)D(H) ⊆ U(t)D(H).

Hence, U(t)D(H) = D(H).

(ii) This follows from an extension of the proof of (i): since the domain D(H) coincides
with the set of vectors on which U(t) is strongly differentiable and is left invariant
by U(t), taking limits on left- and right-hand side of∥∥∥ i

s

(
U(s)− id

)
U(t)ψ − U(t) i

s

(
U(s)− id

)
ψ
∥∥∥ = 0

leads to [H,U(t)]ψ = 0.
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4 Bounded linear operators

(iii) This follows from differentiating ⟨U(t)φ,U(t)ψ⟩ for arbitrary φ,ψ ∈ D(H) and us-
ing
[
U(t), H

]
= 0 as well as the unitarity of U(t) for all t ∈ R.

(iv) Assume that bothunitary evolution groups,U(t) and Ũ(t), haveH as their generator.
For any ψ ∈ D(H), we can calculate the time derivative of

∥∥(U(t)− Ũ(t))ψ
∥∥2,

d
dt
∥∥(U(t)− Ũ(t))ψ

∥∥2 = 2
d
dt

(
∥ψ∥2 − Re

⟨
U(t)ψ, Ũ(t)ψ

⟩)
= −2Re

(⟨
−iHU(t)ψ, Ũ(t)ψ

⟩
+
⟨
U(t)ψ,−iHŨ(t)ψ

⟩)
= 0.

Since U(0) = id = Ũ(0), this means U(t) and Ũ(t) agree at least on D(H). Us-
ing the fact that there is only bounded extension of a bounded operator to all ofH,
Theorem 4.1.5, we conclude they must be equal on all ofH.

(v) This follows from the definition of the generator and the density of the domain. □

Now that we have collected a few facts on unitary evolution groups, one could think that
symmetric operators generate evolution groups, but this is false! The standard example
to showcase this fact is the group of translations on L2([0, 1]). Since we would like T (t)
to conserve “mass” – or more accurately, probability, we define for φ ∈ L2([0, 1]) and
0 ≤ t < 1

(
T (t)φ

)
(x) :=

{
φ(x− t) x− t ∈ [0, 1]

φ(x− t+ 1) x− t+ 1 ∈ [0, 1]
.

For all other t ∈ R, we extend this operator periodically, i. e. we plug in the fractional
part of t. Clearly,

⟨
T (t)φ, T (t)ψ

⟩
=
⟨
φ,ψ

⟩
holds for all φ,ψ ∈ L2([0, 1]). Locally, the

infinitesimal generator is−i∂x as a simple calculation shows:(
i ddt
(
T (t)φ

))
(x)

∣∣∣∣
t=0

= i ddtφ(x− t)

∣∣∣∣
t=0

= −i∂xφ(x)

However, T (t) does not respect the maximal domain of−i∂x,

Dmax(−i∂x) =
{
φ ∈ L2([0, 1]) | − i∂xφ ∈ L2([0, 1])

}
.

Any element of the maximal domain has a continuous representative, but if φ(0) ̸= φ(1),
then for t > 0, T (t)φ will have a discontinuity at t. We will denote the operator −i∂x on
Dmax(−i∂x)withPmax. Let us checkwhetherPmax is symmetric: for anyφ,ψ ∈ Dmax(−i∂x),
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4.3 Unitary operators

we compute⟨
φ,−i∂xψ

⟩
=

∫ 1

0

dxφ(x) (−i∂xψ)(x) =
[
−iφ(x)ψ(x)

]1
0
−
∫ 1

0

dx (−i) ∂xφ(x)ψ(x)

= i
(
φ(0)ψ(0)− φ(1)ψ(1)

)
+

∫ 1

0

dx (−i∂xφ)(x)ψ(x)

= i
(
φ(0)ψ(0)− φ(1)ψ(1)

)
+
⟨
−i∂xφ,ψ

⟩
. (4.3.3)

In general, the boundary terms do not disappear and the maximal domain is “too large”
for −i∂x to be symmetric. Thus it is not at all surprising, T (t) does not leave Dmax(−i∂x)
invariant. Let us try another domain: one way to make the boundary terms disappear is
to choose

Dmin(−i∂x) :=
{
φ ∈ L2([0, 1])

∣∣ − i∂xφ ∈ L2([0, 1]), φ(0) = 0 = φ(1)
}
.

We denote −i∂x on this “minimal” domain with Pmin. In this case, the boundary terms in
equation (4.3.3) vanish which tells us that Pmin is symmetric. Alas, the domain is still not
invariant under translations T (t), even though Pmin is symmetric. This is an example of a
symmetric operator which does not generate a unitary group.

There is another thing we have missed so far: the translations allow for an additional
phase factor, i. e. for φ,ψ ∈ L2([0, 1]) and ϑ ∈ [0, 2π), we define for 0 ≤ t < 1(

Tϑ(t)φ
)
(x) :=

{
φ(x− t) x− t ∈ [0, 1]

eiϑφ(x− t+ 1) x− t+ 1 ∈ [0, 1]
.

while for all other t, we plug in the fractional part of t. The additional phase factor cancels
in the inner product,

⟨
Tϑ(t)φ, Tϑ(t)ψ

⟩
=
⟨
φ,ψ

⟩
still holds true for allφ,ψ ∈ L2([0, 1]). In

generalTϑ(t) ̸= Tϑ′(t) ifϑ ̸= ϑ′ and the unitary groups are genuinely different. Repeating
the simple calculation frombefore, we see that the local generator still is−i∂x and itwould
seemwe can generate a family of unitary evolutions from a single generator. The confusion
is resolved if we focus on invariant domains: choosing ϑ ∈ [0, 2π), we define Pϑ to be the
operator−i∂x on the domain

Dϑ(−i∂x) :=
{
φ ∈ L2([0, 1])

∣∣ − i∂xφ ∈ L2([0, 1]), φ(0) = e−iϑφ(1)
}
.

A quick look at equation (4.3.3) reassures us that Pϑ is symmetric and a quick calculation
shows it is also invariant under the action of Tϑ(t). Hence, Pϑ is the generator of Tϑ, and
the definition of an unbounded operator is incomplete without spelling out its domain.

Example Another examplewhere the domain is crucial in the properties is thewave equa-
tion on [0, L],

∂2t u(x, t)− ∂2xu(x, t) = 0, u ∈ C2([0, L]× Rt).
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4 Bounded linear operators

Here, u is the amplitude of the vibration, i. e. the lateral deflection. If we choose Dirichlet
boundary conditions at both ends, i. e. u(0) = 0 = u(L), we model a closed pipe, if we
choose Dirichlet boundary conditions on one end, u(0) = 0, and von Neumann boundary
conditions on the other, u′(L) = 0, we model a half-closed pipe. Choosing domains is a
question of physics!
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5Chapter 5

Unbounded selfadjoint operators

Most physical observables, e. g. standard Schrödinger operators of the formH = −∆x+V ,
are unbounded selfadjoint operator, so in order to understand even the simplest physical
observables such as position x̂, momentum −i∇x and energy H we need to define and
understand unbounded operators first, extend the definition of adjoint and finally define
selfadjointness properly.

5.1 Unbounded operators

Akin to Chapter 4.1, we first need to introduce the notion of unbounded operators and
their adjoints. For the purpose of this chapter, a densely defined operator T always de-
notes a linear operator T : D(T ) ⊆ H −→ H defined on a separable Hilbert spaceH with
domain D(T ).

Definition 5.1.1 (Extension of an operator) LetT be a densely defined linear operator. Then
an extension S : D(S) ⊆ H −→ H is an operator such that S ⊃ T , meaning D(S) ⊃ D(T )

and S|D(T ) = T .

The use of⊂ in T ⊂ S also motivates calling T smaller than S.

Example We have discussed several candidates for the generator of translations on the
Hilbert space L2([0, 1]) in Chapter 4.3.2, and one can see from the definitions that Pmin ⊂
Pϑ ⊂ Pmax, i. e. Pϑ and Pmax are two extensions of Pmin.

An important properties with which to distinguish some unbounded operators from oth-
ers is closedness:

Definition 5.1.2 (Closed and closable operators) Let T : D(T ) ⊆ H −→ H be a densely
defined linear operator.
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5 Unbounded selfadjoint operators

(i) The graph of T is the linear subset

Γ(T ) :=
{
(φ, Tφ) | φ ∈ D(T )

}
⊂ H⊕H.

(ii) T is called closed if Γ(T ) is a closed subset ofH⊕H.

(iii) T is called closable if there exists a closed extension of T . In this case, the smallest closed
extension T is the closure of T which satisfies Γ(T ) = Γ(T ).

An important example of closed operators are adjoints of densely defined operators.

Definition 5.1.3 (Adjoint operator) LetT be a densely defined operator. LetD(T ∗) be the set
of φ ∈ H for which there exists ϕ ∈ H with

⟨Tψ, φ⟩ = ⟨ψ, ϕ⟩ ∀ψ ∈ D(T ).

For each φ ∈ D(T ∗), we define T ∗φ := ϕ and T ∗ is called the adjoint of T .

Remark 5.1.4 By Riesz Lemma, φ belongs toD(T ∗) if and only if∣∣⟨Tψ, φ⟩∣∣ ≤ C ∥ψ∥ ∀ψ ∈ D(T ).

This is equivalent to saying φ ∈ D(T ∗) if and only if ψ 7→ ⟨Tψ, φ⟩ is continuous onD(T ).
As a matter of fact, we could have used to latter to define the adjoint operator.

One word of caution: although adjoint operators are always closed, their domain may be
too small, i. e. even if T is densely defined, T ∗ need not be:

Example Let f ∈ L∞(R), but f ̸∈ L2(R), and pick ψ0 ∈ L2(R). Define

D(Tf ) :=
{
ψ ∈ L2(R)

∣∣ ∫
R
dx |f(x)ψ(x)| <∞

}
.

Then the adjoint of the operator

Tfψ := ⟨f, ψ⟩ψ0, ψ ∈ D(Tf ),

has domainD(T ∗
f ) = {0}. Let ψ ∈ D(Tf ). Then for any φ ∈ D(T ∗

f )⟨
Tfψ,φ

⟩
=
⟨
⟨f, ψ⟩ψ0, φ

⟩
=
⟨
ψ, f

⟩ ⟨
ψ0, φ

⟩
=
⟨
ψ, ⟨ψ0, φ⟩f

⟩
.

Hence T ∗
f φ = ⟨ψ0, φ⟩f . However f ̸∈ L2(R) and thus φ = 0 is the only possible choice

for which T ∗
f φ is well defined.
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5.1 Unbounded operators

Definition 5.1.5 (Symmetric operator) A densely defined operator T is called symmetric if
and only if

⟨Tψ, φ⟩ = ⟨ψ, Tφ⟩

holds for all φ,ψ ∈ D(T ).

Theorem 5.1.6 Let T be a densely defined linear operator. Then T ∗ is closed.

Proof According to Definition 5.1.3, the condition (ψ, ϕ) ∈ Γ(T ∗) is in fact equivalent to

⟨ψ, Tφ⟩ − ⟨ϕ, φ⟩ = 0 ∀φ ∈ D(T ).

However, seeing as ⟨ψ, Tφ⟩ − ⟨ϕ, φ⟩ =
⟨
(ψ, ϕ), (−Tφ, φ)

⟩
H⊕H, we introduce the unitary

map

W : H⊕H −→ H⊕H, (φ1, φ2) 7→ (−φ2, φ1)

and rewrite the graph of T ∗ as

Γ(T ∗) =W
(
Γ(T )

)⊥
. (5.1.1)

Since unitaries are bounded, it maps the closed set
(
Γ(T )

)⊥ (orthogonal complements of
sets are always closed subspaces) onto a closed set. Hence, T ∗ is closed. □

Corollary 5.1.7 Let T be a densely defined operator and T ⊂ S. Then S∗ ⊂ T ∗.

Proof This follows directly from (5.1.1), because Γ(T ) ⊂ Γ(S) implies

Γ(S∗) =W
(
Γ(S)

)⊥ ⊂W
(
Γ(T )

)⊥
= Γ(T ∗). □

Corollary 5.1.8 LetT be densely defined and closable, and assume that alsoT ∗ is densely defined.

(i) T = T ∗∗ =:
(
T ∗)∗

(ii)
(
T
)∗

= T ∗ = T ∗∗∗

Proof (i) First of all, it is easy to show that for any subspaceK ⊂ H⊕H we have

W
(
K⊥) = (WK

)⊥
.

Now using (5.1.1) repeatedly, we can express Γ(T ∗∗) in terms of Γ(T ),

Γ(T ∗∗) =W
(
Γ(T ∗)

)⊥
=W

(
W
(
Γ(T )

)⊥)⊥
=W

(
W
(
Γ(T )⊥

)⊥)
=W 2

((
Γ(T )⊥

)⊥)
.
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5 Unbounded selfadjoint operators

Evidently,W 2 = −idH⊕H and seeing as
(
K⊥)⊥ = K, we deduce

Γ(T ∗∗) = Γ(T ).

But this implies (i) as T is closable by assumption, and its smallest closed extension
satisfies Γ(T ) = Γ(T ).

(ii) This follows from

Γ
((
T
)∗)

= Γ(T ∗∗∗) = Γ(T ∗) = Γ(T ∗)

since T ∗ is closed by (i). Hence, also (ii) holds true. □2014.10.10

Corollary 5.1.9 Let T be densely defined and symmetric. Then T is closable and T ∗ is densely
defined, and we have T ⊆ T = T ∗∗ ⊆ T ∗ and

(
T
)∗

= T ∗.

Proof Since T is symmetric, T ∗ is densely defined as well as D(T ) ⊆ D(T ∗) implies the
latter is dense inH. Thus, Corollary 5.1.8 applies. □

5.2 Selfadjoint operators

We are finally in a position to define unbounded selfadjoint operators properly, and we
see that in large part, selfadjointness is a matter of domains. Very often, though, it is
not easy (or possible) to compute the domain explicitly. That is why the notion of essential
selfadjointness is useful where one gives a smaller symmetric operator which has a unique
selfadjoint extension.

Definition 5.2.1 (Selfadjoint operator) SupposeH is a symmetric, densely defined.

(i) H is called selfadjoint if and only ifH = H∗.

(ii) H is called essentially selfadjoint with coreD(H) if its closureH is selfadjoint.

Selfadjointness is not just a matter of an operator being symmetric, the crucial bit con-
cerns the domain.

Corollary 5.2.2 A symmetric, densely defined operatorH is essentially selfadjoint if and only if
H∗ is symmetric. Then the selfadjoint extension isH = H∗.

