Systematic Quantum-Wave Analogies and Applications to Topological Photonic Crystals

Using The Quantum Hall Effect for Light as a Lens

Max Lein Advanced Institute of Materials Research, Tohoku University 2017.12.13@NIMS

・ロト ・合ト ・注ト ・注ト ・ 注

200

Topological classification

Summary

Idea Realizing Quantum Effects with Classical Waves

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ の � @

Quantum-Wave Analogies The Quantum Hall Effect for light as a lens

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The Quantum Hall Effect: the Prototypical System

$B \neq 0 \implies$ time-reversal symmetry broken

$$\sigma^{xy}_{
m bulk}(t) pprox rac{e^2}{h} \operatorname{Ch}_{
m bulk} = rac{e^2}{h} \operatorname{Ch}_{
m edge} pprox \sigma^{xy}_{
m edge}(t)$$

transverse conductivity = Chern #

$$\mathrm{Ch}_{\mathrm{bulk/edge}} = \frac{1}{2\pi} \int_{\mathcal{B}} \mathrm{d}k \; \Omega_{\mathrm{bulk/edge}}(k) \in \mathbb{Z}$$

- Edge modes in spectral gaps
- Signed # edge channels = $Ch(P_{Fermi})$
- Edge modes unidirectional
- Robust against disorder

Two Nobel Prizes

1985 for experiment: von Klitzing 2016 for theory: Thouless

von Klitzing et al (1980)

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト

The Quantum Hall Effect: the Prototypical System

$B \neq 0 \implies$ time-reversal symmetry broken

$$\sigma_{\text{bulk}}^{xy}(t) \approx \frac{e^2}{h} \operatorname{Ch}_{\text{bulk}} = \frac{e^2}{h} \operatorname{Ch}_{\text{edge}} \approx \sigma_{\text{edge}}^{xy}(t)$$

transverse conductivity = Chern #
$$\operatorname{Ch}_{\text{bulk/edge}} = \frac{1}{2\pi} \int_{\varphi} dk \ \Omega_{\text{bulk/edge}}(k) \in \mathbb{Z}$$

- Edge modes in spectral gaps
- Signed # edge channels = $Ch(P_{Fermi})$
- Edge modes unidirectional
- Robust against disorder

Two Nobel Prizes

1985 for experiment: von Klitzing **2016 for theory: Thouless**

von Klitzing et al (1980)

- コット (日) (日) (日)

3

Dac

Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...

$$\begin{pmatrix} \overline{\varepsilon} & 0\\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0\\ 0 & \mu \end{pmatrix}$$
symmetry breaking

三 つくゆ

Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)

<ロト < 団 > < 三 > < 三 > < 三 > < ○<</p>

Topological classification

Summary

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Quantum Hall Effect for Light

Haldane's photonic bulk-boundary correspondence In a two-dimensional photonic crystals with boundary the difference of the number of left- and right-moving boundary modes

signed \sharp edge modes = $Ch_{edge} = Ch_{bulk}$

in bulk band gaps is a **topologically protected quantity and equals the Chern number** associated to the frequency bands below the bulk band gap.

Analog of the QHE in Coupled Mechanical Oscillators

Video Boundary mode traveling counter-clockwise.

Topological Effects: Phenomenological Similarities

Light

Coupled Oscillators

Quantum

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

- Periodic structure \rightsquigarrow bulk band gap
- Breaking of time-reversal symmetries
- Unidirectional edge modes
- Robust under perturbations

Systematic Approach to Quantum-Wave Analogies

- Whether and to what extent do particular quantum-wave analogies hold?
- Transfer ideas and *techniques* initially developed for quantum mechanics to classical waves.

Today's Goals

First Principles Approach to QHE for Light

- ① Start with **Maxwell's equations** for media with $W \neq \overline{W}$. Correct equations?
- 2 Schrödinger formalism of classical electromagnetism First- vs. second-order formalism, restriction to $\omega \ge 0$
- **3 Topological classification** of electromagnetic media *Cartan-Altland-Zirnbauer classification for topological insulators*

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

Putting All The Pieces Together

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

1 Maxwell's equations in linear, non-dispersive media

2) Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together

Goal of This Section

Derive Maxwell's equations for gyrotropic media

Physical fields $({\bf E},{\bf H})$ are linear combination of complex $\pm\omega$ waves:

$$(\mathbf{E},\mathbf{H}) = \Psi_+ + \Psi_- = 2 \operatorname{Re} \Psi_+$$

Material weights

$$W_{+} = W = \begin{pmatrix} \varepsilon & \chi \\ \chi^{*} & \mu \end{pmatrix} \neq \overline{W} = W_{-}$$

 \Longrightarrow Pair of equations

$$\begin{split} \omega > 0: \qquad & \begin{cases} W_+ \, \partial_t \Psi_+ = \left(\begin{smallmatrix} 0 \\ -\nabla^{\times} & 0 \end{smallmatrix} \right) \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \\ \\ \omega < 0: \qquad & \begin{cases} W_- \, \partial_t \Psi_- = \left(\begin{smallmatrix} 0 \\ -\nabla^{\times} & 0 \end{smallmatrix} \right) \Psi_- \\ \mathrm{Div} \, W_- \, \Psi_- = 0 \\ \end{cases} \end{split}$$

Goal of This Section

Derive Maxwell's equations for gyrotropic media

Physical fields $({\bf E},{\bf H})$ are linear combination of complex $\pm\omega$ waves:

 $(\mathbf{E},\mathbf{H})=\Psi_++\overline{\Psi_+}=2\mathrm{Re}\,\Psi_\pm$

Material weights

$$W_+ = W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \neq \overline{W} = W_-$$

 \Longrightarrow Pair of equations

$$\begin{split} \omega > 0: \qquad & \begin{cases} W_+ \, \partial_t \Psi_+ = \left(\begin{smallmatrix} 0 \\ -\nabla^\times & 0 \end{smallmatrix} \right) \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \\ \end{cases} \\ \omega < 0: \qquad & \begin{cases} \overline{W_+} \, \partial_t \Psi_- = \left(\begin{smallmatrix} 0 \\ -\nabla^\times & 0 \end{smallmatrix} \right) \Psi_- \\ \mathrm{Div} \, \overline{W_+} \, \Psi_- = 0 \\ \end{cases} \end{split}$$

Goal of This Section

Derive Maxwell's equations for gyrotropic media

Physical fields $({\bf E},{\bf H})$ are linear combination of complex $\pm\omega$ waves:

$$(\mathbf{E},\mathbf{H})=\Psi_++\Psi_-=2\mathrm{Re}\,\Psi_+$$

Material weights

$$W_+ = W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \neq \overline{W} = W_-$$

 \Longrightarrow Pair of equations

$$\begin{split} \omega > 0: \qquad & \left\{ \begin{aligned} W_+ \, \partial_t \Psi_+ = \left(\begin{smallmatrix} 0 \\ -\nabla^\times & 0 \end{smallmatrix} \right) \Psi_+ \\ \operatorname{Div} W_+ \Psi_+ = 0 \\ \end{aligned} \right. \\ \omega < 0: \qquad & \left\{ \begin{aligned} W_- \, \partial_t \Psi_- = \left(\begin{smallmatrix} 0 \\ -\nabla^\times & 0 \end{smallmatrix} \right) \Psi_- \\ \operatorname{Div} W_- \Psi_- = 0 \end{aligned} \right. \end{split}$$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Strategy

- **1** Start with Maxwell's equations for linear, **dispersive** media.
- 2 Neglect dispersion.

Crucial ingredient: Real-valuedness of physical fields

Fundamental Equations

Maxwell's equations in media

Maxwell's equations

$$\frac{\partial}{\partial t} \begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{H} \\ -\nabla \times \mathbf{E} \end{pmatrix} - \begin{pmatrix} \mathbf{J} \\ 0 \end{pmatrix} \qquad \text{(dynamical eqns.)}$$
$$\begin{pmatrix} \nabla \cdot \mathbf{D} \\ \nabla \cdot \mathbf{B} \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix} \qquad \text{(constraint eqns.)}$$

2 Constitutive relations

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \mathcal{W} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

3 Conservation of charge

$$\nabla \cdot \mathbf{J} + \partial_t \rho = 0$$

<ロト < 回 > < 三 > < 三 > < 三 > < 三 < つ < ぐ</p>

Fundamental Equations

Maxwell's equations in media

Maxwell's equations

$$\frac{\partial}{\partial t} \begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{H} \\ -\nabla \times \mathbf{E} \end{pmatrix}$$
$$\begin{pmatrix} \nabla \cdot \mathbf{D} \\ \nabla \cdot \mathbf{B} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(dynamical eqns.)

(constraint eqns.)

2 Constitutive relations

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \mathcal{W} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

3 Conservation of charge v neglect sources for simplicity

$$\nabla \cdot \mathbf{J} + \partial_t \rho = 0$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Constitutive Relations for Linear Media

$$\left(\mathbf{D}(t),\mathbf{B}(t)\right) = \int_{-\infty}^{t} \mathrm{d}s \, W(t-s) \left(\mathbf{E}(s),\mathbf{H}(s)\right)$$

Assumption (Constitutive relations)

We assume that
$$W(t,x) = \begin{pmatrix} \varepsilon(t,x) & \chi^{EH}(t,x) \\ \chi^{HE}(t,x) & \mu(t,x) \end{pmatrix} \in \operatorname{Mat}_{\mathbb{C}}(6)$$

(1) is real, $W = \overline{W}$, and

② *satisfies the* causality condition W(t) = 0 for all t < 0.