Proof “⇒:” Essentially selfadjoint operators are symmetric by definition and closable by
Corollary 5.1.9, and hence, the unique selfadjoint extension H = H

∗
= H∗∗∗ = H∗

(Corollary 5.1.8) is symmetric.
“⇐:” AssumeH∗ is symmetric. Then the combination of the two inclusions from Corol-

lary 5.1.9, H∗ ⊆ H∗∗ = H and H ⊆ H = H∗∗ ⊆ H∗, yields H∗ = H
∗
= H , i. e. H is

essentially selfadjoint. □
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5.2 Selfadjoint operators

Selfadjointness is not just important to have well-defined observables, but also existence of
the dynamics as a unitary evolution group.

Theorem 5.2.3 (Stone) To every strongly continuous one-parameter unitary groupU on aHilbert
spaceH, there exists a selfadjoint operatorH = H∗ which generates U(t) = e−itH . Conversely,
every selfadjoint operatorH generates the unitary evolution group U(t) = e−itH .

This is a very deep result of functional analysis, and a proof is beyond out capabilities at
this point (see e. g. [RS72, Chapter VIII.3]). However, we will at least prove one of the two
implications when we discuss how to define e−itH rigorously in Chapter 6.

5.2.1 Fundamental criterion for selfadjointness

While we now know how to define selfadjointness properly in case an operator is un-
bounded, the definition is too unwieldy to be able to prove selfadjointness. There are a
few ways to decide whether an operator is selfadjoint the most basic one is the

Theorem 5.2.4 (Fundamental criterion for selfadjointness) LetH be a symmetric, densely
defined operator. Then the following are equivalent:

(i) H is selfadjoint.

(ii) H is closed and ker(H∗ ± i) = {0}.

(iii) ran (H ± i) = H.

The proof is split in two parts, first we state and show this auxiliary result:

Lemma 5.2.5 Let T be a densely defined operator. Then we have:

(i) ker(T ∗ ∓ i) = ran (T ± i)⊥

(ii) ker(T ∗ ∓ i) = {0}⇔ ran (T ± i) ⊆ H dense

(iii) If in addition T is closed and symmetric, then ran (T ± i) are closed.

Proof (i) First of all, we note that (T ± i)∗ = T ∗ ∓ i. The following equivalences hold
true:

ψ ∈ ran (T + i)⊥ ⇔ ⟨ψ, (T + i)φ⟩ = 0 ∀φ ∈ D(T )

⇔ ψ ∈ D(T ∗) and ⟨(T ∗ − i)ψ,φ⟩ = 0 ∀φ ∈ D(T )

⇔ ψ ∈ D(T ∗) and (T ∗ − i)ψ = 0

⇔ ψ ∈ ker(T ∗ − i)

The proof for the other sign is analogous.
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5 Unbounded selfadjoint operators

(ii) This follows immediately from (i).

(iii) For symmetric operators T and φ ∈ D(T ) the expectation value ⟨Tφ, φ⟩ = ⟨φ, Tφ⟩
is necessarily real, and consequently, it follows that∥∥(T + i)φ

∥∥2 =
∥∥Tφ∥∥2 + ∥φ∥2 + 2Re ⟨iφ, Tφ⟩ =

∥∥Tφ∥∥2 + ∥φ∥2 ≥ ∥φ∥2. □

Hence, T + i is injective and the inverse (T + i)−1 : ran (T + i) −→ D(T ) exists as a
bounded operator. To see that ran (T + i) is closed, pick a Cauchy sequence {ψn}n∈N
in the range. The image of this Cauchy sequence under (T + i)−1 is another Cauchy
sequence ψn := (T + i)−1φn in D(T ) ((T + i)−1 is bounded!). Also

(
ψn, Tψn

)
is a

Cauchy sequence with respect to the norm on H ⊕ H because T (T + i)−1 = id −
i (T + i)−1 is bounded. That means

(
ψn, Tψn

)
converges to some (ϕ, η) ∈ H ⊕ H.

In fact, this sequence converges in Γ(T ) as T is closed. But then (T + i)ϕ is the limit
point in ran (T + i), and the range is closed.2014.10.14

Proof (Theorem 5.2.4) “(i) ⇒ (ii):” Suppose H = H∗ is selfadjoint. Then it is closed by
Theorem 5.1.6. A vector φ± is an element of ker(H∗ ± i) = ker(H ± i) if and only if
Hφ± = ∓iφ±. Put another way, φ± is an eigenvector of H to the eigenvalue ∓i. How-
ever, eigenvalues of symmetric operators are necessarily real: assume φλ ∈ D(H) is an
eigenvector ofH to λ ∈ C, then a quick computation

λ ⟨φλ, φλ⟩ = ⟨φλ, Hφλ⟩ = ⟨Hφλ, φλ⟩
= λ̄ ⟨φλ, φλ⟩

reveals λ = λ. Thus, only φ± = 0 satisfiesHφ± = ∓iφ± and ker(H∗ ± i) = {0}.
“(ii)⇒ (iii):” This follows from Lemma 5.2.5 above.
“(iii) ⇒ (i):” Assume ran (H ± i) = H. We will need to show H = H∗. The inclusion

H ⊆ H∗ follows from Corollary 5.1.9, and we are left to showH ⊇ H∗. To unburden the
notation, let us consider H − i. The surjectivity of H − i yields that for any ψ ∈ D(H∗)

there exists a φ ∈ D(H) so that

(H∗ − i)ψ = (H − i)φ = (H∗ − i)φ

where in the last step we have used H∗ ⊇ H . But that means ψ − φ ∈ ker(H∗ − i), and
ran (H + i) = H (note the difference in sign!) combined with Lemma 5.2.5 (ii) implies
ψ = φ. Given that ψ ∈ D(H∗) was chosen arbitrarily, we inferD(H∗) = D(H). □

Corollary 5.2.6 (Fundamental criterion for selfadjointness) LetH be a symmetric, densely
defined operator. Then the following are equivalent:

(i) H is essentially selfadjoint.
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5.2 Selfadjoint operators

(ii) ker(H∗ ± i) = {0}

(iii) ran (H ± i) ⊆ H is dense.

Proof To see (i) ⇔ (ii), we note that Theorem 5.2.4 applies for H∗∗, because according
to Corollary 5.1.8 (i) H∗∗ = H is the selfadjoint closure of H and H∗∗∗ = H∗ by Corol-
lary 5.1.8 (ii). Consequently, we have the following equivalences:

H essentially selfadjoint ⇔ H = H∗∗ selfadjoint
⇔ H∗∗ closed and ker

(
H∗∗∗ ± i

)
= {0}

⇔ ker
(
H∗ ± i

)
= {0}

The equivalence (ii)⇔ (iii) is the content of Lemma 5.2.5 (i). □

Usually it is simpler to check whether an operator is essentially selfadjoint. However, in
certain cases, proving such statements can be hard work and require highly non-trivial
machinery.

The corollary implies that an operator cannot be selfadjoint if the deficiency indices

N+(H) := dimker(H∗ + i),
N−(H) := dimker(H∗ − i),

take different values, N+(H) ̸= N−(H). However, if the two are equal, one can always
find a selfadjoint extension:

Theorem 5.2.7 A densely defined, symmetric operatorH has at least one selfadjoint extension if
and only ifN−(H) = N+(H) holds.

The proof is a bit technical, and will be skipped during the lecture. The interested reader
can find it in [RS75, p. 141].

During the exercises, you are asked to compute the defect indices of Pmin from Chap-
ter 4.3.2. It turns out that N±(Pmin) = 1, and this one-dimensional degree of freedom is
connected to the freedom to choose a phase during the gluing procedure. In other words,
for any value of ϑ ∈ R the operator Pϑ is a selfadjoint extension of Pmin.

5.2.2 Spectral properties

The spectrum of an operator is the generalization of the set of eigenvalues for matrices.
According to Definition 4.1.6 the spectrum can be divided into three parts, the point spec-
trum

σp(H) :=
{
z ∈ C | H − z is not injective

}
,
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5 Unbounded selfadjoint operators

the continuous spectrum

σcont(H) :=
{
z ∈ C | H − z is injective, im (H − z) ⊆ H dense

}
,

and the residual spectrum

σr(H) :=
{
z ∈ C | H − z is injective, im (H − z) ⊆ H not dense

}
.

Point spectrum is due to eigenvalues with eigenvector. Compared to matrices, the occur-
rence of continuous and residual spectra is new. The residual spectrum is not important
for our discussion as it is empty for selfadjoint operators.

The continuous spectrum can be attributed to cases where the eigenvectors are not
elements of the Hilbert space. For instance, in case of the free Schrödinger operator
H = − 1

2∆x on L2(Rd), the spectrum is σ(H) = σcont(H) = [0,+∞). Here, the eigenvec-
tors are plane waves, e+iξ·x which are smooth, bounded functions; however, plane waves
are not square integrable. Similarly, multiplication operators have Dirac distributions as
eigen“functions”.

Note that this distinction between the spectral components goes further than looking at
the spectrum as a set: for instance, it is known that certain random Schrödinger operators
have dense point spectrum which “looks” the same as continuous spectrum.

There is also a second helpful classification of spectrum which cannot be made rigor-
ous with the tools we have at hand, and that is the distinction between essential spectrum
σess(H) and discrete spectrumσdisc(H). The essential spectrum is stable under local, short-
range perturbations while the discrete spectrummay change. One has the following char-
acterization for the essential spectrum:

Theorem 5.2.8 (Theorem VII.10 in [RS72]) λ ∈ σess(H) if and only if one or more of the
following holds:

(i) λ ∈ σcont(H)

(ii) λ is a limit point of σp(H).

(iii) λ is an eigenvalue of infinite multiplicity.

Similarly, the discrete spectrum has a similar characterization:

Theorem 5.2.9 (Theorem VII.11 in [RS72]) λ ∈ σdisc(H) if and only if both of the following
hold:

(i) λ is an isolated point of σ(H), i. e. for some ε > 0 we have
(
λ− ε, λ+ ε

)
∩ σ(H) = {λ}.

(ii) λ is an eigenvalue of finitemultiplicity.
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5.2 Selfadjoint operators

The spectrum can be probed bymeans of approximate eigenfunctions (“Weyl’s Criterion”,
see [RS72, Theorem VII.12]):

Theorem 5.2.10 (Weyl’s criterion) LetH be a bounded selfadjoint operator on a Hilbert space
H. Then λ ∈ σ(H) holds if and only if there exists a sequence {ψn}n∈N so that ∥ψn∥ = 1 and

lim
n→∞

∥∥Hψn − λψn
∥∥
H = 0.

We have λ ∈ σess(H) if and only if we can choose the sequence {ψn}n∈N to be orthonormal.

Example (Weyl’s criterion for H = −∂2
x on L2(R)) For any λ2 ∈ [0,+∞), one can

choose a sequence {ψn}n∈N of normalized and cut off plane waves e±iλx. To make sure
they are normalized, we know that pointwise ψn(x) → 0 as n→ ∞.

5.2.2.1 The spectrum of selfadjoint operators is real

As a side note, let us show that the spectrum of selfadjoint operators is purely real.

Theorem 5.2.11 LetH = H∗ be a selfadjoint operator on the Hilbert spaceH. Then the follow-
ing holds true:

(i) σ(H) ⊆ R

(ii) H ≥ 0⇒ σ(H) ⊆ [0,+∞)

To prove this, we use the following

Lemma 5.2.12 LetHj , j = 1, 2, be Hilbert spaces. Then an operator T ∈ B(H1,H2) is invert-
ible if and only if there exists a constant C > 0 such that T ∗ T ≥ C idH1 and T T ∗ ≥ C idH2

hold.

Proof “⇒:” Assume T is invertible. Then T ∗ : H2 −→ H1 is also invertible with inverse
T ∗−1 = T−1∗. Set C :=

∥∥T−1
∥∥−2

=
∥∥T ∗−1

∥∥−2. Then the inequality

∥ψ∥ =
∥∥T−1Tψ

∥∥ ≤
∥∥T−1

∥∥ ∥Tψ∥

proves ∥Tψ∥ ≥
∥∥T−1

∥∥−1, and thus also

⟨ψ, T ∗Tψ⟩ = ∥Tψ∥2 ≥
∥∥T−1

∥∥−2 ∥ψ∥2 = C ∥ψ∥2 , (5.2.1)

i. e. we have shown T ∗ T ≥ C idH1 . The non-negativity of T T ∗ is shown analogously.
“⇐:” Suppose there exists C > 0 such that T ∗ T ≥ C idH2

and T T ∗ ≥ C idH2
. Then

from (5.2.1) we deduce ∥Tψ∥ ≥
√
C ∥ψ∥ holds for all ψ ∈ H1. First of all, this proves that
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5 Unbounded selfadjoint operators

T is injective, and secondly T has closed range inH2 (one can see the latter by considering
convergence of Tψn for any Cauchy sequence {ψn}n∈N). Moreover, one can easily see

ranT = ranT =
(
kerT ∗)⊥.

Since we canmake the same arguments for T ∗, we also know that T ∗ is injective, and thus
kerT ∗ = {0}. This shows that T is surjective, i. e. it is bijective, and hence, invertible. □

With the proof of the Lemma complete, we can now prove the statement:

Proof (Theorem 5.2.11) (i) Let H = H∗ be selfadjoint and z = λ + iµ ∈ C \ R be a
complex number with non-vanishing imaginary part µ. We will show that z ̸∈ σ(H),
i. e. thatH − λ is invertible: a quick computation shows(

H − z
)∗ (

H − z
)
= H2 − 2 (Re z)H + |z|2 = H2 − 2λH + (λ2 + µ2)

= µ2 +
(
H − λ

)2
.

The last term is non-negative, and thus, we have shown(
H − z

)∗ (
H − z

)
≥ µ2. (5.2.2)

By the Lemma, this meansH − λ is necessarily invertible, and z ̸∈ σ(H).

(ii) We have to show that for λ ∈ (−∞, 0), the operatorH−λ is invertible. This follows
as before from (

H − λ
)∗ (

H − λ
)
= H2 − 2λH + λ2 ≥ λ2,

the non-negativity of−2λH = 2|λ|H and the Lemma. □

Equation (5.2.2) also yields a very useful estimate on the norm of the resolvent (H− z)−1:

Corollary 5.2.13 Let H be a selfadjoint operator and z ∈ C \ R. Then we have the following
estimate for the norm of the resolvent:∥∥(H − z)−1

∥∥ ≤ 1

|Im z|
(5.2.3)

Proof AsH is selfadjoint and Im z ̸= 0 the Fundamental Criterion of Selfadjointness 5.2.4
tells us that ran (H − z) = H. That means to any ψ ∈ H we can find φ ∈ D(H) such that
(H − z)φ = ψ, and consequently, (5.2.2) yields∥∥(H − z)φ

∥∥2 = ∥ψ∥2

≥ |Im z|2
∥∥φ∥∥2 = |Im z|2

∥∥(H − z)−1ψ
∥∥2.

This is equivalent to equation (5.2.3). □
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5.2 Selfadjoint operators

5.2.2.2 Spectra of common selfadjoint operators

Quite generally, the spectrum of selfadjoint operators is purely real. But before we prove
that, let us discuss some examples from physics:

Multiplication operators The spectrum of the multiplication operator(
f(x̂)ψ

)
(x) := f(x)ψ(x)

is given by the range, σ
(
f(x̂)

)
= ran f , where f : Rd −→ R is a piecewise-continuous

function.1
To see this claim, we rely on the Weyl criterion: in order to show σ

(
f(x̂)

)
⊇ ran f ,

pick any λ ∈ ran f . Then there exists a sequence xn such that |λ− f(xn)| < 1/n. Then
by shifting an L2-Dirac sequence by xn (e. g. scaled Gaußians), we obtain a sequence of
vectors ψn with

∥∥(f(x̂)− λ
)
ψn
∥∥ n→∞−−−−→ 0. Hence, this reasoning shows ran f ⊆ σ

(
f(x̂)

)
.

To show the converse inclusion, let λ ∈ σ
(
f(x̂)

)
. Then there exists a Weyl sequence

{ψn}n∈N with
∥∥(f(x̂) − λ

)
ψn
∥∥ → 0 as n → ∞. Assume infx∈Rd

∣∣f(x) − λ
∣∣ = c > 0,

i. e. λ ̸∈ ran f , then {ψn} cannot be a Weyl sequence to λ,∥∥(f(x̂)− λ
)
ψn
∥∥ ≥ inf

x∈Rd

∣∣f(x)− λ
∣∣ ∥ψn∥ ≥ c > 0,

which is absurd.

Should f be constant and equal toλ0 on a set of positivemeasure, there are infinitelymany
eigenfunctions associated to the eigenvalue λ0. Otherwise, f has continuous spectrum. In
any case, the spectrum of f(x̂) is purely essential.

Clearly, this takes care of any operator which is unitarily equivalent to a multiplication
operator, e. g. the free Laplacian on Rd or Td.

The hydrogen atom One of the most early celebrated successes of quantum mechanics
is the explanation of the spectral lines by Schrödinger [Sch26b; Sch26d; Sch26a; Sch26c].
Here, the operator

HC := − ℏ2

2m
∆x −

e2

|x̂|
(5.2.4)

acts on a dense subspace of L2(R3). A non-obvious fact is that this operator is bounded
from below, i. e. there exits a constant c > 0 such that H ≥ −c. This is false for the
corresponding classical system, because the function h(q, p) = 1

2mp
2 − e

|q| is not bounded
from below.
1This condition can be relaxed and is chosen just for ease of use.
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5 Unbounded selfadjoint operators

The reason for that is that states of low potential energy (i. e. wave functions which are
sharply peaked around 0) must pay an ever larger price in kinetic energy (sharply peaked
means large gradient). One heuristic way to see that is to compute the energy expectation
value of ψλ := λ3/2 ψ(λx) for λ≫ 1 where ψ ∈ S(Rd):

Eψλ
(H) =

ℏ2

2m

⟨
ψλ,−∆xψλ

⟩
− e

⟨
ψλ, |x̂|−1ψλ

⟩
=

ℏ2

2m
λ2
∫
R3

dxλ3
∣∣∇xψ(λx)

∣∣2 − e λ

∫
R3

dxλ3 |ψ(λx)|
λ |x|

= λ2
⟨
ψ,− ℏ2

2m∆xψ
⟩
− λ

⟨
ψ, e |x̂|−1ψ

⟩
(5.2.5)

Clearly, if one replaces the Coulomb potential by− |x|−3, the kinetic energy wins and the
quantum particle can “fall down the well”.

The negative potential gives rise to a family of eigenvalues (the spectral lines) while
−∆x contributes continuous spectrum [0,+∞),2014.10.17

σ(H) = {En}n∈N ∪ [0,+∞),

σcont(H) = [0,+∞) = σess(H),

σp(H) = {En}n∈N = σdisc(H).

5.2.2.3 Eigenvalues and bound states

The hydrogen atom is a prototypical example of the type of problem we are interested in,
namely Schrödinger operators on L2(Rd) of the form

H = −∆x + V

where V ≤ 0 is a non-positive potential decaying at infinity (lim|x|→∞ V (x) = 0). Under
suitable technical conditions on the potential, H defines a selfadjoint operator which is
bounded from below, that isH ≥ c holds for some c ∈ R, and we have

σess(H) = σ(−∆x) = [0,+∞).

Wewill comeback to the question of selfadjointness ofH = −∆x+V later in Chapter 5.2.3.
Now the question is whether σp(H) = ∅ or

σp(H) = {En}Nn=0 ⊂ (−∞, 0)

for some N ∈ N0 ∪ {∞}. We shall always assume that the eigenvalues are ordered by
magnitude,

E0 ≤ E1 ≤ . . .
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5.2 Selfadjoint operators

The ground state ψ0 is the eigenfunction to the lowest eigenvalue E0. Eigenfunctions ψ
are localized: the weakest form of localization is ψ ∈ L2(Rd), but usually one can expect
exponential localization.

So there are two natural questions which we will answer in turn:

(1) Do eigenvalues below the essential spectrum exist?

(2) Can we give estimates on their numerical values?

The Birman-Schwinger principle We begin with the Birman-Schwinger principle which
gives a criterion for the existence and absence of eigenvalues at a specific energy level. It
is the standard tool for showing the existence or absence of eigenvalues. Assume φ is an
eigenvector of H to the eigenvalue −E < 0. Then the eigenvalue equation is equivalent
to (

−∆x + E
)
φ = −V φ = |V |φ.

If we define the vector ψ := |V |1/2 φ and use that−E ̸∈ σ(−∆x) = [0,+∞), we obtain

|V |1/2
(
−∆x + E

)−1 |V |1/2 ψ = ψ.

In other words, we have just shown the

Theorem 5.2.14 (Birman-Schwinger principle) The function φ ∈ L2(Rd) is an eigenvec-
tor ofH = −∆x + V to the eigenvalue−E < 0 if and only if ψ = |V |1/2 φ is an eigenvector of
the Birman-Schwinger operator

KE := |V |1/2
(
−∆x + E

)−1 |V |1/2 (5.2.6)

to the eigenvalue 1.

The only assumption we have glossed over is the boundedness of KE . One may think
that solving KEψ = ψ is just as difficult as Hφ = −Eφ, but it is not. For instance, we
immediately obtain the following

Corollary 5.2.15 Assume the Birman-Schwinger operatorKE ∈ B
(
L2(Rd)

)
is bounded. Then

for λ0 small enough,Hλ = −∆x + λV has no eigenvalue at−E for all 0 ≤ λ < λ0.

Proof ReplacingV withλV in equation (5.2.6) yields that the Birman-Schwinger operator
forHλ is λKE . Thus, for λ small enough, we can make λ ∥KE∥ < 1 arbitrarily small and
since sup

∣∣σ(KE

)∣∣ ≤ ∥KE∥,2 thismeans 1 cannot be an eigenvalue. Hence, by the Birman-
Schwinger principle there cannot exist an eigenvalue at−E. □
2This is a general fact: if T ∈ B(X ) is an operator on a Banach space, then sup |σ(T )| ≤ ∥T∥ holds [Yos80,
Chapter VIII.2, Theorems 3 and 4].
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5 Unbounded selfadjoint operators

Another advantage is that we have an explicit expression for the operator kernel of KE ,
the Birman-Schwinger kernel, which allows us to make explicit estimates. In general, an
operator kernelKT for an operator T is a distribution on Rd × Rd so that

(Tψ)(x) =

∫
Rd

dy KT (x, y)ψ(y).

For the sake of brevity, we will also write T (x, y) forKT (x, y). One specific example are
Green’s functionsG which are the operator kernel to L−1, i. e. if we assume the operator
L is invertible and Lu = f , then we have

u(x) =

∫
Rd

dy G(x, y) f(y) =
(
L−1f

)
(x).

Seeing asKE is the product of the multiplication operator |V |1/2 and
(
−∆x + E

)−1, the
dimension-dependent, explicit expression of Birman-Schwinger kernel involves only the
Green’s function of−∆x + E in that particular dimension,

KE(x, y) = |V (x)|1/2
(
−∆x + E

)−1
(x, y) |V (y)|1/2 .

In odd dimension, there exist closed expressions for
(
−∆x+E

)−1
(x, y)while for even d,

no neat formulas for it exist. Nevertheless, its behavior can be characterized.
Let us return to the original question: Can we show the existence of eigenvalues as well via
the Birman-Schwinger principle? The answer is yes, and we will treat a particular case:

Theorem 5.2.16 ([Sim76]) Consider the Schrödinger operator Hλ = −∂2x + λV on L2(R)
where λ > 0 and the potential V ̸= 0 satisfies V ≤ 0 and∫

R
dx
(
1 + x2

)
|V (x)| <∞.

Then there exists λ0 > 0 small enough so thatHλ has exactly one eigenvalue

Eλ = −λ
2

4

(∫
R
dx |V (x)|

)2

+O(λ4) (5.2.7)

for all λ ∈ (0, λ0).

The eigenvalue gives an intuition on the shape of the eigenfunction: it has few oscilla-
tions to minimize kinetic energy and is approximately constant in the region where V is
appreciably different from 0 (this region is not too large because of the decay assump-
tion

∫
R dxx2 |V (x)| < ∞). Hence, the eigenfunction sees only the average value of the

potential.
This intuition neither explains why other eigenvalues may appear nor that for d ≥ 3,

the theorem is false.
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Proof The arguments in [Sim76, Section 2] ensure the boundedness of theBirman-Schwinger
operator. Moreover, in one dimension the Green’s function for −∂2x + E exists (−E ̸∈
σ(−∂2x)) and can be computed explicitly, namely

(
−∂2x + E

)−1
(x, y) =

√
2π
(
F(ξ2 + E)−1

)
(x− y) =

e−
√
E|x−y|

2
√
E

.

To simplify notation, let us define µ :=
√
E. Thus, the Birman-Schwinger kernel is the

function

Kµ2(x, y) =
1

2µ
|V (x)|1/2 e−µ|x−y| |V (y)|1/2 .

In addition, define the operators

Lµ :=
1

2µ

∣∣|V |1/2
⟩⟨
|V |1/2

∣∣
andMµ := Kµ2 − Lµ. Clearly, given that V ∈ L1(R), its square root is L2 and LE is a
bounded rank-1 operator. Moreover, the operator kernel

Mµ(x, y) = |V (x)|1/2 e−µ|x−y| − 1

2µ
|V (y)|1/2

is well-defined in the limit µ→ 0 and analytic for µ ∈ C with Reµ > 0.
The Birman-Schwinger principle tells us that Hλ has an eigenvalue at −µ2 if and only

if 1 ∈ σp(Kµ2): for λ≪ 1 small enough we have
∥∥λMµ

∥∥ < 1 which means the Neumann
series3

(
1− λMµ

)−1
=

∞∑
n=0

λnMn
µ = 1 + λMµ +O(λ2) (5.2.8)

exists in B
(
L2(R)

)
. Hence, the invertibility of

1− λKµ2 = 1− λMµ − λLµ

=
(
1− λMµ

) (
1− λ

(
1− λMµ

)−1
Lµ

)
hinges on whether 1 is an eigenvalue of

λ
(
1− λMµ

)−1
Lµ =

∣∣∣ λ2µ(1− λMµ

)−1 |V |1/2
⟩⟨

|V |1/2
∣∣∣ .

3In this context, the geometric series is usually referred to as Neumann series.
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This is again a rank-1 operator, and thus, we can read off the eigenvector

ψλ,µ =
λ

2µ

(
1− λMµ

)−1 |V |1/2 ∈ L2(R)

to its only non-zero eigenvalue. Moreover, we can compute this eigenvalue,⟨
|V |1/2 , λ

2µ

(
1− λMµ

)−1 |V |1/2
⟩
,

and this is equal to 1 if and only if µ satisfies the self-consistent equation

µ = G(µ) :=
λ

2

⟨
|V |1/2 ,

(
1− λMµ

)−1 |V |1/2
⟩
.

Given that ∥λMµ∥ < 1 for λ ≪ 1 small enough, we can express
(
1 − λMµ

)−1 in terms
of (5.2.8). Keeping only the first term of the expansion (5.2.8), we approximate G by the
average of the potential

G(µ) = λ
2

⟨
|V |1/2 , |V |1/2

⟩
+O(λ2) =

λ

2

∫
R
dx |V (x)|+O(λ2). (5.2.9)

Hence, G(µ) = µ has a solution µ∗ provided λ is small enough; additionally any solution
to this equation satisfies µ−1 ≤ C1 λ

−1 for some constant C1 > 0 and λ small.

Now that we know that a solution exists, we need to show uniqueness: Suppose we have
found two solutions µ1 ≤ µ2. Then they both solve the self-consistent equation G(µj) =
µj , and assuming for a moment that G is continuously differentiable in µ, we use the
fundamental theorem of calculus to obtain∣∣µ2 − µ1

∣∣ = ∣∣G(µ2)−G(µ1)
∣∣ = ∣∣∣∣∫ µ2

µ1

dµ∂µG(µ)
∣∣∣∣

≤ sup
µ∈[µ1,µ2]

∣∣∂µG(µ)∣∣ ∣∣µ2 − µ1

∣∣.
If we can show G is continuously differentiable and its derivative is bounded by 1/2 for λ
small enough, then the above inequality reads

∣∣µ2−µ1

∣∣ ≤ 1
2

∣∣µ2−µ1

∣∣. This is only possible
if µ1 = µ2, and the solution is unique.