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Constitutive Relations for Linear Media

$$\big(\mathbf{D}(t),\mathbf{B}(t)\big) = \big(W*(\mathbf{E},\mathbf{H})\big)(t)$$

Assumption (Constitutive relations)

We assume that
$$W(t,x) = \begin{pmatrix} \varepsilon(t,x) & \chi^{EH}(t,x) \\ \chi^{HE}(t,x) & \mu(t,x) \end{pmatrix} \in \operatorname{Mat}_{\mathbb{C}}(6)$$

1) is real,
$$W = W$$
, and

② *satisfies the* causality condition W(t) = 0 for all t < 0.

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Reality Condition in Frequency Space

$$\begin{split} \left(\mathbf{E}(t),\mathbf{H}(t) \right) &= \left(\overline{\mathbf{E}(t)}\,,\,\overline{\mathbf{H}(t)} \right) \\ \Longleftrightarrow \\ \left(\widehat{\mathbf{E}}(-\omega)\,,\,\widehat{\mathbf{H}}(-\omega) \right) &= \left(\overline{\widehat{\mathbf{E}}(+\omega)}\,,\,\overline{\widehat{\mathbf{H}}(+\omega)} \right) \end{split}$$

Similarly for other quantities such as W(t) and $\mathbf{J}(t)$

Rewriting the Dynamical Equations

$$\begin{split} \frac{\partial}{\partial t} W \ast \Psi &= -\mathrm{i} \operatorname{Rot} \Psi := -\mathrm{i} \begin{pmatrix} 0 & +\mathrm{i} \nabla^{\times} \\ -\mathrm{i} \nabla^{\times} & 0 \end{pmatrix} \Psi \\ & \longleftrightarrow \\ \mathrm{i} \frac{\partial}{\partial t} W \ast \Psi &= \operatorname{Rot} \Psi \end{split}$$

where $\Psi = (\mathbf{E}, \mathbf{H})$ is the electromagnetic field

Heuristically Neglecting Dispersion in Maxwell's Equations

 Apply inverse Fourier transform in time to go from time-dependent to frequency-dependent equations.

2 Approximate material weights $\widehat{W}(\pm \omega) \approx \widehat{W}(\pm \omega_0) = W_{\pm}$ for frequencies $\pm \omega \approx \pm \omega_0$.

 $+\omega_0$ and $-\omega_0$ contributions necessary to reconstruct **real** solutions.

Undo Fourier transform to obtain dynamical equations in the absence of dispersion.

Heuristically Neglecting Dispersion in Maxwell's Equations

- Apply inverse Fourier transform in time to go from time-dependent to frequency-dependent equations.
- 2 Approximate material weights $\widehat{W}(\pm \omega) \approx \widehat{W}(\pm \omega_0) = W_{\pm}$ for frequencies $\pm \omega \approx \pm \omega_0$.

 $+\omega_0$ and $-\omega_0$ contributions necessary to reconstruct real solutions.

3 Undo Fourier transform to obtain dynamical equations in the absence of dispersion.

Heuristically Neglecting Dispersion in Maxwell's Equations

- Apply inverse Fourier transform in time to go from time-dependent to frequency-dependent equations.
- 2 Approximate material weights $\widehat{W}(\pm \omega) \approx \widehat{W}(\pm \omega_0) = W_{\pm}$ for frequencies $\pm \omega \approx \pm \omega_0$. $\pm \omega_0$ and $-\omega_0$ contributions necessary to reconstruct real solutions.
- 3 Undo Fourier transform to obtain dynamical equations in the absence of dispersion.

Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex $\pm \omega$ waves:

 $(\mathbf{E},\mathbf{H})=\Psi_++\Psi_-=2\mathrm{Re}\,\Psi_\pm$

 \implies Pair of equations

$$\begin{split} \omega > 0: \qquad & \begin{cases} W_+ \, \mathrm{i} \partial_t \Psi_+ = \mathrm{Rot} \, \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \end{cases} \\ \omega < 0: \qquad & \begin{cases} W_- \, \mathrm{i} \partial_t \Psi_- = \mathrm{Rot} \, \Psi_- \\ \mathrm{Div} \, W_- \, \Psi_- = 0 \end{cases} \end{split}$$

$$\left(W = \overline{W} \iff W_{-} = \overline{W_{+}} \right)$$

・ロト・日本・モート ヨー つくぐ

Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex $\pm \omega$ waves:

 $(\mathbf{E},\mathbf{H})=\Psi_++\Psi_-=2\mathrm{Re}\,\Psi_\pm$

 \implies Pair of equations

$$\begin{split} \omega > 0: \qquad & \begin{cases} W_+ \, \mathrm{i} \partial_t \Psi_+ = \mathrm{Rot} \, \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \end{cases} \\ \omega < 0: \qquad & \begin{cases} \overline{W_+} \, \mathrm{i} \partial_t \Psi_- = \mathrm{Rot} \, \Psi_- \\ \mathrm{Div} \, \overline{W_+} \, \Psi_- = 0 \end{cases} \end{split}$$

$$\left(W = \overline{W} \iff W_{-} = \overline{W_{+}} \right)$$

- ロト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ ()

Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex $\pm \omega$ waves:

 $(\mathbf{E},\mathbf{H}) = \Psi_+ + \Psi_- = 2 \operatorname{Re} \Psi_+$

 \Longrightarrow Pair of equations

$$\begin{split} \omega > 0: \qquad \begin{cases} W_+ \, \mathrm{i} \partial_t \Psi_+ = \mathrm{Rot} \, \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \end{cases} \\ \omega < 0: \qquad \begin{cases} W_- \, \mathrm{i} \partial_t \Psi_- = \mathrm{Rot} \, \Psi_- \\ \mathrm{Div} \, W_- \, \Psi_- = 0 \end{cases} \end{split}$$

$$\left(W = \overline{W} \iff W_{-} = \overline{W_{+}} \right)$$

< □ > < □ > < 三 > < 三 > < 三 > のへぐ

Restricting to $\omega \ge 0 \neq$ Technicality!

Weights for "dual-symmetric" medium described by

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi & \varepsilon \end{pmatrix} = \mathbb{1} \otimes \varepsilon + \sigma_1 \otimes \chi$$

where

$$\varepsilon = \begin{pmatrix} \varepsilon_{\perp} & 0 & 0 \\ 0 & \varepsilon_{\perp} & 0 \\ 0 & 0 & \varepsilon_{z} \end{pmatrix} \qquad \qquad \chi = \begin{pmatrix} 0 & +i\kappa & 0 \\ -i\kappa & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ の � @

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Restricting to $\omega \ge 0 \neq$ Technicality!

Weights for "dual-symmetric" medium described by

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi & \varepsilon \end{pmatrix} = \mathbb{1} \otimes \varepsilon + \sigma_1 \otimes \chi$$

commute with operator

$$U_1 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} = \sigma_1 \otimes \mathbb{1}$$

Restricting to $\omega \ge 0 \neq$ Technicality!

Weights for "dual-symmetric" medium described by

$$W=\mathbb{1}\otimes\varepsilon+\sigma_1\otimes\chi$$

Rewrite Maxwell equations

$$\partial_t \Psi_{\uparrow/\downarrow} = \dots$$

in (pseudospin) eigenbasis $\Psi_{\uparrow/\downarrow}=\psi^E\pm\psi^H$ of $U_1=\sigma_1\otimes\mathbbm{1}$

What went wrong here?

・ロト・西ト・ヨト・ヨト・日下

Restricting to $\omega \ge 0 \neq$ Technicality!

Weights for "dual-symmetric" medium described by

$$W=\mathbb{1}\otimes\varepsilon+\sigma_1\otimes\chi$$

Rewrite Maxwell equations

$$\partial_t \Psi_{\uparrow/\downarrow} = \dots$$

in (pseudospin) eigenbasis $\Psi_{\uparrow/\downarrow}=\psi^E\pm\psi^H$ of $U_1=\sigma_1\otimes\mathbbm{1}$

What went wrong here?

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ の � @

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Restricting to $\omega \ge 0 \neq$ Technicality!

What went wrong here?

Material weights complex!

$$W = \mathbb{1} \otimes \varepsilon + \sigma_1 \otimes \chi \neq \mathbb{1} \otimes \varepsilon - \sigma_1 \otimes \chi = \overline{W}$$

• Maxwell equations for $\pm \omega > 0$ components different!

 $\Rightarrow \Psi_{\uparrow/\downarrow}$ cannot be a solution to Maxwell's equations!

Restricting to $\omega \ge 0 \neq$ Technicality!

What went wrong here?

• Free Maxwell operator

$$\operatorname{Rot} = \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix} = -\sigma_2 \otimes \nabla^{\times}$$

anticommutes with $U_1 = \sigma_1 \otimes \mathbb{1}$

- \Longrightarrow U_1 maps $\omega > 0$ states onto $\omega < 0$ states
- $\,\Psi_{\uparrow/\downarrow}=\psi^E\pm\psi^H$ consist of $\omega>0$ and $\omega<0$ waves

 $\Rightarrow \Psi_{\uparrow/\downarrow}$ cannot be a solution to Maxwell's equations!

・ロト・日本・モート ヨー つくぐ
Restricting to $\omega \ge 0 \neq$ Technicality!

What went wrong here?

- ullet \Longrightarrow $\Psi_{\uparrow/\downarrow}$ violate transversality condition
- Even if (ψ^E,ψ^H) is transversal in the sense

$$\operatorname{Div} W(\psi^E,\psi^H) = \begin{pmatrix} \nabla \cdot \left(\varepsilon \psi^E + \chi \psi^H \right) \\ \nabla \cdot \left(\chi \psi^E + \varepsilon \psi^H \right) \end{pmatrix} = 0,$$

the eigenvectors $\Psi_{\uparrow/\downarrow}$ are *not* transversal as $\omega < 0$ obey a **different** transversality constraint $\operatorname{Div} \overline{W} \Psi_{-} = 0$.

 $\Longrightarrow \Psi_{\uparrow/\downarrow}$ cannot be a solution to Maxwell's equations!

シック・ 川 ・川 ・ 川 ・ 山 ・

Topological classification

Summary

Restricting to $\omega \ge 0 \neq$ Technicality!

To be continued ...

<ロト < 部 ト < 注 ト < 注 ト 三 の < @</p>

Topological classification

Summary

Today's Goals

First Principles Approach to QHE for Light

① Start with **Maxwell's equations** for media with $W \neq \overline{W}$. Correct equations?

- 2 Schrödinger formalism of classical electromagnetism First- vs. second-order formalism, restriction to $\omega \ge 0$
- Topological classification of electromagnetic media Cartan-Altland-Zirnbauer classification for topological insulators

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ◆○

Summary

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together

- Derive Schrödinger formalism for classical electromagnetic waves
- Application of Schrödinger formalism: Classify topological photonic crystals
- Schrödinger and Lagrangian formalism: finding constants of motion in electromagnetism

Derive Schrödinger formalism for classical electromagnetic waves

- Application of Schrödinger formalism: Classify topological photonic crystals
- Schrödinger and Lagrangian formalism: finding constants of motion in electromagnetism

- Derive Schrödinger formalism for classical electromagnetic waves
- Application of Schrödinger formalism: Classify topological photonic crystals
- Schrödinger and Lagrangian formalism: finding constants of motion in electromagnetism

- Derive Schrödinger formalism for classical electromagnetic waves
- Application of Schrödinger formalism: Classify topological photonic crystals
- ③ Schrödinger and Lagrangian formalism: finding constants of motion in electromagnetism

- Derive Schrödinger formalism for classical electromagnetic waves
- Application of Schrödinger formalism: Classify topological photonic crystals
- ③ Schrödinger and Lagrangian formalism: finding constants of motion in electromagnetism

Summary

Making Quantum-Wave Analogies Rigorous

- States describe the configuration of the system at a given time.
- Observables represent experimentally measurable quantities.
- 3 Dynamics explain how states or observables evolve over time.

Assumptions on the Medium

Assumption (Material weights)

$$W(x) = \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^* & \mu(x) \end{pmatrix}$$

- 1 The medium is lossless. ($W^* = W$)
- 2 W describes a positive index medium. (eigenvalues $w_j(x)$ of W(x)satisfy $0 < c \le w_j(x) \le C$)

うしん 川 エキャイド・ 一日・

Recap: States and Dynamics in Quantum Mechanics

States and Dynamics

A selfadjoint Hamilton operator, e.g.

$$\begin{split} H &= \frac{1}{2m} \big(-\mathrm{i} \nabla - A \big)^2 + V \\ H &= m \,\beta + \big(-\mathrm{i} \nabla - A \big) \cdot \alpha + V \end{split}$$

- 2 A Hilbert space \mathcal{H} and states are represented by its elements, e. g. $L^2(\mathbb{R}^d, \mathbb{C}^n)$ with $\langle \phi, \psi \rangle = \int_{\mathbb{R}^d} \mathrm{d}x \, \phi(x) \cdot \psi(x)$.
- Oynamics given by the Schrödinger equation

$${\rm i}\,\partial_t\psi(t)=H\psi(t),\qquad\qquad\psi(0)=\phi$$

うしん 川 エキャイド・ 一日・

Recap: States and Dynamics in Quantum Mechanics

States and Dynamics

- A selfadjoint Hamilton operator H
- **2** A Hilbert space \mathcal{H} and states are represented by its elements.
- 3 Dynamics given by the Schrödinger equation

Properties

 $\bullet \ H = H^*$

•
$$\psi(t) = \mathrm{e}^{-\mathrm{i}tH}\phi$$

• $\|\psi(t)\|^2 = \|\psi(0)\|^2$ (conservation of propability)

Summary

Schrödinger Formalism of Electromagnetism States and Dynamics

(1) "Hamilton" operator $M_+ = W^{-1} \operatorname{Rot} |_{\omega > 0} = M_+^{*_W}$ where

$$\operatorname{Rot} = \begin{pmatrix} 0 & +i\nabla^\times \\ -i\nabla^\times & 0 \end{pmatrix}$$

2 Hilbert space $\mathcal{H}_+ = \left\{ \Psi \in L^2(\mathbb{R}^3, \mathbb{C}^6) \mid \Psi \text{ is } \omega > 0 \text{ state} \right\}$ with energy scalar product

$$\left\langle \Phi,\Psi\right\rangle_W=\int_{\mathbb{R}^3}\mathrm{d}x\,\Phi(x)\cdot W(x)\Psi(x)$$

Oynamics given by Schrödinger equation

 $\mathrm{i}\,\partial_t\Psi_+(t)=M_+\Psi_+(t),\qquad\qquad\Psi_+(0)=P_+(\mathbf{E},\mathbf{H})\in\mathcal{H}_+$

Real-valuedness of physical solutions:

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right) = 2\mathrm{Re}\,\Psi_+(t)$$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ○ ○ ○ ○

うしん 川 エキャイド・ 一日・

Schrödinger Formalism of Electromagnetism

States and Dynamics

- **1** "Hamilton" operator $M_+ = W^{-1} \operatorname{Rot} |_{\omega > 0} = M_+^{*_W}$
- Oynamics given by Schrödinger equation
- ④ Real-valuedness of physical solutions

Properties

•
$$M_+^{*_W} = M_+$$

•
$$\Psi(t) = \mathrm{e}^{-\mathrm{i}t \, M_+} \Phi$$

• $\left\|\Psi(t)\right\|_{W}^{2} = \left\|\Psi(0)\right\|_{W}^{2}$ (conserved quantity, e.g. energy)

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re}\,\Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \,\mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot}\,\Psi_\pm \\ \mathrm{Div}\,W_\pm\,\Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- ③ Verify that the solution satisfies the constraint equation.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re}\,\Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \,\mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot}\,\Psi_\pm \\ \mathrm{Div}\,W_\pm\,\Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- 3 Verify that the solution satisfies the constraint equation.

A complex plane wave with $\omega > 0$

$$\Psi_{+}(t,k,x)=\mathrm{e}^{-\mathrm{i}t\,\omega(k)}\,\mathrm{e}^{+\mathrm{i}k\cdot x}\;(\mathbf{E}_{0},\mathbf{H}_{0}),\ \ \omega(k)=\left|k\right|,\;\mathbf{E}_{0},\mathbf{H}_{0}\perp k,$$

defines two linearly independent real waves:

$$\begin{split} & \left(\mathbf{E}_{\mathrm{Re}},\mathbf{H}_{\mathrm{Re}}\right) = \mathrm{Re}\,\Psi_{+} = \cos(k\cdot x - \omega t)\left(\mathbf{E}_{0},\mathbf{H}_{0}\right) \\ & \left(\mathbf{E}_{\mathrm{Im}},\mathbf{H}_{\mathrm{Im}}\right) = \mathrm{Im}\,\Psi_{+} = \sin(k\cdot x - \omega t)\left(\mathbf{E}_{0},\mathbf{H}_{0}\right) \end{split}$$

Identification \mathbb{R} -VS $L^2_{\text{trans}}(\mathbb{R}^3, \mathbb{R}^6)$ with \mathbb{C} -VS $\mathcal{H}_+ = \operatorname{ran} P_+$:

$$\alpha_{\mathrm{Re}}\left(\mathbf{E}_{\mathrm{Re}},\mathbf{H}_{\mathrm{Re}}\right) + \alpha_{\mathrm{Im}}\left(\mathbf{E}_{\mathrm{Im}},\mathbf{H}_{\mathrm{Im}}\right) = \mathrm{Re}\left(\left(\alpha_{\mathrm{Re}} - \mathrm{i}\alpha_{\mathrm{Im}}\right)\Psi_{+}\right)$$

・ロト・西ト・ヨト・ヨト・日下

A complex plane wave with $\omega > 0$

$$\Psi_{+}(t,k,x)=\mathrm{e}^{-\mathrm{i}t\,\omega(k)}\,\mathrm{e}^{+\mathrm{i}k\cdot x}\;(\mathbf{E}_{0},\mathbf{H}_{0}),\ \ \omega(k)=\left|k\right|,\;\mathbf{E}_{0},\mathbf{H}_{0}\perp k,$$

defines two linearly independent real waves:

$$\begin{split} & \left(\mathbf{E}_{\mathrm{Re}}\,,\mathbf{H}_{\mathrm{Re}}\,\right) = \mathrm{Re}\,\Psi_{+} = \cos(k\cdot x - \omega t)\left(\mathbf{E}_{0},\mathbf{H}_{0}\right) \\ & \left(\mathbf{E}_{\mathrm{Im}}\,,\mathbf{H}_{\mathrm{Im}}\,\right) = \mathrm{Im}\,\Psi_{+} = \sin(k\cdot x - \omega t)\left(\mathbf{E}_{0},\mathbf{H}_{0}\right) \end{split}$$