To show the last bit, we note thatMµ and (1− z)−1 are real-analytic in µ so that their
composition

(
1−λMµ

)−1 is also real-analytic. The analyticity ofMµ for µ ∈ C, Reµ > 0,
also yields the bound ∥∥∂µMµ

∥∥ ≤ C2 µ
−1 (5.2.10)

via the Cauchy integral formula, because themaximal radius of the circular contour is less
than µ.
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The derivative of the resolvent can be related to ∂µMµ via the useful trick

0 = ∂µ(id) = ∂µ

((
1− λMµ

)−1 (
1− λMµ

))
= ∂µ

(
1− λMµ

)−1 (
1− λMµ

)
+ λ

(
1− λMµ

)−1
∂µMµ

which yields

∣∣∂µG(µ)∣∣ = ∣∣∣∣λ22 ⟨|V |1/2 ,
(
1− λMµ

)−1
∂µMµ

(
1− λMµ

)−1 |V |1/2
⟩∣∣∣∣ .

The right-hand side can be estimated with the help of the Cauchy-Schwarz inequality

. . . ≤ λ2
∥∥|V |1/2

∥∥2
L2(R)

∥∥∥(1− λMµ

)−1
∥∥∥2 ∥∥∂µMµ

∥∥ =: C3 λ
2
∥∥∂µMµ

∥∥.
Combining (5.2.10) with µ−1 ≤ C1 λ

−1 (which we obtained from µ = G(µ)), we find

C3 λ
2
∥∥∂µMµ

∥∥ ≤ C3 λ
2 C2 µ

−1 ≤ C1C2C3 λ.

Put another way, we have deduced the bound
∣∣∂µG(µ)∣∣ ≤ C λ which means that for λ

small enough, we can ensure that the derivative is less than 1/2. Thus, the eigenvalue is
unique and we have shown the theorem. □

The min-max principle Now that we have established criteria for the existence of bound
states below the continuous spectrum for operators of the formH = −∆x+V , we proceed
to find other ways to give estimates of their numerical values. Crucially, we shall always
assumeH ≥ c for some c ∈ R. Most of the methods of this chapter do not depend on the
particular form of the hamiltonian.

So let us assume we have established the existence of a ground state ψ0, i. e. there exists an
eigenvalue E0 = infσ(H) < 0 = infσess(H) at the bottom of the spectrum, the ground
state energy, whose eigenfunction is ψ0. Then simplest estimate is obtained by minimizing
the Rayleigh quotient

Eψ(H)

∥ψ∥2
=

⟨ψ,Hψ⟩
∥ψ∥2

for a family of trial wave functions (see also homework problem 54). Clearly, the Rayleigh
quotient is bounded from below by E0 for otherwise, E0 is not the infimum of the spec-
trum.
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Proposition 5.2.17 (The Rayleigh-Ritz principle) LetH with a densely defined, selfadjoint
operator which is bounded from below, i. e. there exists c ∈ R such thatH ≥ c. Then

infσ(H) ≤ ⟨ψ,Hψ⟩
∥ψ∥2

(5.2.11)

holds for all ψ ∈ H \ {0}.

A rigorous proof of this innocent-looking fact (see e. g. [RS78, Theorem XIII.1]) requires
machinery that is not yet available to us.

A non-obvious fact is that we can also give a lower bound on the ground state energy:

Theorem 5.2.18 (Temple’s inequality, Theorem XIII.5 in [RS78]) Let H be a selfadjoint
operator that is bounded from below with ground stateE0 ∈ σdisc(H). Suppose in additionE0 <

E1 where E1 is either the second eigenvalue (in case more eigenvalues exist) or the bottom of the
essential spectrum. Then for µ ∈ (E0, E1) and ψ with ∥ψ∥ = 1 and ⟨ψ,Hψ⟩ < µ, Temple’s
inequality holds:

E0 ≥ ⟨ψ,Hψ⟩ −
⟨
ψ,H2ψ

⟩
− ⟨ψ,Hψ⟩2

µ− ⟨ψ,Hψ⟩
= ⟨ψ,Hψ⟩ − Varψ(H)

µ− ⟨ψ,Hψ⟩

Temple’s inequality gives an energy window for the ground state energy: if ψ is close to
the ground state wave function, then the right-hand side is also close toE0. On the other
hand, one needs to know a lower bound on the second eigenvalue E1.

Proof By assumption, E0 is an isolated eigenvalue of finite multiplicity (otherwise E0 =

E1 = En for all n ∈ N), and thus the operator (H − E0)(H − µ) ≥ 0 is non-negative:
the product is = 0 if applied to the ground state and > 0 otherwise because µ < E1.
Consequently, ⟨

ψ, (H − µ)Hψ
⟩
≥ E0

⟨
ψ, (H − µ)ψ

⟩
(5.2.12)

holds which, combined with the hypothesis
⟨
ψ, (H − µ)ψ

⟩
< 0, yields

E0 ≥
µ ⟨ψ,Hψ⟩ −

⟨
ψ,H2ψ

⟩
µ− ⟨ψ,Hψ⟩

. □

What about other bound states below the essential spectrum (the ionization threshold)?2014.10.24
Usually, we do not know whether and how many eigenvalues exist. Nevertheless, we can
define a sequence of non-decreasing real numbers that coincides with the eigenvalues if
they exist: the Rayleigh quotient suggests to use

E0 := inf
φ∈D(H),∥φ∥=1

⟨φ,Hφ⟩
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5.2 Selfadjoint operators

as the definition of the ground state energy. Note that even ifH does not have eigenvalues,
E0 is still well-defined and yields infσ(H) (use aWeyl sequence). A priori, we do not know
whether aE0 is an eigenvalue, sowe do not knowwhether an eigenvector exists. However,
if E0 is an eigenvalue, then the eigenvectorψ1 to the next eigenvalueE1 (if it exists) would
necessarily have to be orthogonal to ψ0. Then the next eigenvalue satisfies

E1 = sup
φ0∈D(H)\{0}

inf
φ∈D(H),∥φ∥=1

φ∈{φ0}⊥

⟨φ,Hφ⟩ .

It turns out that this is the good definition even if E0 ̸∈ σdisc(H) is not an eigenvalue
of finite multiplicity, because then E0 = E1. Quite generally, the candidate for the nth
eigenvalue is

En := sup
φ1,...,φn∈D(H)
⟨φj ,φk⟩=δjk

inf
φ∈D(H),∥φ∥=1

φ∈{φ1,...,φn}⊥

⟨φ,Hφ⟩ .

Thus, we obtain a sequence of non-decreasing real numbers

E0 ≤ E1 ≤ E2 ≤ . . .

which – if they exist – are the eigenvalues repeated according to their multiplicities. One
can show rigorously that if En = En+1 = En+2 = . . ., then En = infσess(H) is the
bottom of the essential spectrum. Otherwise, the En < infσess(H) are eigenvalues of finite
multiplicity. In that case, there are at most n eigenvalues below the essential spectrum.

One may object that quite generally, it is impossible to evaluate En. Here is where the
min-max principle comes into play: assume we have chosen n trial wave functions. Then
this family of trial wave functions is a good candidate for the first few eigenfunctions if
the eigenvalues λj of the matrix h :=

(⟨
φj ,Hφk

⟩)
0≤j,k≤n−1

(ordered by size) are close
to the Ej .

Theorem 5.2.19 (The min-max principle) SupposeH is a selfadjoint operator on the Hilbert
spaceHwith domainD(H). Moreover, assumeH is bounded from below. Let

{
φ0, . . . , φn−1

}
⊂

D(H) be an orthonormal system of n functions and consider the n× nmatrix

h :=
(⟨
φj , Hφk

⟩)
0≤j,k≤n−1

with eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn−1. Then we have that

Ej ≤ λj ∀j = 0, . . . , n− 1.
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5 Unbounded selfadjoint operators

Proof We proceed by induction over k (which enumerates the eigenvalues of h): denote
the normalized eigenvector to the lowest eigenvalue λ0 with v0 =

(
v0,0, . . . v0,n−1

)
. Then

the normalized vector χ0 :=
∑n−1
j=0 v0,j φj satisfies

λ0 =
⟨
v0, hv0

⟩
Cn =

⟨
χ0,Hχ0

⟩
≥ E0

by the Rayleigh-Ritz principle.
Now assume we have shown that El ≤ λl holds for all l = 0, . . . , k ≤ n − 2. Clearly,

the eigenvectors v0, . . . , vk to h, and the space spanned by the corresponding normalized
χl =

∑n−1
j=0 vl,j φj is k + 1-dimensional. Hence, for any

χ =
n−1∑
j=0

wj χj ∈
{
χ0, . . . , χk

}⊥
with coefficients w ∈ {v0, . . . , vk}⊥ we obtain

⟨w, hw⟩ = ⟨χ,Hχ⟩ ≥ Ek+1

because χ is orthogonal to a k + 1-dimensional subspace ofD(H). The left-hand side can
be minimized by setting w = vk+1, the eigenvector to λk+1, and thus,Ek+1 ≤ λk+1. This
concludes the proof. □

One can use the min-max principle to make the following intuition rigorous: Assume one
is given an operator H(V ) = −∆x + V whose potential vanishes sufficiently rapidly at
∞, and one knows thatH(V ) has a certain number of negative eigenvalues {Ej(V )}j∈I ,
I ⊆ N0. The decay conditions on V ensure σess

(
H(V )

)
= [0,+∞). Then ifW ≤ V is a

second potential of the same type, the min-max principle implies

Ej(W ) ≤ Ej(V ).

In particular, H(W ) has at least as many eigenvalues as H(V ). This fact combined with
Theorem 5.2.16 immediately yields

Corollary 5.2.20 Suppose we are in the setting of Theorem 5.2.16. Then even if V does not have
a fixed sign, as long as

∫
R dxV (x) ≤ 0 for all λ > 0 the Schrödinger operatorH = −∂2x + λV

has at least one eigenvalueE0 < 0.

5.2.3 Perturbations of selfadjoint operators

Earlier, we have discussed the spectral properties of the hamiltonian HC (5.2.4) which
describes a hydrogen atom. We have pretended to know that the hamilton operator for
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5.2 Selfadjoint operators

the hydrogen atom is selfadjoint – as if that is a foregone conclusion. So let us investigate
this question, and consider the operator

HC := −1
2∆x − 1

|x|

equipped with domain D(HC) := C∞
c (R3 \ {0}). Here, we have excluded the origin be-

cause the Coulombpotential diverges at this point. So isHC essentially selfadjoint? Before
we proceed, let us note that we can rewrite HC in polar coordinates, and given that the
potential depends only on |x|, we obtain a free angular part and a Schrödinger operator
−1

2∂
2
r − r−1 ∂r − r−1 on the line R+ for the radial part – and the definition of operators

on the half line depends very delicately on the behavior at the boundary point 0.
Instead of checking the essential selfadjointness ofHC , we look at the simpler problem

of the selfadjointness of H0 := −1
2∆x on C∞

c (R3 \ {0}) – and if that operator is not es-
sentially selfadjoint, then this indicates that HC cannot be essentially selfadjoint either.
According to the fundamental criterion we need to solve

− 1
2∆xϕ± = ∓iϕpm,

because surely H∗
0 = −1

2∆x should hold in a suitable sense. Later on, we need to show
that the solutions ϕ± lie in the domain D(H∗

0 ). Rewriting the above in polar coordinates
yields the equation (

−1
2∂

2
r − r−1 ∂r

)
ϕ±(r) = ∓iϕ±(r),

and one can check that

ϕ±(r) =
e−(1∓i)r

r

are solutions. Evidently, ϕ± ∈ L2(R3) holds since the Coulomb singularity is locally L2

in three dimensions and the functions decay exponentially at ∞. However, we still need
to verify that ϕ± ∈ D(H∗

0 ): keeping in mind ψ(0) = 0 for ψ ∈ C∞
c (R3 \ {0}) we can use

partial integration to obtain⟨
ϕ±,H0ψ

⟩
= −1

2

∫
R3

dxϕ±(x)∆xψ(x)

= −1

2

∫
S2

dω
∫ +∞

0

dr ϕ±(r)
(

d2

dr2 +
2

r

d
dr +

1

r2
∆ω

)
ψ(r, ω)

= −1

2

∫
S2

dω
∫ +∞

0

dr
(

d2

dr2 +
2

r

d
dr +

1

r2
∆ω

)
ϕ±(r)ψ(r, ω)

= −1

2

∫
S2

dω
∫ +∞

0

dr∓iϕ±(r)ψ(r, ω) =
⟨
∓iϕ±, ψ

⟩
.
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5 Unbounded selfadjoint operators

That means ϕ± lie in the domain of the adjointH∗
0 andH∗

0ϕ± = ∓iϕ±. Hence, the defect
indices N± ≥ 1 are non-zero and the operator cannot be essentially selfadjoint. Conse-
quently, we reckon that alsoHC is not essentially selfadjoint, and a more careful analysis
bears this out. However, there exists awhole family of selfadjoint extensions, each ofwhich
generates its own dynamics – and one can show that only one generates the dynamics ob-
served in nature.

The correct idea here is to think of the Coulomb potential as a perturbation of the kinetic
energyH0 = − 1

2∆x with domain

H2(Rd) =
{
φ ∈ L2(Rd) | −∆xφ ∈ L2(Rd)

}
.

For two reasons, this is problematic: first of all, we are adding the two unbounded opera-
torsH0 and−1/|x|, and we inevitably have to deal with domain questions. The second one
is of physical significance: we are adding the non-negative kinetic energy operatorH0 ≥ 0

to the non-positive attractive Coulomb potential−1/|x| ≤ 0, will the sum be bounded from
below, i. e.HC ≥ −K for someK > 0? Physically, that is important, because ifHC were
not bounded from below, the hydrogen atom would not be stable! The hydrogen atom could
lose energy by radiating off photons ad infinitum, and the electron falls down the well. In
fact, this is what happens classically! Fortunately, the (quantum) hydrogen atom is stable,
because states with low potential energy (i. e. those increasingly localized around the ori-
gin) have to pay an increasing price in kinetic energy. One can see that the sum should be
bounded from below by the simple scaling argument made around equation (5.2.5): for λ
the kinetic energy scales asλ2 while the potential energy scales asλ, i. e. kλ2−pλ ≥ const.

The way to solve both problems at the same time is as follows:

Definition 5.2.21 (Relative boundedness) LetA andB be two densely defined operators, and
suppose

(i) D(A) ⊆ D(B) and

(ii) there are constants a, b ∈ R so that for all φ ∈ D(A) we have

∥Bφ∥ ≤ a ∥Aφ∥+ b ∥φ∥ (5.2.13)

for all φ ∈ D(A).

Then B is A-bounded, and the infimum over all a which satisfy (5.2.13) is called the relative
bound. In case the relative bound is 0, thenB is called infinitesimally A-bounded.