 $\text{Identification } \mathbb{R}\text{-VS } L^2_{\text{trans}}(\mathbb{R}^3,\mathbb{R}^6) \text{ with } \mathbb{C}\text{-VS } \mathcal{H}_+ = \operatorname{ran} P_+\text{:}$

$$\alpha_{\mathrm{Re}}\left(\mathbf{E}_{\mathrm{Re}},\mathbf{H}_{\mathrm{Re}}\right) + \alpha_{\mathrm{Im}}\left(\mathbf{E}_{\mathrm{Im}},\mathbf{H}_{\mathrm{Im}}\right) = \mathrm{Re}\left(\left(\alpha_{\mathrm{Re}}-\mathrm{i}\alpha_{\mathrm{Im}}\right)\Psi_{+}\right)$$

Bloch waves with $\omega>0$

 $\Psi_+(t,k,x) = \mathrm{e}^{-\mathrm{i} t\,\omega_n(k)}\,\varphi_n(k,x), \quad M_+(k)\,\varphi_n(k) = \omega_n(k)\,\varphi_n(k),$

defines two linearly independent real waves: Still true?

$$\begin{split} (\mathbf{E}_{\mathrm{Re}}\,,\mathbf{H}_{\mathrm{Re}}\,) &= \mathrm{Re}\,\Psi_+ \\ (\mathbf{E}_{\mathrm{Im}}\,,\mathbf{H}_{\mathrm{Im}}\,) &= \mathrm{Im}\,\Psi_+ \end{split}$$

Identification $\mathbb{R}\text{-VS}\,L^2_{\mathrm{trans}}(\mathbb{R}^3,\mathbb{R}^6)$ with $\mathbb{C}\text{-VS}\,\mathcal{H}_+\text{:}$ Still true?

$$\alpha_{\mathrm{Re}}\left(\mathbf{E}_{\mathrm{Re}},\mathbf{H}_{\mathrm{Re}}\right) + \alpha_{\mathrm{Im}}\left(\mathbf{E}_{\mathrm{Im}},\mathbf{H}_{\mathrm{Im}}\right) = \mathrm{Re}\left(\left(\alpha_{\mathrm{Re}}-\mathrm{i}\alpha_{\mathrm{Im}}\right)\Psi_{+}\right)$$

Identification $\mathbb{R}\text{-VS}\,L^2_{\mathrm{trans}}(\mathbb{R}^3,\mathbb{R}^6)$ with $\mathbb{C}\text{-VS}\,\mathcal{H}_+\text{:}$ Still true!

$$\alpha_{\mathrm{Re}}\left(\mathbf{E}_{\mathrm{Re}},\mathbf{H}_{\mathrm{Re}}\right) + \alpha_{\mathrm{Im}}\left(\mathbf{E}_{\mathrm{Im}},\mathbf{H}_{\mathrm{Im}}\right) = \mathrm{Re}\left(\left(\alpha_{\mathrm{Re}}-i\alpha_{\mathrm{Im}}\right)\Psi_{+}\right)$$

Proposition (De Nittis & L. (2017))

The \mathbb{R} -vector space of transversal, real vector fields $L^2_{\text{trans}}(\mathbb{R}^3, \mathbb{R}^6)$ can be canonically identified with the \mathbb{C} -vector space of complex positive frequency fields $\mathcal{H}_+ = P_+[L^2_{W_+}(\mathbb{R}^3, \mathbb{C}^6)]$. The vector space isomorphisms are

$$\begin{split} P_+: L^2_{\mathrm{trans}}(\mathbb{R}^3, \mathbb{R}^6) &\longrightarrow \mathcal{H}_+, \\ 2\mathrm{Re}\, : \mathcal{H}_+ &\longrightarrow L^2_{\mathrm{trans}}(\mathbb{R}^3, \mathbb{R}^6). \end{split}$$

$$\begin{split} M_{+}^{\mathrm{aux}} &= \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^{*} & \mu(x) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix} \\ &= W_{+}^{-1} \operatorname{Rot} \end{split}$$

 $M^{\rm aux}_+=M^{\rm aux*_W}_+$ selfadjoint on weighted Hilbert space $L^2_{W_+}(\mathbb{R}^3,\mathbb{C}^6)$

$$\begin{split} \left\langle \Psi, M_{+}^{\mathrm{aux}} \Phi \right\rangle_{W_{+}} &= \left\langle \Psi, W_{+} W_{+}^{-1} \operatorname{Rot} \Phi \right\rangle = \left\langle \operatorname{Rot} \Psi, \Psi \right\rangle \\ &= \left\langle W_{+} M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, W_{+} \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle_{W_{+}} \end{split}$$

 $\Rightarrow {
m e}^{-{
m i}t\,M_+^{
m aux}}$ unitary, yields conservation of energy

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ・ ○ へ ⊙

$$\begin{split} M_{+}^{\mathrm{aux}} &= \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^{*} & \mu(x) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix} \\ &= W_{+}^{-1} \operatorname{Rot} \end{split}$$

 $M^{\rm aux}_+=M^{\rm aux^{\ast}W}_+$ selfadjoint on weighted Hilbert space $L^2_{W_+}(\mathbb{R}^3,\mathbb{C}^6)$

$$\begin{split} \left\langle \Psi, M_{+}^{\mathrm{aux}} \Phi \right\rangle_{W_{+}} &= \left\langle \Psi, W_{+} W_{+}^{-1} \operatorname{Rot} \Phi \right\rangle = \left\langle \operatorname{Rot} \Psi, \Psi \right\rangle \\ &= \left\langle W_{+} M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, W_{+} \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle_{W_{+}} \end{split}$$

 $\Rightarrow {
m e}^{-{
m i}t\,M_+^{
m aux}}$ unitary, yields conservation of energy

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ・ ○ へ ⊙

$$\begin{split} M^{\mathrm{aux}}_{+} &= \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^{*} & \mu(x) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix} \\ &= W^{-1}_{+} \operatorname{Rot} \end{split}$$

 $M_+^{\rm aux}=M_+^{{\rm aux}*_W}$ selfadjoint on weighted Hilbert space $L^2_{W_+}(\mathbb{R}^3,\mathbb{C}^6)$

$$\begin{split} \left\langle \Psi, M_{+}^{\mathrm{aux}} \Phi \right\rangle_{W_{+}} &= \left\langle \Psi, W_{+} W_{+}^{-1} \operatorname{Rot} \Phi \right\rangle = \left\langle \operatorname{Rot} \Psi, \Psi \right\rangle \\ &= \left\langle W_{+} M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, W_{+} \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle_{W_{+}} \end{split}$$

 $\Rightarrow {
m e}^{-{
m i}t\,M_+^{
m aux}}$ unitary, yields conservation of energy

▲ロト ▲ 園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

$$\begin{split} M^{\mathrm{aux}}_{+} &= \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^* & \mu(x) \end{pmatrix}^{-1} \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix} \\ &= W^{-1}_{+} \operatorname{Rot} \end{split}$$

 $M^{\rm aux}_+=M^{\rm aux*w}_+$ selfadjoint on weighted Hilbert space $L^2_{W_+}(\mathbb{R}^3,\mathbb{C}^6)$

$$\begin{split} \left\langle \Psi, M_{+}^{\mathrm{aux}} \Phi \right\rangle_{W_{+}} &= \left\langle \Psi, W_{+} W_{+}^{-1} \operatorname{Rot} \Phi \right\rangle = \left\langle \operatorname{Rot} \Psi, \Psi \right\rangle \\ &= \left\langle W_{+} M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, W_{+} \Phi \right\rangle = \left\langle M_{+}^{\mathrm{aux}} \Psi, \Phi \right\rangle_{W_{+}} \end{split}$$

 $\Rightarrow e^{-it M_+^{aux}}$ unitary, yields conservation of energy

Identifying physical states $M_+^{\text{aux}} = W^{-1} \operatorname{Rot}$

$$M_+^{\rm aux}\,\Psi_\omega=\omega\,\Psi_\omega$$

has (pseudo) eigenfunctions also for negative frequencies $\omega < 0!$

But: the $-\omega>0$ states of $M^{
m aux}_+$ are unphysical Solution Define the spectral projection onto the physical state

$$P_+ = 1_{(0,\infty)} \big(M_+^{\mathrm{aux}} \big)$$

・ロト・日本・日本・日本・日本・日本

Identifying physical states $M_+^{\rm aux} = W^{-1} \operatorname{Rot}$

$$M_+^{\rm aux}\,\Psi_\omega=\omega\,\Psi_\omega$$

has (pseudo) eigenfunctions also for negative frequencies $\omega < 0!$

But: the $-\omega > 0$ states of M_+^{aux} are **unphysical** Solution Define the spectral projection onto the physical state

$$P_+ = 1_{(0,\infty)} \big(M_+^{\mathrm{aux}} \big)$$

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Identifying physical states

 $M_{+}^{\mathrm{aux}} = W^{-1}$ Rot has states for $\omega > 0$, $\omega = 0$ and $\omega < 0$

Solution

Define the spectral projection onto the physical states

$$P_+ = 1_{(0,\infty)} \big(M_+^{\mathrm{aux}} \big)$$

and the Hilbert space

$$\mathcal{H}_+ = P_+ \big[L^2_{W_+}(\mathbb{R}^3, \mathbb{C}^6) \big] = \Big\{ \Psi_+ \in L^2(\mathbb{R}^3, \mathbb{C}^6) \ \big| \ \Psi_+ \text{ is } \omega > 0 \text{ state} \Big\}$$

・ロト・西ト・ヨト・ヨト・日下

Proposition (De Nittis & L. (2017))

The \mathbb{R} -vector space of transversal, real vector fields $L^2_{\text{trans}}(\mathbb{R}^3, \mathbb{R}^6)$ can be canonically identified with the \mathbb{C} -vector space of complex positive frequency fields $\mathcal{H}_+ = P_+[L^2_{W_+}(\mathbb{R}^3, \mathbb{C}^6)]$. The vector space isomorphisms are

$$\begin{split} P_+ &: L^2_{\mathrm{trans}}(\mathbb{R}^3, \mathbb{R}^6) \longrightarrow \mathcal{H}_+, \\ &2\mathrm{Re} \,: \mathcal{H}_+ \longrightarrow L^2_{\mathrm{trans}}(\mathbb{R}^3, \mathbb{R}^6). \\ (\mathbf{E}, \mathbf{H}) &= 2\mathrm{Re}\, \Psi_+ \ \longleftrightarrow \ \Psi_+ = P_+(\mathbf{E}, \mathbf{H}) \end{split}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ◆

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re}\,\Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \,\mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot}\,\Psi_\pm \\ \mathrm{Div}\,W_\pm\,\Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- ③ Verify that the solution satisfies the constraint equation.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re} \, \Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \, \mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot} \, \Psi_\pm \\ \mathrm{Div} \, W_\pm \, \Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- ③ Verify that the solution satisfies the constraint equation.

Topological classification

Summary

The Maxwell Operator

Restriction of auxiliary Maxwell operator to $\omega > 0$:

$$M_+ = M_+^{\mathrm{aux}} \left|_{\omega > 0} = W_+^{-1} \operatorname{Rot} \right|_{\omega > 0} = M_+^{*_{W_+}}$$

• Acts on
$$\mathcal{H}_+ = \left\{ \Psi_+ \in L^2(\mathbb{R}^3, \mathbb{C}^6) \mid \Psi_+ \text{ is } \omega > 0 \text{ state} \right\}$$

Inherits selfadjointness from auxiliary Maxwell operator

・ロト・日本・モート ヨー つくぐ

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Schrödinger Formalism of Maxwell's Equations

Theorem (De Nittis & L. (2017))

$\begin{array}{c} \textbf{Real transversal states} \\ (\mathbf{E},\mathbf{H}) = 2\text{Re}\,\Psi_+ \\ \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \psi^E_+ \\ \psi^H_+ \end{pmatrix} = \begin{pmatrix} +\nabla \times \psi^E_+ \\ -\nabla \times \psi^H_+ \end{pmatrix} \end{pmatrix} & \longleftrightarrow & \begin{cases} \textbf{Complex states with } \omega > 0 \\ \Psi_+ = P_+(\mathbf{E},\mathbf{H}) \\ M_+ = W_+^{-1} \operatorname{Rot} |_{\omega > 0} = M_+^{*w} \\ \mathbf{i} \, \partial_t \Psi_+ = M_+ \Psi_+ \end{cases}$

(De Nittis & L., The Schrödinger Formalism of Electromagnetism and Other Classical Waves (2017))

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re} \, \Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \, \mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot} \, \Psi_\pm \\ \mathrm{Div} \, W_\pm \, \Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- 3 Verify that the solution satisfies the constraint equation.

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re} \, \Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \, \mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot} \, \Psi_\pm \\ \mathrm{Div} \, W_\pm \, \Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- ③ Verify that the solution satisfies the constraint equation.

The Helmholtz Decomposition

Traditional Helmholtz decomposition

Vector fields

$$\begin{split} C &= C_\perp + C_\parallel \\ &= \nabla \times A + \nabla V \in L^2(\mathbb{R}^3, \mathbb{C}^3) = \mathcal{J} \oplus \mathcal{G} \end{split}$$

can be *uniquely* decomposed into the sum of a (transversal) divergence-free field

$$abla imes A \in \operatorname{ran}
abla^{ imes} = \ker(
abla \cdot) = \mathcal{J}$$

and a (longitudinal) gradient field

$$\nabla V \in \operatorname{ran} \nabla = \ker \nabla^{\times} = \mathcal{G}$$

・ロト・日本・モート ヨー つくぐ
The Helmholtz Decomposition

Helmholtz decomposition adapted to the medium

$$\begin{split} \Psi &= \Psi_{\perp} + \Psi_{\parallel} \\ &\in L^2_{W_+}(\mathbb{R}^3, \mathbb{C}^6) = \mathcal{J}^{\mathrm{aux}}_+ \oplus \mathcal{G} \end{split}$$

where the longitudinal gradient fields make up

$$\begin{split} \mathcal{G} &= \Big\{ (\nabla \varphi^E, \nabla \varphi^H) \in L^2(\mathbb{R}^3, \mathbb{C}^6) \ \big| \ \varphi^E, \varphi^H \in L^2_{\text{loc}}(\mathbb{R}^3) \Big\} \\ &= \operatorname{ran} \left(\nabla, \nabla \right) = \ker M^{\text{aux}}_+ \end{split}$$

and the **transversal** divergence-free fields are $\langle \cdot, \cdot \rangle_W$ -orthogonal,

$$\begin{split} \mathcal{J}^{\mathrm{aux}}_+ &= \mathcal{G}^{\perp_{W_+}} = \left\{ \Psi \in L^2(\mathbb{R}^3, \mathbb{C}^6) \ \big| \ \operatorname{Div} W_+ \Psi = 0 \right\} \\ &= \ker(\operatorname{Div} W_+) = \operatorname{ran} M^{\mathrm{aux}}_+. \end{split}$$

Topological classification

Summary

The Helmholtz Decomposition

Spectral interpretation

Longitudinal fields: eigenfunctions of $M_+^{\rm aux}\Psi_{\parallel}=0$ to $\omega=0$

 \implies States in \mathcal{H}_+ satisfy constraint equation.

・ロト・日本・モート ヨー つくぐ

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re} \, \Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \, \mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot} \, \Psi_\pm \\ \mathrm{Div} \, W_\pm \, \Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- ③ Verify that the solution satisfies the constraint equation.

Obtaining the Schrödinger Formalism for EM Waves

Starting point

$$\begin{split} (\mathbf{E},\mathbf{H}) &= \Psi_+ + \Psi_- = 2 \mathrm{Re} \, \Psi_\pm \\ \pm \omega > 0: & \begin{cases} W_\pm \, \mathrm{i} \partial_t \Psi_\pm = \mathrm{Rot} \, \Psi_\pm \\ \mathrm{Div} \, W_\pm \, \Psi_\pm = 0 \end{cases} \end{split}$$

Strategy

- Find a one-to-one correspondence between real-valued, physical fields (E, H) and complex waves.
- 2 Rewrite the dynamical Maxwell equation in Schrödinger form.
- ③ Verify that the solution satisfies the constraint equation.

(日) (日) (日) (日) (日) (日) (日) (日)

Schrödinger Formalism of Electromagnetism

States and Dynamics

- **(1)** "Hamilton" operator $M_+ = W^{-1} \operatorname{Rot} \Big|_{\omega > 0}$ for $\omega > 0$
- $\label{eq:Hilbert space} {\rm \ } \mathcal{H}_+ \subset L^2_W(\mathbb{R}^3,\mathbb{C}^6)$
- Oynamics given by Schrödinger equation

$$\mathrm{i}\,\partial_t\Psi_+(t)=M_+\Psi_+(t),\qquad\qquad\Psi_+(0)=P_+(\mathbf{E},\mathbf{H})\in\mathcal{H}_+$$

$$\big(\mathbf{E}(t),\mathbf{H}(t)\big)=2\mathrm{Re}\,\Psi_+(t)$$

Note

This also applies to gyrotropic materials where $W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \neq \overline{W}$.

Bloch-Floquet Theory for Photonic Crystals

Assumption (Periodic Medium)

Suppose in addition that $W_+(x)$ is periodic.

$$\begin{split} M_+ &\cong \mathcal{F} \, M_+ \, \mathcal{F}^{-1} = \int_{\mathbb{B}}^{\oplus} \mathrm{d}k \, M_+(k) \\ &= \int_{\mathbb{B}}^{\oplus} \mathrm{d}k \, \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}^{-1} \begin{pmatrix} 0 & -(-i\nabla + k)^{\times} \\ +(-i\nabla + k)^{\times} & 0 \end{pmatrix} \end{split}$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Bloch-Floquet Theory for Photonic Crystals

Physical bands

$$M_+(k)\varphi_n(k) = \omega_n(k)\,\varphi_n(k)$$

- Frequency band functions $k\mapsto \omega_n(k)$
- Bloch functions $k \mapsto \varphi_n(k)$
- both locally continuous everywhere
- both locally analytic away from band crossings

Bloch-Floquet Theory for Photonic Crystals

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

Relevant frequency bands

 $\sigma_{\rm rel}(k) = \bigcup_{n\in\mathcal{I}}\{\omega_n(k)\}$ separated by a spectral gap from the others.

→ Projection onto the relevant bands

$$P_{\mathrm{rel}}(k) = \sum_{n \in \mathcal{I}} |\varphi_n(k)\rangle \langle \varphi_n(k)|$$

・ロット ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Justifying effective tight-binding models

Relevant frequency bands

 $\sigma_{\rm rel}(k) = \bigcup_{n\in\mathcal{I}}\{\omega_n(k)\}$ separated by a spectral gap from the others.

→ Projection onto the relevant bands

$$P_{\mathrm{rel}}(k) = \sum_{n \in \mathcal{I}} |\varphi_n(k)\rangle \langle \varphi_n(k)|$$

Idea of an effective tight-binding operator

Suppose the effective Maxwell operator $M_{\rm eff}$ commutes up to an error with $P_{\rm rel}\text{,}$

$$\big[M_{\mathrm{eff}}\,,\,P_{\mathrm{rel}}\big]=\mathcal{O}(\lambda^n),$$

and approximates the full Maxwell operators for states from the relevant bands,

$$\left(M_+ - M_{\rm eff}\right) P_{\rm rel} = \mathcal{O}(\lambda^n),$$

where $\lambda \ll 1$ is a perturbation parameter (that could be $\lambda = 0$).