Note that in the above reducing the size of a usually requires one to make b larger.2014.10.31

Remark 5.2.22 Instead of (5.2.13), one can also use the equivalent condition

∥Bφ∥2 ≤ ã2 ∥Aφ∥2 + b̃2 ∥φ∥2

to define relative boundedness, and yield also the same relative bound.
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5.2 Selfadjoint operators

Theorem 5.2.23 (Kato-Rellich) LetH be selfadjoint, andV be symmetric andH-boundedwith
relative bound a < 1. ThenH + V equipped with domainD(H + V ) = D(H) is selfajoint and
essentially selfadjoint on any core ofH .

Proof We will show that ran
(
H + V ± iµ0

)
= H holds for some µ0 > 0 and use the

fundamental criterion of selfajointness. Then the selfadjointness of 1
µ0

(
H + V

)
onD(H)

follows from the fundamental criterion of selfadjointness (Theorem 5.2.4), meaning that
in this case alsoH + V is selfadjoint onD(H).

For φ ∈ D(H) and µ > 0 we have again∥∥(H + iµ)φ
∥∥2 =

∥∥Hφ∥∥2 + µ2∥φ∥2.

Since H is selfadjoint, the vector φ = (H + iµ)−1ψ exists for all ψ ∈ H, which leads
to
∥∥H (H + iµ)−1

∥∥ ≤ 1 and
∥∥(H + iµ)−1

∥∥ ≤ µ−1 (Corollary 5.2.13). Plugging φ =

(H + iµ)−1ψ into (5.2.13) yields the estimate∥∥V (H + iµ)−1ψ
∥∥ ≤ a

∥∥H (H + iµ)−1ψ
∥∥+ b

∥∥(H + iµ)−1ψ
∥∥ ≤

(
a+ b/µ

)
∥ψ∥.

Given that a < 1 and b is fixed we know that for sufficiently large µ the operator norm of
T := V (H + iµ)−1 is necessarily less than 1. Hence, the inverse of id + T exists as the
bounded operator (id + T )−1 =

∑∞
n=0(−1)n Tn (cf. problem 18 (iii)). That also means

ran (id+ T ) = H. Combined with one of the consequences ofH∗ = H , namely ran (H +

iµ) = H, and with the equation(
id+ T

) (
H + iµ

)
φ =

(
H + V + iµ

)
φ, ∀φ ∈ D(H),

we conclude ran (H + V + iµ) = H. Analogously, we show ran (H + V − iµ) = H.
It remains to show that H + V with domain D(H) is closed. But this follows from a

Cauchy sequence argument, the closedness of H and (5.2.13). Thus, H + V is selfadjoint
onD(H) by the Fundamental Criterion of Selfajointness 5.2.4.

Now letD0 ⊆ D(H) be a core ofH . Thenusing (5.2.13) it is easy to show thatΓ
(
H|D0

)
=

Γ(H) impliesΓ
(
(H + V )|D0

)
= Γ

(
(H+V )|D(H)

)
. And hence, any core ofH is also a core

ofH + V . □

We will apply the Kato-Rellich Theorem to Schrödinger operators. While there are many
more general results than this one, these are usually harder to prove and – in view of
the hydrogen atom hamiltonian – not necessary here. Here, we view H = −∆x + V

as perturbations of the free Schrödinger operator H0 := −∆x whose domain D(H0) :=

H2(Rd) is the 2nd Sobolev space:

Definition 5.2.24 (Sobolev space) We defineHm(Rd) as the Hilbert space

Hm(Rd) :=
{
φ ∈ L2(Rd)

∣∣ F−1
√
1 + ξ2

m
Fφ ∈ L2(Rd)

}
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5 Unbounded selfadjoint operators

endowed with scalar product

⟨φ,ψ⟩Hm :=

∫
Rd

dξ
(
1 + |ξ|2

)m Fφ(ξ)Fψ(ξ)

whereF : L2(Rd) −→ L2(Rd) is the Fourier transform.

In three dimensions, wewill nowprove a selfadjointness resultwhich includes the Coulomb
potential:

Theorem 5.2.25 SupposeV ∈ L2(R3)+L∞(R3) (meaningV = V1+V2 whereV1 ∈ L2(R3)

and V2 ∈ L∞(R3)) is a real-valued function. Then V is infinitesimally H0-bounded and hence,
the operator

H = −∆x + V

equipped with domainD(H) = D(H0) = H2(R3) is selfadjoint.

The crucial estimate is the content of the following

Lemma 5.2.26 For every a > 0 there exists b > 0 such that

∥φ∥L∞ ≤ a
∥∥∆xφ

∥∥
L2 + b ∥φ∥L2 (5.2.14)

holds for all φ ∈ H2(R3).

Proof Using the Riemann-Lebesgue Lemma and the Cauchy-Schwarz inequality, we de-
duce

∥φ∥L∞ ≤ (2π)+
3/2 ∥Fφ∥L1 = (2π)+

3/2
∥∥(1 + ξ2)−1 (1 + ξ2)Fφ

∥∥
L1

≤ (2π)+
3/2
∥∥(1 + ξ2)−1

∥∥
L2

∥∥(1 + ξ2)Fφ
∥∥
L2 .

Given thatwe are in three dimensions,
∥∥(1 + ξ2)−1

∥∥
L2 is finite. Moreover, the other factor

is finite by definition ofH2(R3). Overall, we have shown

∥φ∥L∞ ≤ c
(∥∥ξ2 Fφ∥∥

L2 +
∥∥Fφ∥∥

L2

)
(5.2.15)

where c is independent of φ. Now define φ̂λ(ξ) := λ3 Fφ(λξ) for λ > 0. Then this
scaling preserves the L1-norm, ∥φ̂λ∥L1 = ∥Fφ∥L1 , but the two terms to the right of the
inequality scale differently, namely

∥φ̂λ∥L2 = λ
3/2 ∥Fφ∥L2 ,∥∥ξ2 φ̂λ∥∥L2 = λ−

1/2
∥∥ξ2 Fφ∥∥

L2 .
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5.2 Selfadjoint operators

Plugged into (5.2.15) we obtain

∥φ∥L∞ ≤ (2π)−
3/2 ∥φ̂λ∥ ≤ cλ−

1/2
∥∥ξ2 Fφ∥∥

L2 + cλ
3/2 ∥Fφ∥L2 ,

and consequently, we can make the first constant cλ−1/2 as small as we would like (at the
expense of the second constant) by choosing λ large enough. This finishes the proof. □

Proof (Theorem 5.2.25) As a real-valued multiplication operator, V defined on the max-
imal domain

D(V ) =
{
φ ∈ L2(R3) | V φ ∈ L2(R3)

}
is symmetric (even selfadjoint). So let V = V1 + V2 with V1 ∈ L2(R3) and V2 ∈ L∞(R3).
Then for any φ ∈ H2(R3) we can use the splitting of the potential to obtain the estimate

∥V φ∥L2 ≤ ∥V1∥L2 ∥φ∥L∞ + ∥V2∥L∞ ∥φ∥L2 ,

which in view of Lemma 5.2.26 yieldsH2(R3) ⊆ D(V ). In fact, for any a > 0 there exists
b > 0 such that

∥V φ∥L2 ≤ a∥V1∥L2 ∥H0φ∥L2 +
(
b+ ∥V2∥L∞

)
∥φ∥L2

holds true, i. e. V is infinitesimally H0-bounded. Then Kato-Rellich’s theorem 5.2.23 im-
pliesH = −∆x + V defines a selfadjoint operator onD(H) = H2(R3). □

Corollary 5.2.27 (Selfadjointness of hydrogen hamiltonian HC) In three dimensions the
operatorHC = − ℏ2

2m∆x − e2

|x| defines a selfadjoint operator onD(HC) = H2(R3).

Proof We merely have to split the Coulomb potential into a contribution around the ori-
gin,

V1(x) :=

{
− e

|x| |x| ≤ 1

0 |x| > 1
,

and a remainder V2 := V − V1. Clearly, V2 is bounded and V1 is square-integrable in
three dimensions. That means Theorem 5.2.25 applies andHC is selfadjoint onD(HC) =

H2(R3). □
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6Chapter 6

Functional calculus and
applications

The main purpose of this chapter is to attribute meaning to the expression f(H) for self-
adjoint operators H and suitable functions f : R −→ C. For hermitian n × n matrices
H with eigenvalues Ej ∈ σ(H) and associated projections Pj onto the eigenspaces, the
answer is

f(H) :=
∑
j

f(Ej)Pj .

There are several complications we need to overcome:

(i) The spectrum of hermitian n × n matrices is finite and purely discrete, i. e. finitely
many eigenvalues of finite multiplicity.

(ii) Matrices define bounded operators.

(iii) Operators on infinite-dimensional spaces may have continuous spectrum, meaning
there exist no eigenfunctions in the Hilbert space. Hence, it is not clear in what sense
the associated projections exist.

The most important examples for functions are f(λ) = e−itλ to define the unitary evolu-
tion group. Spectral projections are defined in terms of characteristic functions

1Λ(x) :=

{
1 x ∈ Λ

0 x ̸∈ Λ

which are constant and equal to 1 on some Λ ⊂ R and are 0 outside of Λ. And often
smoothened characteristic functions are considered.
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6 Functional calculus and applications

6.1 Functional calculus

Before we begin with the functional calculus itself, we will briefly recap measure theory, a
necessary prerequisite if one wants to correctly understand all the mathematical objects.

6.1.1 Primer onmeasure theory

To understand functional calculus, one needs a bit of measure theory. So we will give a
very quick primer on measure theory, partly to fix notation, partly to introduce the most
important concepts. For a proper introduction we refer the interested reader to [LL01,
Chapter 1] and references therein.

Definition 6.1.1 (σ algebra and measurable space) Let Ω be a set and Σ ⊂ P (Ω) where
P (Ω) is the power set ofΩ, i. e. the set of all subsets. If

(i) ∅ ∈ Σ,

(ii) Λ ∈ Σ⇒Ω \ Λ ∈ Σ, and

(iii) Λ1,Λ2, . . . ∈ Σ⇒
∪∞
n=1 Λn ∈ Σ,

then Σ is called a σ algebra. The pair (Ω,Σ) is calledmeasurable space, and elements of Σ are
measurable sets.

One easily sees from the definition that countable intersections of measurable sets are
again measurable, and that Ω ∈ Σ. Moreover, arbitrary intersections

∩
n∈I Σn of σ al-

gebras Σn ⊂ P (Ω) are again σ algebras. Since the power set P (Ω) itself is a σ algebra,
to each E ∈ P (Ω) there exists a smallest σ algebra σ(E) which contains E. This is the σ
algebra generated by E. In case Ω is a metric space, the σ algebra generated by the open
sets is called Borel-σ algebra.

A measure µ on a measurable space (Ω,Σ) associates a non-negative number to each
measurable set Λ ∈ Σ:

Definition 6.1.2 (Measure and measure space) Let (Ω,Σ) be a measurable space. A map
µ : Σ −→ [0,+∞) ∪ {+∞} is calledmeasure if

(i) µ(∅) = 0 and

(ii) µ is σ-additive, i. e. for all pairwise disjoint Λ1,Λ2, . . . ∈ Σ we have

µ
( ∞∪
n=1

Λn

)
=

∞∑
n=1

µ(Λn).

The triple (Ω,Σ, µ) is calledmeasure space. In case µ(Ω) <∞, the measure is called finite, and
if µ(Ω) = 1, µ is a probability measure.
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6.1 Functional calculus

If Ω =
∪∞
n=1 Λn can be seen as the countable union of sets of finite measure, µ(Λn) < ∞

for all n ∈ N, then µ is called σ-finite. The prototypical example is the measure space(
R,B(R), λ

)
where B(R) is the Borel-σ algebra on R and λ the Lebesgue measure. Obvi-

ously, λ is not finite, but it is σ-finite.

Definition 6.1.3 (Measurable function) Let (Ωj ,Σj), j = 1, 2, be measurable spaces. A
function f : Ω1 −→ Ω2 is called measurable if and only if preimages of measurable sets are
measurable, i. e. f−1(B) ∈ Σ1 for allB ∈ Σ2.

For a given measure space (Ω,Σ, µ) one can construct a notion of integration, and the
construction mimics that of L1(Rd): first, one defines simple functions

f(ω) =
n∑
j=1

cj 1Λj (ω)

where the Λj ∈ Σ are measurable sets and 1Λj the indicator function for Λj , and then
defines ∫

Ω

dµ f :=
n∑
j=1

cj µ(Λj).

Because any measurable function f can be approximated arbitrarily well by simple func-
tions from below, we can define the integral via the limit procedure∫

Ω

dµ f := lim
n→∞

∫
Ω

dµ fn

where each of the fn is a simple function. That gives rise to spaces such as L1(Ω), L2(Ω)

and L∞(Ω), e. g. a measurable function f : Ω −→ C is in L1(Ω) if and only if

∥f∥L1(Ω) :=

∫
Ω

dµ |f | <∞.

Similarly, one can define

L2(Ω) :=
{
f : Ω −→ Cmeasurable

∣∣ ∫
Ω
dµ |f(µ)|2 <∞

}
and endow it with a scalar product

⟨f, g⟩L2(Ω) :=

∫
Ω

dµ f(ω) g(ω).

In case µ is σ-finite, one can show that L2(Ω) is separable. 2014.11.07
There is a very fundamental theorem about Borel measures on R:
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6 Functional calculus and applications

Theorem 6.1.4 (Decomposition of Borel measures) AnyBorelmeasureµ onR can beuniquely
decomposed

µ = µpp + µac + µsc

into a point measure µpp, an absolutely continuous measure µac and a singularly continuous mea-
sure µsc.

The prototypical point measure is the Dirac measure δ(· − y) for which∫
R
dδ(x− y) f(x) = f(y).

A measure is absolutely continuous if there exists a density ρ(x) (which is an absolutely
continuous function, cf. [Tes09, Chapter 2.7]) so that

dµac(x) = ρ(x) dx.

Finally, singularly continuous measures are those which are not point measures (meaning
µsc({x}) = 0 for all x ∈ R) and for which there exists a measurable set S ∈ B(R) so
that µsc(S) = 0 but λ(R \ S) = 0 (λ being the Lebesgue measure). For most physical
application, though, µsc = 0.