・ロト・日本・日本・日本・日本・日本

Idea of an effective tight-binding operator

$$\begin{split} \left[M_{\mathrm{eff}} \,,\, P_{\mathrm{rel}} \right] &= \mathcal{O}(\lambda^n) \\ \left(M_+ - M_{\mathrm{eff}} \right) P_{\mathrm{rel}} &= \mathcal{O}(\lambda^n) \end{split}$$

$$\begin{split} \left(\mathrm{e}^{-\mathrm{i}\frac{t}{\lambda^{k}}M_{+}} - \mathrm{e}^{-\mathrm{i}\frac{t}{\lambda^{k}}M_{\mathrm{eff}}} \right) P_{\mathrm{rel}} = \\ &= \int_{0}^{t} \mathrm{d}s \; \frac{\mathrm{d}}{\mathrm{d}s} \left(\mathrm{e}^{-\mathrm{i}\frac{s}{\lambda^{k}}M_{+}} \, \mathrm{e}^{-\mathrm{i}\frac{(t-s)}{\lambda^{k}}M_{\mathrm{eff}}} \right) P_{\mathrm{rel}} \\ &= -\frac{\mathrm{i}}{\lambda^{k}} \int_{0}^{t} \mathrm{d}s \; \mathrm{e}^{-\mathrm{i}\frac{s}{\lambda^{k}}M_{+}} \underbrace{\left(M_{+} - M_{\mathrm{eff}} \right) P_{\mathrm{rel}}}_{=\mathcal{O}(\lambda^{n})} \; \mathrm{e}^{-\mathrm{i}\frac{(t-s)}{\lambda^{k}}M_{\mathrm{eff}}} P_{\mathrm{rel}} \\ &= \mathcal{O}(\lambda^{n-k}) \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Idea of an effective tight-binding operator

$$\begin{split} \left[M_{\text{eff}} \,, \, P_{\text{rel}} \right] &= \mathcal{O}(\lambda^n) \\ \left(M_+ - M_{\text{eff}} \right) P_{\text{rel}} &= \mathcal{O}(\lambda^n) \end{split}$$

$$\begin{split} \left(\mathrm{e}^{-\mathrm{i}\frac{t}{\lambda^{k}}M_{+}} - \mathrm{e}^{-\mathrm{i}\frac{t}{\lambda^{k}}M_{\mathrm{eff}}} \right) P_{\mathrm{rel}} &= \\ &= \int_{0}^{t} \mathrm{d}s \; \frac{\mathrm{d}}{\mathrm{d}s} \left(\mathrm{e}^{-\mathrm{i}\frac{s}{\lambda^{k}}M_{+}} \, \mathrm{e}^{-\mathrm{i}\frac{(t-s)}{\lambda^{k}}M_{\mathrm{eff}}} \right) P_{\mathrm{rel}} \\ &= -\frac{\mathrm{i}}{\lambda^{k}} \int_{0}^{t} \mathrm{d}s \; \mathrm{e}^{-\mathrm{i}\frac{s}{\lambda^{k}}M_{+}} \underbrace{\left(M_{+} - M_{\mathrm{eff}} \right) P_{\mathrm{rel}}}_{=\mathcal{O}(\lambda^{n})} \; \mathrm{e}^{-\mathrm{i}\frac{(t-s)}{\lambda^{k}}M_{\mathrm{eff}}} P_{\mathrm{rel}} \\ &= \mathcal{O}(\lambda^{n-k}) \end{split}$$

<ロト < 部 ト < 注 ト < 注 ト 三 の < @</p>

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ク Q (~

Justifying effective tight-binding models

Symmetry properties of effective tight-binding operator $M_{ m eff}$

$$\left(\mathrm{e}^{-\mathrm{i}\frac{t}{\lambda^k}M_+}-\mathrm{e}^{-\mathrm{i}\frac{t}{\lambda^k}M_{\mathrm{eff}}}\right)P_{\mathrm{rel}}=\mathcal{O}(\lambda^{n-k})$$

- Symmetry of $M_{\rm eff} \Longrightarrow$ symmetry of M_+
- \implies tight binding model must not possess symmetries incompatible with full Maxwell operator M_+
- Compared to M_+ , the effective tight-binding operator $M_{\rm eff}$ may "lose" symmetries

Maxwell's equations

Schrödinger formalism

Topological classification

Summary

Comparison First- and Second-Order Formalism

First- vs. Second-Order Framework

Assume
$$W = \begin{pmatrix} arepsilon & 0 \\ 0 & \mu \end{pmatrix}$$
, i. e. $\chi = 0$ (no bianisotropy).

・ロト・日本・日本・日本・日本・日本

First-vs. Second-Order Framework

・ロト・日・・ヨト・ヨー つへで

First-vs. Second-Order Framework

・ロト・日・・ヨト・日・ つへぐ

First- vs. Second-Order Framework

Topological classification

Summary

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ク Q (~

First- vs. Second-Order Framework

 $\Psi(t) = \mathrm{e}^{-\mathrm{i}t\,M_+}\Psi(0) \quad \not\Longrightarrow \quad \psi^E(t) \neq \mathrm{e}^{-\mathrm{i}t\,M_E^2}\psi^E(0)$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ク Q (~

First- vs. Second-Order Framework

 $\Psi(t) = \mathrm{e}^{-\mathrm{i}t\,M_+}\Psi(0) \quad \not\Rightarrow \quad \psi^E(t) \neq \mathrm{e}^{-\mathrm{i}t\,M_E^2}\psi^E(0)$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ク Q (~

First- vs. Second-Order Framework

 $\Psi(t) = \mathrm{e}^{-\mathrm{i}t\,M_+}\Psi(0) \quad \not\Longrightarrow \quad \psi^E(t) \neq \mathrm{e}^{-\mathrm{i}t\,M_E^2}\psi^E(0)$

Fopological classification

Summary

First- vs. Second-Order Framework

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < つ < ○</p>

First-vs. Second-Order Framework

second order

$$\begin{cases} \big(\partial_t^2 + M_E^2\big)\psi^E = 0\\ \big(\partial_t^2 + M_H^2\big)\psi^H = 0 \end{cases}$$

$$M_E^2(k)\varphi_n^E(k) = \left(\omega_n(k)\right)^2\varphi_n^E(k)$$

$$\psi^E(t) ~``= "~2 \mathrm{Re} \left(\mathrm{e}^{-\mathrm{i} t \sqrt{M_E^2}} \, \phi^E_+ \big(\psi^E(0) \,, \, \partial_t \psi^E(0) \big) \right)$$

Problems

- How to take $\sqrt{M_E^2}$?
- $\phi^{E}(\psi^{E}(0)\,,\,\psi^{H}(0))$ depends on electric and magnetic field at time t=0.
- How to distinguish between physical $\omega > 0$ components and unphysical $\omega < 0$ components?

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < つ < ○</p>

First-vs. Second-Order Framework

second order

$$\begin{cases} (\partial_t^2 + M_E^2)\psi^E = 0\\ (\partial_t^2 + M_H^2)\psi^H = 0 \end{cases}$$

$$M_E^2(k)\varphi_n^E(k) = \left(\omega_n(k)\right)^2\varphi_n^E(k)$$

$$\psi^E(t) \ ``=" 2 \mathrm{Re}\left(\mathrm{e}^{-\mathrm{i} t \sqrt{M_E^2}} \, \phi^E(\psi^E(0) \, , \, \psi^H(0))\right)$$

Problems

- How to take $\sqrt{M_E^2}$?
- $\phi^E(\psi^E(0), \psi^H(0))$ depends on electric and magnetic field at time t = 0.
- How to distinguish between physical $\omega > 0$ components and unphysical $\omega < 0$ components?

First-vs. Second-Order Framework

Compute frequency bands starting from

$$M_E(k)^2 \varphi^E_n(k) = \left(\lambda_n(k)\right)^2 \varphi^E_n(k)$$

Assumption $\lambda_n(k) \geq 0 \Longrightarrow$ yields $|\omega|$ spectrum

→ Sign important for dynamics!

$$0 = \left(\partial_t^2 + M_+(k)^2\right) \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix} = \left(\partial_t + \operatorname{i} M_+(k)\right) \left(\partial_t - \operatorname{i} M_+(k)\right) \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix}$$

・ロト・西ト・ヨト・ヨト・日下

First-vs. Second-Order Framework

Compute frequency bands starting from

$$M_E(k)^2 \varphi^E_n(k) = \left(\lambda_n(k)\right)^2 \varphi^E_n(k)$$

Assumption $\lambda_n(k) \geq 0 \Longrightarrow$ yields $|\omega|$ spectrum

→→ Sign important for dynamics!

$$0 = \left(\partial_t^2 + M_+(k)^2\right) \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix} = \left(\partial_t + \operatorname{i} M_+(k)\right) \left(\partial_t - \operatorname{i} M_+(k)\right) \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix}$$

・ロト・西ト・ヨト・ヨト・日下

First-vs. Second-Order Framework

Compute frequency bands starting from

$$M_E(k)^2 \varphi^E_n(k) = \left(\lambda_n(k)\right)^2 \varphi^E_n(k)$$

Assumption $\lambda_n(k) \geq 0 \Longrightarrow$ yields $|\omega|$ spectrum

→ Sign important for dynamics!

$$0 = \left(\partial_t^2 + M_+(k)^2\right) \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix} = \left(\partial_t + \operatorname{i} M_+(k)\right) \left(\partial_t - \operatorname{i} M_+(k)\right) \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix}$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

- **()** Obtain band spectrum by solving a *second*-order equation for electric/magnetic field only, e. g. $M_+(k)_E^2 \varphi_n^E(k) = \lambda_n(k)^2 \varphi_n^E(k)$
- 2 Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- 3 Use a graphene-type tight-binding model to understand light propagation for states located near intersection

- **(1)** Obtain band spectrum by solving a *second*-order equation for electric/magnetic field only, e. g. $M_{\perp}(k)_{E}^{2} \varphi_{n}^{E}(k) = \lambda_{n}(k)^{2} \varphi_{n}^{E}(k)$
- ② Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- Use a graphene-type tight-binding model to understand light propagation for states located near intersection

- **(1)** Obtain band spectrum by solving a *second*-order equation for electric/magnetic field only, e. g. $M_{\perp}(k)_{E}^{2} \varphi_{n}^{E}(k) = \lambda_{n}(k)^{2} \varphi_{n}^{E}(k)$
- Pick a family of bands, e. g. with a conical intersection (A₊, Y₁)
 Use a graphene-type tight-binding model to understand light propagation for states located near intersection

- **(1)** Obtain band spectrum by solving a *second*-order equation for electric/magnetic field only, e. g. $M_{\perp}(k)_{E}^{2} \varphi_{n}^{E}(k) = \lambda_{n}(k)^{2} \varphi_{n}^{E}(k)$
- 2 Pick a family of bands, e. g. with a conical intersection (A_+, Y_1)
- 3 Use a graphene-type tight-binding model to understand light propagation for states located near intersection

Topological classification

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Caution!

Procedure yields tight-binding operator $M_{\rm eff}$

Problems

- **(1)** Connection of $M_{\rm eff}$ to dynamics?
- 2 Nature of symmetries?
- ③ Correct notion of Berry connection?

Topological classification

Summary

Caution!

Procedure yields tight-binding operator $M_{\rm eff}$

Problems

- 1) Connection of $M_{\rm eff}$ to dynamics?
- 2 Nature of symmetries?
- 3 Correct notion of Berry connection?

・ロト・西ト・ヨト・ヨト・日下

Today's Goals

First Principles Approach to QHE for Light

- ① Start with **Maxwell's equations** for media with $W \neq \overline{W}$. Correct equations?
- 2 Schrödinger formalism of classical electromagnetism First- vs. second-order formalism, restriction to $\omega \ge 0$
- Topological classification of electromagnetic media Cartan-Altland-Zirnbauer classification for topological insulators
Summary

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

1 Maxwell's equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Topological Phenomena as Quantum-Wave Analogies?

- Is the Quantum Hall Effect for Light really analogous to the Quantum Hall Effect?
- ② Are there other topological effects?
- → Topological classification of electromagnetic media

Material vs. Crystallographic Symmetries

Material

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}$$

- Properties of and relations between ε , μ and χ
- Example:

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \neq \overline{W}, \ \ \varepsilon \neq \mu$$

Only these are considered here!

Material vs. Crystallographic Symmetries

Material

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}$$

- Properties of and relations between ε , μ and χ
- Example:

$$W = \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \neq \overline{W}, \ \ \varepsilon \neq \mu$$

Only these are considered here!

A Novel Class of Materials: Photonic Topological Insulators

$$\begin{pmatrix} \overline{\varepsilon} & 0\\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0\\ 0 & \mu \end{pmatrix}$$
symmetry breaking

 \downarrow •

 \downarrow ↓

А

A Novel Class of Materials: Photonic Topological Insulators

$$\begin{pmatrix} \overline{\varepsilon} & 0\\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0\\ 0 & \mu \end{pmatrix} \\ \text{symmetry breaking} \end{pmatrix} \implies$$
Photonic bulk-edge correspondences
$$\begin{array}{c} \text{Identify topological observables} \\ O = T + \text{error} \end{array} \qquad \bullet \qquad \\ \begin{array}{c} \text{A} \\ \hline \end{array} \\ \hline \end{array}$$
 \\ \hline \bigg \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \bigg \\ \\ \hline \bigg \\ \\ \\ \hline \bigg \\ \\ \hline \bigg \\ \\ \hline \bigg \\ } \\ \\ \\ \\ \\ \\

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト 3 500

B

Positive

0

A Novel Class of Materials: Photonic Topological Insulators

$$\left(\begin{array}{c} \overline{\varepsilon} & 0\\ 0 & \overline{\mu} \end{array} \right) \neq \left(\begin{array}{c} \varepsilon & 0\\ 0 & \mu \end{array} \right) \\ \text{symmetry breaking} \end{array} \implies \Rightarrow \\ \text{symmetry breaking} \\ \text{Photonic bulk-edge correspondences} \\ \text{Identify topological observables} \\ O = T + \text{error} \\ \text{Find all topological invariants } T \\ \text{Classification of PhCs by symmetries} \\ \text{Classification of PhCs by symmetries} \\ \end{array}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト 3 Dac

Positive

Summary

Interjection A Primer on Topological Insulators

Summary

Fundamental Notions

Altland–Zirnbauer Classification of Topological Insulators

The 10-fold way

- $\begin{array}{c|c|c|c|c|c|} \hline \textbf{1} & \textbf{1$
- Bulk-edge correspondences

 $\left. \begin{array}{c} \mathsf{physical} \\ \mathsf{observable} \end{array} \right\} \, \longleftrightarrow \, \left\{ \begin{array}{c} \mathsf{topological} \\ \mathsf{invariant} \end{array} \right.$

Summary

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fundamental Notions

Altland–Zirnbauer Classification of Topological Insulators

The 10-fold way

Symmetries of $H \iff$ Topological Class of H

- **Relies on** $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (}\pm\mbox{TR})\\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (}\pm\mbox{PH})\\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry (}\chi) \end{array}$

- 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class.

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathrm{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (\pm TR)} \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (\pm PH)} \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry }(\chi) \end{array}$

- 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class.

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathrm{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & {\rm time-reversal\ symmetry\ (\pm TR)}\\ U\,H(k)\,U^{-1}=-H(-k) & {\rm particle-hole\ (pseudo)\ symmetry\ (\pm PH)}\\ U\,H(k)\,U^{-1}=-H(+k) & {\rm chiral\ (pseudo)\ symmetry\ (\chi)} \end{array}$

- 1 + 5 + 4 = 10 topological classes
- Physics *crucially* depends on topological class.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Topological Classes

Symmetries of $H \leftrightarrow$ Topological Class of H

- Relies on $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$, $U H(k) U^{-1} = +H(-k)$ time-reversal symmetry (\pm TR)

 $U H(k) U^{-1} = -H(-k) \quad \text{particle-hole (pseudo) symmetry (\pm PH)}$ $U H(k) U^{-1} = -H(+k) \quad \text{chiral (pseudo) symmetry } (\chi)$

- 1 + 5 + 4 = 10 topological classes
- Physics *crucially* depends on topological class.

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathrm{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm \mathbb{1}$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (\pm TR)} \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (\pm PH)} \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry (}\chi) \end{array}$

- 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class.

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathrm{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry}\,(\pm {\rm TR}) \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry}\,(\pm {\rm PH}) \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry}\,(\chi) \end{array}$

- 1 + 5 + 4 = 10 topological classes
- Physics crucially depends on topological class.

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- Continuous, symmetry-preserving deformations of H cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of **topological invariants** (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by

 symmetries <=> topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 *false!*

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- Continuous, symmetry-preserving deformations of H cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of topological invariants (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries \iff topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 *false!*

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- Continuous, symmetry-preserving deformations of H cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of topological invariants (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries \iff topological class and
 - dimension of the system
- Notion that Topological Insulator ⇔ Chern number ≠ 0 false!

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Bulk-Edge Correspondences

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$\begin{split} O_{\rm bulk}(t) &\approx T_{\rm bulk} \\ O_{\rm edge}(t) &\approx T_{\rm edge} \\ T_{\rm bulk} &= T_{\rm edge} \end{split}$$

- Number and form depends on the topological class
- Find topological observables

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Bulk-Edge Correspondences

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$\begin{split} O_{\rm bulk}(t) &\approx T_{\rm bulk} \\ O_{\rm edge}(t) &\approx T_{\rm edge} \\ T_{\rm bulk} &= T_{\rm edge} \end{split}$$

- Number and form depends on the topological class
- Find topological observables

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Bulk-Edge Correspondences

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$\begin{split} O_{\rm bulk}(t) &\approx T_{\rm bulk} \\ O_{\rm edge}(t) &\approx T_{\rm edge} \\ T_{\rm bulk} &= T_{\rm edge} \end{split}$$

- Number and form depends on the topological class
- Find topological observables

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Bulk-Edge Correspondences

- Properties on the boundary can be inferred from the bulk
- Consists of 3 equalities:

$$\begin{split} O_{\rm bulk}(t) &\approx T_{\rm bulk} \\ O_{\rm edge}(t) &\approx T_{\rm edge} \\ T_{\rm bulk} &= T_{\rm edge} \end{split}$$

- Number and form depends on the topological class
- Find topological observables

Summary

Back to Business Classification of Topological PhCs

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

No Additional Symmetries Assumption

Assumption

Apart from those below the system (i. e. the Maxwell operator M) has no additional unitary, commuting symmetries.

Otherwise

- Isock-decompose according to unitary, commuting symmetry.
- 2 Repeat until no extraneous symmetries are left.
- 3 Analyze each block separately with the tools used here.