6.1.2 Herglotz functions

One way to define functional calculus is by means of Herglotz functions, i. e. holomorphic
functions F : C+ −→ C+ which map the upper complex half plane into itself. This is
because the expectation values of resolvents of selfadjoint operatorsH areHerglotz functions:
clearly, the function

Fψ(z) :=
⟨
ψ, (H − z)−1ψ

⟩
(6.1.1)

is holomorphic on the upper half planeC+ because σ(H) ⊆ R (Theorem 5.2.11) and (H−
z)−1 can be locally expanded around a z0 ∈ C+ in terms of (H−z0)−1. Hence, for z ∈ C+

(i. e. Im z > 0), we deduce that Fψ is well-defined on C+

∣∣Fψ(z)∣∣ ≤ ∥∥(H − z)−1
∥∥ ∥ψ∥2 ≤ ∥ψ∥2

Im z

where the last equality is due to the resolvent estimate (5.2.3). Moreover,
(
(H−z)−1

)∗
=

(H − z̄)−1 implies

Fψ(z) = ⟨ψ, (H − z)−1ψ⟩ =
⟨
(H − z)−1ψ,ψ

⟩
=
⟨
ψ, (H − z̄)−1ψ

⟩
= Fψ(z̄).
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6.1 Functional calculus

This, combined with the resolvent identity

(H − z)−1 − (H − z′)−1 = (z − z′) (H − z)−1 (H − z′)−1

yields that Fψ maps C+ to C+ as long as ψ ̸= 0,

ImFψ(z) =
1

i2
(
Fψ(z)− Fψ(z)

)
= Im z

∥∥(H − z)−1ψ
∥∥2 > 0.

Now the representation theorem for Herglotz functions (see Theorem 6.1.6 below) entails
that there exists a unique Borel measure µψ(z) onR called the spectral measure ofH asso-
ciated with ψ such that

Fψ(z) =

∫
R
dµψ(λ) (λ− z)−1.

We will give two different representation theorems for Herglotz functions, the first of
which can be found in [DK05, Chapter 1.4].

Theorem 6.1.5 (Representation theorem 1 for Herglotz functions) AnyHerglotz function
F : C+ −→ C+ admits the representation

F (z) = a z + b+

∫
R
dµ(λ)

(
1

λ− z
− λ

1 + λ2

)
with some a > 0, b ∈ R, and a Borel measure µ on R satisfying

∫
R dµ(λ) (1 + λ2)−1 < ∞. The

measure can be recovered from F via

1

2

(
µ
(
λ1, λ2) + µ

(
[λ1, λ2]

))
= lim
ε↘0

1

π

∫ λ2

λ1

dλ ImF (λ+ iε)

Herglotz functions naturally arise in spectral theory as the Borel-Stieltjes transformation

F (z) :=

∫
R

dµ(λ)
λ− z

(6.1.2)

of finite Borel measures µ on R, and the relation between the two can be summed up as
follows: 2014.11.11

Theorem 6.1.6 (Representation theorem 2 for Herglotz functions ([Tes09])) TheBorel-
Stieltjes transform of any finite Borel measure µ is a Herglotz function satisfying

|F (z)| ≤ µ(R)
Im z

, z ∈ C+.
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6 Functional calculus and applications

Conversely, if F is a Herglotz function satisfying

|F (z)| ≤ C

Im z

on C+ for some C > 0, then there exists a unique Borel measure µ with µ(R) ≤ C and F is its
Borel-Stieltjes transform.

With these pieces in hand, we can proceed to define functional calculus.

6.1.3 Functional calculus and the spectral theorem

This subsection will introduce and prove the two main theorems of this Chapter: functional
calculus for selfadjoint operators and the spectral theorem. From the previous Chapter, we
know that to any selfadjoint operator H and ψ ∈ H there exists a bounded Borel mea-
sure µψ on R which is related to Fψ(z) =

⟨
ψ, (H − z)−1ψ

⟩
via the Borel-Stieltjes trans-

form (6.1.2). With the help of the polarization identity,⟨
φ, (H − z)−1ψ

⟩
=

=
1

4

(⟨
(φ+ ψ), (H − z)−1(φ+ ψ)

⟩
+
⟨
(φ− ψ), (H − z)−1(φ− ψ)

⟩
+

−i
⟨
(φ+ iψ), (H − z)−1(φ+ iψ)

⟩
− i
⟨
(φ− iψ), (H − z)−1(φ− iψ)

⟩)
,

(6.1.3)

we can define a complex finite Borel measure µφ,ψ such that⟨
φ, (H − z)−1ψ

⟩
=

∫
R
dµφ,ψ(λ) (λ− z)−1.

For any bounded Borel function f : R −→ C this complex finite Borel measure, in turn,
uniquely defines a bounded operator f(H): given that for bounded Borel functions the
integral

sf (ψ) :=

∫
R
dµψ(λ) f(λ)

exists, we can use polarization to define

⟨φ, f(H)ψ⟩ =
∫
R
dµφ,ψ(λ) f(λ) (6.1.4)

where µφ,ψ is the complex finite Borel measure defined above. As indicated by the nota-
tion, the existence of the matrix elements combined with an estimate of the form∣∣⟨φ, f(H)ψ⟩

∣∣ ≤ C ∥φ∥ ∥ψ∥ (6.1.5)
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6.1 Functional calculus

suffices to show the existence of f(H) as a bounded operator (see e. g. [Tes09, Corol-
lary 1.9]):

Lemma 6.1.7 To each bounded Borel function f : R −→ C there exists a unique bounded op-
erator f(H) such that (6.1.4) holds. Moreover, we can bound the operator norm by ∥f(H)∥ ≤
∥f∥L∞ .

Proof First of all, operators f(H) are uniquely determined by their “diagonal matrix ele-
ments”, meaning if we can show |sf (ψ)| ≤ C∥ψ∥2 for someC > 0, then also the sesquilin-
ear form sf (φ,ψ) obtained by polarization (see (6.1.3)) satisfies∣∣sf (φ,ψ)∣∣ ≤ C ′∥φ∥ ∥ψ∥

for some constantC ′ > 0. The estimate for diagonal elements is straightforward, though,
because the Representation Theorem 6.1.6 tells us that µψ(R) = ∥ψ∥2 and thus, we obtain

|sf (ψ)| ≤
∫
R
dµψ(λ) |f(λ)| ≤ ∥f∥L∞ µψ(R) = ∥f∥L∞ ∥ψ∥2

for allψ ∈ H. Then [Tes09, Corollary 1.9] states there exists a unique and bounded operator
which we will denote with f(H) so that

sf (φ,ψ) = ⟨φ, f(H)ψ⟩ .

This finishes the proof. □

The first main theorem, the functional calculus characterizes properties of this operator
f(H):

Theorem 6.1.8 (Functional Calculus for selfadjoint operators) LetH be a selfadjoint op-
erator on a Hilbert spaceH, and suppose f and g are bounded Borel functions. Then the operator
f(H) constructed in Lemma 6.1.7 has the following properties:

(i) The map f 7→ f(H) from the bounded Borel functions to B(H) is a ∗-homomorphism, i. e.

(f + αg)(H) = f(H) + α g(H),

(f g)(H) = f(H) g(H),

1R(H) = idH,
f(H)∗ = f̄(H).

(ii) If fn(x) → f(x) pointwise, and if the sequence ∥fn∥L∞(R) is bounded, then fn(H) con-
verges to f(H) strongly (cf. Definition 4.3.2).

(iii) IfHψ = Eψ, then f(H)ψ = f(E)ψ.
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6 Functional calculus and applications

(iv) f ≥ 0⇒ f(H) ≥ 0

(v) If in addition f ∈ C
(
σ(H)

)
, then

∥∥f(H)
∥∥ = sup

λ∈σ(H)

∣∣f(λ)∣∣.
There are many ways to prove this theorem, and we will choose one which only relies on
the representation theorem for Herglotz functions and the secondmain result, the Spectral
Theorem. The important ingredient is the notion of projection-valued measure.

Definition 6.1.9 (Projection-valued measure) A family of orthogonal projection {P (Λ)} in-
dexed by the Borel measurable sets Λ ∈ B(R) on a Hilbert space H is called projection-valued
measure (or PVM for short) if and only if the following hold:

(i) P (∅) = 0 and P (R) = 1

(ii) P (Λ1)P (Λ2) = P
(
Λ1 ∩ Λ2

)
(iii) If Λ =

∪∞
n=1 Λn is the union of pairwise disjoint Borel measurable sets Λn, then we have

P (Λ) = s- lim
N→∞

N∑
n=1

P (Λn)

where s- lim denotes the strong limit of operators (cf. Definition 4.3.2).

Given a projection-valued measure, we will see (as part of the Spectral Theorem) that we
can define a selfadjoint operator

H :=

∫
R
dP (Λ)λ (6.1.6)

with domain

D(H) =
{
φ ∈ H

∣∣ ∫
R
⟨φ, dP (Λ)φ⟩ λ2 <∞

}
. (6.1.7)

On the other hand, a selfadjoint operator uniquely defines a projection-valued measure
via equation (6.1.4): Let Λ be any Borel set and 1Λ the associated characteristic function.
Evidently, 1Λ is bounded, and consequently, the operator

P (Λ) := 1Λ(H) (6.1.8)

exists and is bounded by Lemma 6.1.7.

Lemma 6.1.10 The family of operators P (Λ) defined by equation (6.1.8) is a projection-valued
measure.
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6.1 Functional calculus

Proof Let us abbreviate the resolvent with R(z) := (H − z)−1 and pick Λ1,Λ2 ∈ B(R)
as well as two vectors φ,ψ ∈ H. We will prove P (Λ1)P (Λ2) = P

(
Λ1 ∩ Λ2

)
in two steps:

first of all, relying on Representation Theorem 6.1.6 and the first resolvent identity

(H − z)−1 − (H − z′) = (z − z′) (H − z)−1 (H − z′)−1,

we obtain∫
R
dµR(z̄)φ,ψ(λ) (λ− z′)−1 =

⟨
R(z̄)φ,R(z′)ψ

⟩
=
⟨
φ,R(z)R(z′)ψ

⟩
=

1

z − z′

(⟨
φ,R(z)ψ

⟩
−
⟨
φ,R(z′)ψ

⟩)
=

∫
R
dµφ,ψ(λ)

1

z − z′

(
1

λ− z
− 1

λ− z′

)
=

∫
R
dµφ,ψ(λ) (λ− z)−1 (λ− z′)−1.

This implies that

dµR(z̄)φ,ψ(λ) = (λ− z)−1 dµφ,ψ(λ). (6.1.9)

So the idea is to insert resolvents in order to be able to invoke the Representation Theo-
rem 6.1.6 again: for any Borel measurable set Λ, we can now use the relation (6.1.9) once
more to deduce 1Λ(λ) dµφ,ψ(λ) = dµφ,P (Λ)ψ(λ) from∫

R
dµφ,P (Λ)ψ(λ) (λ− z′)−1 =

⟨
φ,R(z)P (Λ)ψ

⟩
=
⟨
R(z̄)φ,P (Λ)ψ

⟩
=

∫
R
dµR(z̄)φ,ψ(λ) 1Λ(λ) =

∫
R
dµφ,ψ(λ) 1Λ(λ) (λ− z)−1.

Now P (Λ1)P (Λ2) = P
(
Λ1 ∩ Λ2

)
follows from the obvious equality 1Λ1 1Λ2 = 1Λ1∩Λ2 on

the level of functions. Moreover, choosingΛ = Λ1 = Λ2 tells us that P (Λ) is a projection.
To see P (R) = idH, pick ψ ∈ kerP (R). But then from µψ(R) = ∥ψ∥2 (Theorem 6.1.6)

and

0 = ⟨ψ, P (R)ψ⟩ = µψ(R) = ∥ψ∥2

we deduce ψ = 0, and consequently, P (R) = idH.
Suppose Λ =

∪∞
n=1 Λn is the union of mutually disjoint sets, Λj ∩Λn = ∅ for all j ̸= n.

Then
N∑
n=1

⟨
ψ, PΛnψ

⟩
=

N∑
n=1

µψ(Λn)
N→∞−−−−→

⟨
ψ, P (Λ)ψ

⟩
= µψ(Λ)
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6 Functional calculus and applications

converges to µψ(Λ) by the σ-additivity of µψ . Hence, P (Λ) is weakly σ-additive, and thus,
also strongly σ-additive since⟨

ψ, P (Λ)ψ
⟩
=
⟨
P (Λ)ψ, P (Λ)ψ

⟩
. □

The Spectral Theorem states that there is a one-to-one correspondence between selfad-
joint operators and projection-valued measures:

Theorem 6.1.11 (Spectral theorem) There is a one-to-one correspondence between selfadjoint
operators H and projection-valued measures P (Λ) = 1Λ(H), Λ ∈ B(R), called the spectral
measure, and we have

H =

∫
R
dP (λ)λ (6.1.10)

whereD(H) coincides with the right-hand side of equation (6.1.7).
On the other hand, any projection-valuedmeasure defines a selfadjoint operator via (6.1.6)whose

domainD(H) is given by (6.1.7).

Proof “⇒:” Assume we are given a selfadjoint operatorH = H∗. Then by Lemma 6.1.10
P (Λ) := 1Λ(H) defines a projection-valuedmeasure. Moreover,D(H) coincides with the
right-hand side of (6.1.7): if

gn(λ) =
n∑
j=1

cj 1Λj (λ)

is a non-decreasing sequence of simple functionswhich converges to g(λ) = λ frombelow,
i. e. 0 ≤ gn(λ) ≤ gn+1(λ) ≤ λ and limn→∞ gn(λ) = λ, then

⟨φ, gn(H)φ⟩ =
n∑
j=1

cj
⟨
φ, 1Λj (H)φ

⟩
=

∫
R
⟨φ, dP (λ)φ⟩ gn(λ)

n→∞−−−−→
∫
R
⟨φ, dP (λ)φ⟩ λ

byMonotone Convergence forφ ∈ D(H). Consequently, the twodefinitions of the domain
coincide.

“⇐:” Now suppose we are given a projection-valued measure Λ 7→ P (Λ), and define
H as above in equation (6.1.10) endowed with domain (6.1.7). Reading some of the above
arguments involving the domain in reverse, we deduce that H : D(H) −→ H is well-
defined. Moreover, approximatingH by simple functions from below as above also yields
thatH is symmetric.

The only thing that remains is selfadjointness, and in view of the Fundamental Crite-
rion 5.2.4 it suffices to show ran (H ± i) = H. But this follows from observing thatH + i
is injective, because ∥∥(H ± i)φ

∥∥2 ≥ ∥φ∥2
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6.1 Functional calculus

holds on D(H), meaningH ± i is invertible on ran (H ± i) ⊆ H. Moreover,H ± i is also
surjective since the inverse is defined as a bounded operator via

(H ± i)−1 =

∫
R
dP (λ) (λ± i)−1 : H −→ D(H).

That finishes the proof. □ 2014.11.14

With the help of the Spectral Theorem, we can prove all parts of Theorem 6.1.8 but the
last one. We will postpone a proof to Theorem 6.2.4 below.

Proof (Theorem 6.1.8) The operators f(H) is well-defined and bounded by Lemma 6.1.7.

(i) With the exception of (f g)(H) = f(H) g(H), all of the other equalities follow di-
rectly from the definition. To see the remaining equality, we note that (f g)(H) =

f(H) g(H) holds for simple functions since P (Λ1)P (Λ2) = P
(
Λ1 ∩ Λ2

)
. To show

this equality for arbitrary bounded, measurable functions, one approximates f and
g by simple functions and then takes the limit. This gives meaning to the following
formal manipulation:

f(H) g(H) =

(∫
R
dP (λ) f(λ)

)(∫
R
dP (λ′) g(λ′)

)
=

∫
R

∫
R
dP (λ) dP (λ′)︸ ︷︷ ︸
=dP (λ) δ(λ−λ′)

f(λ) g(λ′)

=

∫
R
dP (λ) f(λ) g(λ)

(ii) That follows from the fact that P (Λ) = 1Λ(H) is a projection-valued measure, and
defining property (iii) of projection-valued measures.

(iii) For anyBorel setΛwhich containsE, wehaveP (Λ)ψ = ψ. Consequently,P ({E})ψ =

ψ and the Spectral Theorem yields

f(H)ψ =

∫
R
f(λ) dP (λ)ψ = f(E)ψ.

(iv) The proof is immediate.

(v) In case f is real-valued, this is a consequence of Theorem 6.2.4 below which states

f
(
σ(H)

)
= σ

(
f(H)

)
.
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The upper bound, ∥f(H)∥ ≤
∥∥f |σ(H)

∥∥
L∞ , is obtained from Lemma 6.1.7 and Corol-

lary 6.2.2: the latter implies that

f(H) =

∫
R
dP (λ) f(λ) =

∫
σ(H)

dP (λ) f(λ),

meaning that only the values of f on σ(H)matter.
The lower bound is deduced from a Weyl sequence argument: let us define

E = sup
∣∣σ(f(H)

)∣∣ = sup
∣∣f(σ(H)

)∣∣ .
Consequently, for all ε > 0 there exists a λ ∈ R so that |f(λ)| ∈ (E − ε, E]. While
the sign of f(λ) could be positive or negative, let us assumewithout loss of generality
that in fact f(λ) = |f(λ)| (the case where−f(λ) = |f(λ)| is analogous). Then by the
Weyl criterion there exists a Weyl sequence {ψn}n∈N to f(λ),∥∥f(H)ψn − (E − ε)ψn

∥∥ n→∞−−−−→ 0,

for which evidently

E − ε ≤ lim
n→∞

∥∥f(H)ψn
∥∥ = f(λ) ≤ ∥f(H)∥

holds. Given that ε can be chosen to be arbitrarily small, we have also shown the
lower bound.
For complex-valued functions the proof is slightly more elaborate, and relies on an
extension of functional calculus to bounded normal operators. (An operator T is
normal if and only if T and its adjoint T ∗ commute.) □

6.2 Fundamental properties

The Spectral Theorem 6.1.11 links selfadjoint operators to (projection-valued) measures.
This suggests to transfer notions frommeasure theory to selfadjoint operators. Moreover,
we will discuss where projection-valued measures appear in the physics literature.

6.2.1 Relation between spectrum and projection-valuedmeasure

First of all, the spectrum as a set has a characterization in terms of the projection-valued
measure:

Proposition 6.2.1 For a selfadjoint operatorH its spectrum is characterized by

σ(H) =
{
λ ∈ R

∣∣ P ((λ− ε, λ+ ε)
)
̸= 0 ∀ε > 0

}
.
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6.2 Fundamental properties

A simple consequence is that selfadjoint operators H are uniquely determined by their
PVM on their spectrum:

Corollary 6.2.2 For any selfadjoint operatorH , the projection-valued measure P (Λ) = 1Λ(H)

is completely determined on σ(H), i. e. we have P
(
R ∩ ρ(H)

)
= 0 and P

(
σ(H)

)
= idH.

The proof needs a weak version of the Weyl criterion: while we do not get an if and only if
statement, the existence of aWeyl sequence for someλ ∈ R impliesλ ∈ σ(H). On the plus
side, the proof only relies on a simple estimate and does not involve the projection-valued
measure.

Lemma 6.2.3 (Weak Weyl Criterion) LetA be a densely defined, closed operator with domain
D(A). We have z ∈ σ(A) if there exists a sequence ψn ∈ D(A) such that ∥ψn∥ = 1 and
limn→∞

∥∥(A− z)ψn
∥∥ = 0. Such a sequence is called aWeyl sequence.

Proof Let {ψn}n∈N be a Weyl sequence to z ∈ C. If z ∈ ρ(A), then (A − z)−1 exists as a
bounded operator, and consequently, we can deduce this contradiction:

1 = ∥ψn∥ =
∥∥(A− z)−1 (A− z)ψn

∥∥
≤
∥∥(A− z)−1

∥∥ ∥∥(A− z)ψn
∥∥ n→∞−−−−→ 0

Hence, z is in the spectrum, z ∈ σ(A). □

Proof (Proposition 6.2.1) Take Λn :=
(
λ0 − 1/n, λ0 + 1/n

)
and suppose P (Λn) ̸= 0 for

all n ∈ N. For each n ∈ N we can find a normalized vector ψn ∈ P (Λn)H. Then in view
of the estimate∥∥(H − λ0)ψn

∥∥2 =
∥∥∥(H − λ0)P (Λn)ψn

∥∥∥2 =

∫
R
dµψn(λ) 1Λn(λ) (λ− λ0)

2 ≤ 1

n2
,

we arrive at the conclusion that {ψn} is a Weyl sequence, and thus, λ ∈ σ(H) by the weak
Weyl criterion Lemma 6.2.3.

Conversely, if P
(
(λ0 − ε, λ0 + ε)

)
= 0, we define the function

fε(λ) = 1R\(λ0−ε,λ0+ε)(λ) (λ− λ0)
−1.

Thenusing Functional Calculus 6.1.8 combinedwith the assumptionP
(
(λ0−ε, λ0+ε)

)
= 0

yields

(H − λ0) fε(H) =
(
(λ− λ0) fε

)
(H) = 1R\(λ0−ε,λ0+ε)(H) = idH.

Analogously, we obtain fε(H) (H − λ0) = idD(H) which means λ0 ∈ ρ(H). □
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The characterization of the spectrum in terms of the projection-valuedmeasure also yields
a relationship between the spectrum ofH and f(H) assuming that f is continuous on the
spectrum. There areweaker versions of this statement (cf. e. g. [Tes09, Lemma3.12]) which
work also for functions which are just measurable.

Theorem 6.2.4 LetH be a selfadjoint operator and f be a measurable, real-valued function that
is continuous on σ(H). Then σ

(
f(H)

)
= f

(
σ(H)

)
where the closure can be dropped if σ(H) is

bounded.

This Theorem also yields the proof of Theorem 6.1.8 (v) for the special case of real-valued
functions: the upper bound, ∥f(H)∥ ≤ ∥f∥L∞ , is obtained from Lemma 6.1.7 while the
lower bound is deduced from an argument involving Weyl sequences.

Proof Because f is real-valued, not onlyH but also f(H) is selfadjoint. Hence, the Spec-
tral Theorem 6.1.11 applies to both of them, and we can write f(H) in two ways,

f(H) =

∫
σ(H)

1dλ(H) f(λ) =

∫
σ(f(H))

1dµ
(
f(H)

)
µ,

once, in terms of the PVM ofH and also in terms of the PVM of f(H). In both cases, the
support of the PVM is the spectrum (Theorem 6.2.1), and thus writing the spectrum of
f(H) can be characterized in two ways, namely

σ
(
f(H)

)
=
{
λ ∈ R

∣∣ 1(λ−ε,λ+ε)
(
f(H)

)
̸= 0 ∀ε > 0

}
=
{
λ ∈ R

∣∣ 1f−1((λ−ε,λ+ε))(H) ̸= 0 ∀ε > 0
}
. (6.2.1)

At this point we only get the inclusion σ
(
f(H)

)
⊆ f

(
σ(H)

)
rather than equality, because

the setΛε = f−1
(
(λ−ε, λ+ε)

)
could have measure 0 according to the projection-valued

measure, i. e. 1Λε(H) = 0 where Λε is as above.
To show the opposite inclusion, we need to make use of the continuity: f ∈ C

(
σ(H)

)
means the preimage

f−1
((
f(λ)− ε, f(λ) + ε

))
⊇
(
λ− δ, λ+ δ

)
, δ ≪ 1,

of an ε-neighborhood of f(λ) contains an open interval around λ. Combining this with
equation (6.2.1) yields that if λ ∈ σ(H) then also f(λ) ∈ σ

(
f(H)

)
. Hence, we have also

shown σ
(
f(H)

)
⊇ f

(
σ(H)

)
. □

6.2.2 Distinction between spectral types

The Lebesgue decomposition of measures (Theorem 6.1.4) also yields a natural distinction
between different spectral types:
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Definition 6.2.5 Let H be a selfadjoint operator on a Hilbert space H. Then we define pure
point, absolutely continuous and singularly continuous subspaces as

Hpp =
{
ψ ∈ H | µψ is a point measure

}
,

Hac =
{
ψ ∈ H | µψ is an absolutely continuous measure

}
,

Hsc =
{
ψ ∈ H | µψ is a singularly continuous measure

}
,

where µψ is the measure from (6.1.2).

Given that any Borel measure onR splits into these three contributions, the Hilbert space
H splits into the direct sum of these three subspaces. For a proof, we refer to [RS72, The-
orem VII.4].

Theorem 6.2.6 LetH be a selfadjoint operator on a Hilbert spaceH. Then the Hilbert space

H = Hpp ⊕Hac ⊕Hsc

decomposes into pure point, absolutely continuous and singularly continuous subspaces.

This decomposition of theHilbert space yields a thirddecomposition of the spectrumσ(H).

Definition 6.2.7 (Pure point, ac and sc spectrum) For a selfadjoint operatorH on a Hilbert
spaceH, we define pure point, absolutely continuous and singularly continuous spectrum as

σpp(H) = σ
(
H|Hpp

)
,

σac(H) = σ
(
H|Hpp

)
,

σsc(H) = σ
(
H|Hpp

)
.

These three sets need not be disjoint. To understand this decomposition better, we recap
the other two spectral decompositions that have been introduced in Definition 4.1.6 and
Theorems 5.2.8–5.2.9:

σ(H) = σp(H) ∪ σc(H) ∪ σr(H) = σp(H) ∪ σc(H)

= σdisc(H) ∪ σess(H)

= σpp(H) ∪ σac(H) ∪ σsc(H)

First of all, for selfadjoint operators the residual spectrum is empty, so only the point and
the continuous spectrum remain. The second decomposition consists of discrete spectrum
(eigenvalues of finite multiplicity) and the remainder, the essential spectrum. These spec-
tral components are related: the discrete, point and pure point spectrum are all nested,

σdisc(H) ⊆ σp(H) ⊆ σpp(H) = σp(H),
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but they need not be equal: σp(H)may contain eigenvalues of infinite multiplicity, and by
definitions these are part of the essential spectrum. The energy levels of the Landau hamil-
tonian are infinitely degenerate and contribute to the essential rather than the discrete
spectrum. Moreover, accumulation points in σp(H) need not be contained in it (the point
spectrum need not be closed). One physical example where this occurs is the point 0 for
the spectrum of the hydrogen hamiltonianH : while 0 is not an eigenvalue, 0 ̸∈ σp(H), it
is nevertheless the accumulation point of the energy levels below 0, and thus, 0 ∈ σpp(H).
States associated to σpp(H), i. e. linear combinations of eigenfunctions, are bound states,
because they remain localized under time evolution.

Similarly, one obtains an inclusion of continuous, absolutely continuous (ac), singularly
continuous (sc) and essential spectrum:

σc(H) = σac(H) ∪ σsc(H) ⊆ σess(H)

Wave functions associated to σac(H) are scattering states, because in case of H = L2(Rd)
over time such states leave any bounded subset Λ ⊆ Rd. While this is false for states
associated to σsc(H), in most physical situations one can prove thatHsc = {0}, and thus,
any state is either a bound state or a scattering state.

6.2.3 Physical interpretation

To link these notions back to physics, let us start with the Spectral Theorem 6.1.11 which
states that a selfadjoint operator can be thought of as

H =

∫
σ(H)

dP (λ)λ

where the projection-valued measure P (Λ) has a concise physical interpretation. In fact
H is uniquely determined by its projection-valued measure (that is the content of the Spectral
Theorem 6.1.11), and consequently, on the level of mathematics it is a matter of taste
whether to speak of projection-valued measures or selfadjoint operators.

On the level of physics, selfadjoint operators H can be seen bookkeeping devices for ide-
alized experiments which keep track of outcomes of measurements and statistics. Not only
energy, but also other observables such as position, momentum and angular momentum
are important.
(i) The spectrum σ(H) is the set of possible outcomes of measurements.

(ii) The projection-valued measure contains the statistics of the experiment, meaning
that given a pure state φ, the probability to measure an outcome λ in a “window”
Λ ⊆ R is given by

P(λ ∈ Λ|φ) = µφ(Λ) =

∫
Λ

dµφ(λ) =
∫
Λ

⟨
φ, 1dλ(H)φ

⟩
=
⟨
φ,P (Λ)φ

⟩
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6.3 Stone’s theorem and the quantum time evolution

where µφ is the Borel measure from equation (6.1.2).

(iii) Expectation values, i. e. the statistical average of the outcome of an experiment if it
is repeated often enough, is computed via the expectation value,

Eφ(H) =
⟨
φ,Hφ

⟩
=

∫
R

⟨
φ, 1dλ(H)φ

⟩
λ =

⟨
φ,

∫
R
λ 1dλ(H)φ

⟩
.

Physicists use projection-valuedmeasureswhen they speak of resolutions of the identity, and
to keep things simple, let us consider the case H = L2(R). Observables such as position
Q = x̂ and momentum P = −i∂x define selfadjoint operators, and these operators have
purely absolutely continuous spectrum,

σ(Q) = σac(Q) = R = σac(P ) = σ(P ),

σpp(Q) = ∅ = σpp(P ).

Hence, Q and P do not have eigenfunctions in L2(R), and a discrete resolution of the
identity

idL2(R) =
∞∑
n=1

|φn⟩⟨φn|

composed of eigenfunctions does not exist. Nevertheless, physicists write (see e. g. [Sak94,
pp. 41–46])

idL2(R) =

∫
R
dx |x⟩⟨x|

where |x⟩ is a “pseudoeigenfunction”. Comparing this to equation (6.1.10), we see that
dx |x⟩⟨x| is just the projection-valued measure dP (x) = 1dx(x̂)! 2014.11.21

6.3 Stone’s theorem and the quantum time evolution

One important application of functional calculus is the rigorous definition of the unitary
time evolution e−itH and other unitary one-parameter groups generated by selfadjoint
operators such as translations in real or momentum space. As indicated already in Chap-
ter 4.3.2, especially Theorem 4.3.5, there exists a one-to-one relationship between selfad-
joint operators and unitary evolution groups:

Theorem 6.3.1 (Stone) To every strongly continuous one-parameter unitary group t 7→ U(t)

on a Hilbert spaceH, there exists a selfadjoint operatorH = H∗ which generates U(t) = e−itH .
Conversely, every selfadjoint operatorH generates the unitary evolution group U(t) = e−itH .
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While a complete proof is easily within our means, we skip the details to one directions
because spelling out these ideas is a tad technical.

Proof “⇒:” Suppose we are given a selfadjoint operator H with dense domain D(H) ⊆
H. Then we define the bounded operator U(t) := e−itH in terms of functional calculus
associated to the function λ 7→ e−itλ ∈ C∞(R) ∩ L∞(R). We have to verify that U(t) is a
strongly continuous unitary evolution group:

(i) Clearly, U(0) = 1R(H) = idH and from f(H)∗ = f̄(H) we deduce that U(t)∗ =

U(−t).

(ii) U(t)U(s) = U(t+ s) follows immediately from f(H) g(H) = (f g)(H) (functional
calculus) and e−itλ e−isλ = e−i(t+s)λ on the level of functions. Hence, we deduce that
U(−t) = U(t)−1 = U(t)∗ is unitary.

(iii) By (ii) it suffices to check strong continuity of t 7→ U(t) at t = 0 only: The spectral
theorem allows us to express∥∥e−itHφ− φ

∥∥2 =

∫
R

⟨
φ, dP (λ)φ

⟩ ∣∣e−itλ − 1
∣∣2

in terms of
∣∣e−itλ − 1

∣∣2. Evidently, ∣∣e−itλ − 1
∣∣2 ≤ 2 holds and∣∣e−itλ − 1

∣∣2 t→0−−−→ 0

converges to 0 for all λ ∈ R pointwise, and thus, limt→0

∥∥e−itHφ − φ
∥∥ = 0 for all

φ ∈ H follows from Dominated Convergence.

(iv) Again, it suffices to take the derivative at t = 0. The fact that ψ(t) = e−itHψ for
ψ ∈ D(H) satisfies the Schrödinger equation follows

∣∣e−itλ − 1
∣∣ ≤ |λ|, writing out

the time-derivative as a difference quotient and the observation from the Spectral
Theorem that the domain ofH coincides with the set2014.11.25 {

φ ∈ H
∣∣ ∫

R
⟨φ, dP (λ)φ⟩ λ2 <∞

}
.

“⇐:” Given a unitary evolution group, we can recover its generator by computing

H0φ := i ddtU(t)φ

∣∣∣∣
t=0

on a suitable subset of “nice” vectors, i. e.

φ ∈ D(H0) ⊆
{
φ ∈ H

∣∣ i d
dtU(t)φ ∈ H

}
.
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One needs to show thatD(H0) lies densely inH, thatH0 is symmetric and finally use the
Fundamental Criterion of Selfadjointness to prove thatH0 is indeed essentially selfadjoint.
The generator is then the unique selfadjoint extensionH = H0. Spelling out these ideas
is not difficult, albeit a bit technical. Thus, we refer the interested reader to the proof of
[RS72, Theorem VIII.8] for details. □

Now that we know how the quantum time evolution is defined, let us take a moment to
compare a perturbed quantum system defined through Hε = H0 + εV with its unper-
turbed cousin. That is particularly important because almost none of the systems one
encounters in “real life” have closed-form solutions, so it is immediate to study pertur-
bations of known systems first. The physics literature usually contents itself studying
approximations of eigenvalues of the hamiltonian, but the more fundamental question is
what happens to the dynamics? In other words, doesHε ≈ H0 imply e−itHε ≈ e−itH0 . The
answer is yes and uses a very, very nifty trick, the Duhamel formula.
Theorem 6.3.2 (Duhamel) LetH0 andHε = H0+ εV be two selfadjoint operators defined on
a common domain, and suppose that V defines a bounded operator onH. Then the two evolutions
are ε-close in norm, ∥∥e−itHε − e−itH0

∥∥
B(H)

= O
(
ε |t|
)
. (6.3.1)

Note that this error estimate holds for all times, because quantum mechanics is a linear
theory (as opposed to, say, classical mechanics).
Proof The idea is to write the difference(

e−itHε − e−itH0

)
φ =

∫ t

0

ds d
ds

(
e−isHε e−i(t−s)H0

)
φ

= −i
∫ t

0

ds e−isHε
(
Hε −H0

)
e−i(t−s)H0φ

= −ε i
∫ t

0

ds e−isHε V e−i(t−s)H0φ

as the integral of a total derivative for some φ ∈ D(Hε) = D(H0). We have proven in
Theorem 4.3.5 (i) that the domain is left invariant by e−i(t−s)H0 so that the derivative with
respect to s exists in the strong sense. Consequently, the integrand is bounded in norm
by ε ∥V ∥B(H) ∥φ∥H for all s ∈ [0, t], and by density of D(Hε) = D(H0) ⊆ H we obtain
equation (6.3.1). □

6.4 Other approaches to functional calculus

The approach to functional calculus presented here is by no means the only one, three
other popular ones are holomorphic functional calculus [Dav95], functional calculus via the
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heat semigroup of selfadjoint operators which are bounded from below [Dav95], and the
“multiplication operator form” of the spectral theorem (which as shown in Chapter 6.1.3
implies the functional calculus) [RS72, Theorem VII.3]. There are at times subtle differ-
ences between them in the classes of functions and the types operators for which they
hold. However, if more than one method can be used, the resulting operators necessarily
need to agree.

For instance, suppose we are interested in a relevant part of the spectrum σrel ⊂ σ(H)

of some selfadjoint operator H , and that the relevant part of the spectrum is separated
from the remainder by a spectral gap,

dist
(
σrel, σ(H) \ σrel

)
> 0.

Then we can express 1σrel(H) as a contour integral with respect to the resolvent,

P :=
i
2π

∫
Γ

dz (H − z)−1,

where Γ is a contour which encloses only σrel. P is called Riesz projection. There is a lot of
freedom in the choice of contour, because just like in complex analysis the shape of the
contour is immaterial as long as the same poles are enclosed in them. And since poles of
the resolvent are the spectrum, and these poles are of “first order”, we already suspect
P = 1σrel(H).

However, one can show using only the resolvent identity and suitable choices of con-
tours that P defined as above is an orthogonal projectionP 2 = P = P ∗: To show the first
equality, letΓ′ be another contour contained in the interior ofΓ. Then using the resolvent
identity,

−(z − z′) (H − z)−1 (H − z′)−1 = (H − z)−1 − (H − z′)−1,

we obtain

P 2 =

(
i
2π

)2 ∫
Γ

dz
∫
Γ′

dz′ (H − z)−1 (H − z′)−1

= +
1

(2π)2

∫
Γ

dz
∫
Γ′

dz′ (z − z′)−1 (H − z)−1+

− 1

(2π)2

∫
Γ

dz
∫
Γ′

dz′ (z − z′)−1 (H − z′)−1.

Since z ∈ Γ and Γ′ is contained in the interior of Γ, the function z′ 7→ (z − z′)−1 is actu-
ally holomorphic on a domain which includes Γ′ and its interior. That means

∫
Γ′ dz′ (z −

z′)−1 = 0 and the first term vanishes.
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To treat the second term, we reverse the order of integration anduse that z 7→ (z−z′)−1

has a pole at z′, and hence, the residue theorem yields

P 2 = 0− 1

(2π)2

∫
Γ′

dz′
(∫

Γ

dz (z − z′)−1

)
︸ ︷︷ ︸

=−i2π

(H − z′)−1

=
i
2π

∫
Γ′

dz′ (H − z)−1 = P.

To show selfadjointness, we pick a contour which is symmetric with respect to reflections
around the real axis, i. e. Γ = Γ. With this contour, we obtain

P ∗ =

(
i
2π

∫
Γ

dz (H − z)−1

)∗

= − i
2π

∫
Γ

dz̄
(
(H − z)−1

)∗
= − i

2π

∫
Γ

dz̄ (H − z̄)−1 = +
i
2π

∫
Γ

dz (H − z)−1 = P.

Note that one sign change stems from the flip of orientation of the curve which traces Γ.
AsH = H∗ is selfadjoint, we can use functional calculus. For instance, we can express

(H − z)−1 =

∫
σ(H)

(λ− z)−1 dP (λ)

in terms of the function λ 7→ (λ− z)−1 and the projection-valued measure dP (λ) associ-
ated toH . Once we plug this into the definition of P , we obtain

P =
i
2π

∫
Γ

dz (H − z)−1 =
i
2π

∫
Γ

dz
∫
σ(H)

(λ− z)−1 dP (λ)

=
i
2π

∫
σ(H)

(∫
Γ

dz (λ− z)−1

)
︸ ︷︷ ︸

=i2π 1σrel (λ)

dP (λ) =
∫
σ(H)

1σrel(λ) dP (λ)

= 1σrel(H).

99





Bibliography

[Cro08] B. Crowell. The Modern Revolution in Physics. Light and Matter, 2008.
[Dav95] E. B. Davies. The Functional Calculus. J. London Math. Soc. 52, 166–176, 1995.
[DK05] M.Demuth andM.Krishna.Determining spectra in quantum theory. Vol. 44. Progress

in Mathematical Physics. Birkhäuser, 2005.
[Dir30] P. A. M. Dirac. Die Prinzipien der Quantenmechanik. first. S. Hirzel-Verlag, 1930.
[Fol89] G. B. Folland.Harmonic Analysis on Phase Space. Princeton University Press, 1989.
[GS11] S. J. Gustafson and I.M. Sigal.Mathematical Concepts of QuantumMechanics. Springer-

Verlag, 2011.
[Hei30] W.Heisenberg.Die physikalischenPrinzipien derQuantenmechanik. S. Hirzel-Verlag,

1930.
[Jac98] J. D. Jackson. Classical Electrodynamics. Wiley, 1998.
[Lei10] M. Lein. Weyl Quantization and Semiclassics. Technische Universität München.

2010.
[Lei13] M. Lein.Differential Equations ofMathematical Physics. University of Toronto. 2013.
[LL01] E. Lieb and M. Loss. Analysis. American Mathematical Society, 2001.
[Moy49] J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Cambridge Phil. Soc

45, 211, 1949.
[RS72] M. Reed and B. Simon.Methods of Mathematical Physics I: Functional Analysis. Aca-

demic Press, 1972.
[RS75] M. Reed and B. Simon. Methods of Mathematical Physics II: Fourier Analysis, Self-

adjointness. Academic Press, 1975.
[RS78] M. Reed and B. Simon. Methods of Mathematical Physics IV: Analysis of Operators.

Academic Press, 1978.
[RS79] M. Reed and B. Simon.Methods of Mathematical Physics III: Scattering Theory. Aca-

demic Press, 1979.
[Sak94] J. J. Sakurai.AdvancedQuantumMechanics. Addison-Wesley Publishing Company,

1994.

101

http://dx.doi.org/10.1112/jlms/52.1.166


Bibliography

[Sch26a] E. Schrödinger. Quantisierung als Eigenwertproblem (Dritte Mitteilung). Annalen
der Physik 80, 437–490, 1926.

[Sch26b] E. Schrödinger. Quantisierung als Eigenwertproblem (ErsteMitteilung). Annalen der
Physik 79, 361–376, 1926.

[Sch26c] E. Schrödinger. Quantisierung als Eigenwertproblem (Vierte Mitteilung). Annalen
der Physik 81, 109–139, 1926.

[Sch26d] E. Schrödinger. Quantisierung als Eigenwertproblem (Zweite Mitteilung). Annalen
der Physik 79, 489–527, 1926.

[Sim76] B. Simon. The Bound state of Weakly Coupled Schrödinger Operators in One or Two
Dimensions. Annals of Physics 97, 279–288, 1976.

[Spo04] H. Spohn. Dynamics of Charged Particles and Their Radiation Field. Cambridge Uni-
versity Press, 2004.

[Tes09] G. Teschl.Mathematical Methods in QuantumMechanics. Vol. 99. Graduate Studies
in Mathematics. American Mathematical Society, 2009.

[Wey27] H. Weyl. Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46,
1927.

[Wig32] E.Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40,
749–759, 1932.

[Yos80] K. Yoshida. Functional Analysis. Springer-Verlag, 1980.

102


	Introduction
	Paradigms of quantum mechanics
	Two archetypical quantum systems
	The mathematical framework of quantum mechanics
	Quantum observables
	Quantum states
	Time evolution
	Comparison to classical mechanics on Rd
	Representations

	Magnetic fields
	Bosons vs. fermions

	Hilbert spaces
	Prototypical Hilbert spaces: Cn, L2(Rd) and 2(Zd)
	Orthonormal bases and orthogonal subspaces
	Direct sums () and tensor products () of Hilbert spaces
	Linear functionals, dual space and weak convergence
	Important facts on Lp(Rd)

	Bounded linear operators
	Bounded operators
	Adjoint operator
	Unitary operators
	Representations and bra-ket notation
	Unitary evolution groups


	Unbounded selfadjoint operators
	Unbounded operators
	Selfadjoint operators
	Fundamental criterion for selfadjointness
	Spectral properties
	Perturbations of selfadjoint operators


	Functional calculus and applications
	Functional calculus
	Primer on measure theory
	Herglotz functions
	Functional calculus and the spectral theorem

	Fundamental properties
	Relation between spectrum and projection-valued measure
	Distinction between spectral types
	Physical interpretation

	Stone's theorem and the quantum time evolution
	Other approaches to functional calculus

	Paradigms of quantum mechanics revisited
	Rigorous definition of quantum systems
	A dictionary between physics and mathematics
	Important quantum mechanical systems
	Spectral analysis of hamiltonians
	Magnetic hamiltonians
	Spectral properties of hamiltonians
	Physical systems which can be written in Schrödinger form