Summary

Symmetries Used in Classification

Example

$$T_3 = \left(\sigma_3 \otimes \mathbb{1} \right) C : \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \mapsto \begin{pmatrix} +\mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix} C \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} +\overline{\mathbf{E}} \\ -\overline{\mathbf{H}} \end{pmatrix}$$

Pauli matrix $\sigma_3 = \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right)$ in electro-magnetic splitting

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

Summary

Symmetries Used in Classification

Unitary symmetries

$$U_n = \sigma_n \otimes \mathbb{1}, \quad n = 1, 2, 3$$

Antiunitary symmetries

$$T_n = (\sigma_n \otimes \mathbb{1}) \, C, \quad n=0,1,2,3$$

- C is complex conjugation
- $\sigma_0 = \mathbb{1}$ the identity
- σ_1 , σ_2 and σ_3 are the Pauli matrices in the E-H splitting
- U_n and T_n (anti)commute with free Maxwell operator

$$Rot = \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$$
$$= -\sigma_2 \otimes \nabla^{\times}$$

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Summary

Admissible Symmetries

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} = \sum_{n=0}^{3} \sigma_n \otimes w_n$$

where e. g. $w_0 = \frac{1}{2}(\varepsilon + \mu)$ and $w_3 = \frac{1}{2}(\varepsilon - \mu)$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

Admissible Symmetries

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} = \sum_{n=0}^3 \sigma_n \otimes w_n$$

Symmetry $V =$	$w_0 =$	$w_1 =$	$w_2 =$	$w_3 =$	Symmetry Type
$T_1 = (\sigma_1 \otimes \mathbb{1}) C$	$\operatorname{Re} w_0$	$\operatorname{Re} w_1$	$\operatorname{Re} w_2$	$\mathrm{i}\mathrm{Im}w_3$	+TR
$U_2=\sigma_2\otimes\mathbb{1}$	w_0	0	w_2	0	ordinary
$T_3=(\sigma_3\otimes\mathbb{1})C$	$\operatorname{Re} w_0$	$\mathrm{i}\mathrm{Im}w_1$	$\operatorname{Re} w_2$	$\operatorname{Re} w_3$	+TR

Admissibility Conditions

- $\bullet \ \ {\rm Reality} \ {\rm of} \ ({\rm E},{\rm H}) \ \Longleftrightarrow \ \omega > 0 \ {\rm fields} \ \Longrightarrow \ V \ M = M \ V$
- Compatibility with energy scalar product $\implies V W = W V$
- \implies exclude *anti*commuting symmetries

< ロト < 団 ト < 豆 ト < 豆 ト < 豆 < つ < ぐ</p>

Admissible Symmetries

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} = \sum_{n=0}^3 \sigma_n \otimes w_n$$

Symmetry $V =$	$w_0 =$	$w_1 =$	$w_2 =$	$w_3 =$	Symmetry Type	
$T_1 = (\sigma_1 \otimes \mathbb{1}) C$	$\operatorname{Re} w_0$	$\operatorname{Re} w_1$	$\operatorname{Re} w_2$	i Im w_3	+TR	
$U_2=\sigma_2\otimes\mathbb{1}$	w_0	0	w_2	0	ordinary	
$T_3=(\sigma_3\otimes\mathbb{1})C$	$\operatorname{Re} w_0$	$\mathrm{i}\mathrm{Im}w_1$	$\operatorname{Re} w_2$	$\operatorname{Re} w_3$	+TR	

Admissibility Conditions

 \implies exclude *anti*commuting symmetries

Relevance to Classification

 \Rightarrow exclude unitary, commuting symmetries

Summary

Revisiting Example from the Previous Section

Restricting to $\omega \ge 0 \neq$ Technicality!

Weights for "dual-symmetric" medium described by

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi & \varepsilon \end{pmatrix} = \mathbbm{1} \otimes \varepsilon + \sigma_1 \otimes \chi \neq \mathbbm{1} \otimes \varepsilon - \sigma_1 \otimes \chi = \overline{W}$$

where

$$\varepsilon = \begin{pmatrix} \varepsilon_{\perp} & 0 & 0\\ 0 & \varepsilon_{\perp} & 0\\ 0 & 0 & \varepsilon_{z} \end{pmatrix} \qquad \qquad \chi = \begin{pmatrix} 0 & +\mathbf{i}\kappa & 0\\ -\mathbf{i}\kappa & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

commute with operator

$$U_1 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} = \sigma_1 \otimes \mathbb{1}$$

But: U_1 is not a symmetry of the physical system!

・ロト・西ト・ヨト・ヨト・日下

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Restricting to $\omega \ge 0 \neq$ Technicality!

Weights for "dual-symmetric" medium described by

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi & \varepsilon \end{pmatrix} = \mathbbm{1} \otimes \varepsilon + \sigma_1 \otimes \chi \neq \mathbbm{1} \otimes \varepsilon - \sigma_1 \otimes \chi = \overline{W}$$

commute with operator

$$U_1 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} = \sigma_1 \otimes \mathbb{1}$$

But: U₁ is not a symmetry of the physical system!

- U_1 anticommutes with Rot $\implies U_1: \omega > 0 \mapsto \omega < 0$
- U_1 does not commute with M_+ !

Summary

Back to Topological Classification of EM Media

<ロト < 部 ト < 注 ト < 注 ト 三 の < @</p>

Topological Classification of EM Media

Theorem (De Nittis & L. (2017))				
Non-gyrotropic	Gyrotropic			
$W = \left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix}\right) = \left(\begin{smallmatrix} \overline{\varepsilon} & 0 \\ 0 & \overline{\mu} \end{smallmatrix}\right)$	$W = \left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix}\right) \neq \left(\begin{smallmatrix} \overline{\varepsilon} & 0 \\ 0 & \overline{\mu} \end{smallmatrix}\right)$			
$T_3 = (\sigma_3 \otimes \mathbb{1}) C$	No symmetries			
Dual-symmetric pop-gyrotr	Magneto-electric			
Duar symmetric, non gyroti.	Magneto electric			
$W = \begin{pmatrix} \varepsilon & -\mathrm{i}\chi \\ +\mathrm{i}\chi & \varepsilon \end{pmatrix} = \begin{pmatrix} \overline{\varepsilon} & -\mathrm{i}\overline{\chi} \\ +\mathrm{i}\overline{\chi} & \overline{\varepsilon} \end{pmatrix}$	$W = \left(\begin{smallmatrix} \varepsilon & \chi \\ \chi & \varepsilon \end{smallmatrix}\right) = \left(\begin{smallmatrix} \overline{\varepsilon} & \overline{\chi} \\ \overline{\chi} & \overline{\varepsilon} \end{smallmatrix}\right)$			
$T_1 = \left(\sigma_1 \otimes \mathbb{1} \right) C, \ T_3 = \left(\sigma_3 \otimes \mathbb{1} \right) C$	$T_1 = (\sigma_1 \otimes \mathbb{1}) C$			

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

Topological Classification of EM Media

Theorem	(De	Nittis	& L.	(2017	7))
---------	-----	--------	------	-------	-----

Non-gyrotropic

Class Al

Realized, e.g. dielectrics

Gyrotropic Class A (Quantum Hall Class) Realized, e. g. YIG for microwaves

Dual-symmetric, non-gyrotr. Two +TR \implies 2 × Class AI Realized, e. g. vacuum and YIG Magneto-electric Class Al Realized, e. g. Tellegen media

4 different topological classes of EM media

<ロト < 母 ト < 主 ト < 主 ト うへで
Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic

Class Al

Realized, e.g. dielectrics

Dual-symmetric, non-gyrotr. Two +TR \implies 2 × Class Al Realized, e. g. vacuum and YIG Gyrotropic Class A (Quantum Hall Class) Realized, e. g. YIG for microwaves

Magneto-electric Class Al Realized, e. g. Tellegen media

Only one is topologically non-trivial in $d \leq 3$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Summary

Topological Photonic Crystals Topology of What?

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

The Topology of Light States in Periodic Media

Relevant frequency bands

 $\sigma_{\rm rel}(k) = \bigcup_{n\in\mathcal{I}}\{\omega_n(k)\}$ separated by a spectral gap from the others.

→ Projection onto the relevant bands

$$P_{\mathrm{rel}}(k) = \sum_{n \in \mathcal{I}} |\varphi_n(k)\rangle \langle \varphi_n(k)|$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ の � @

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

The Topology of Light States in Periodic Media

Relevant frequency bands

 $\sigma_{\rm rel}(k) = \bigcup_{n\in\mathcal{I}}\{\omega_n(k)\}$ separated by a spectral gap from the others.

→ Projection onto the relevant bands

$$P_{\mathrm{rel}}(k) = \sum_{n \in \mathcal{I}} |\varphi_n(k)\rangle \langle \varphi_n(k)|$$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

The Topology of Light States in Periodic Media

Existence of topological
boundary states
$$\longleftrightarrow \quad \begin{cases} \text{Topology of the (bulk)} \\ \text{Bloch bundle} \\ \mathcal{E}_{\mathbb{B}}(P_{\text{rel}}) = (\xi_{\mathbb{B}} \xrightarrow{\pi} \mathbb{B}) \end{cases}$$

where

$$\xi_{\mathbb{B}}(P_{\mathrm{rel}}) = \bigsqcup_{k \in \mathbb{B}} \mathrm{ran} \, P_{\mathrm{rel}}(k) = \bigsqcup_{k \in \mathbb{B}} \mathrm{span} \big\{ \varphi_n(k) \big\}_{n \in \mathcal{I}}$$

is associated to finitely many frequency bands* separated by a spectral gap from the others.

* Not ground state bands!

"Continuous deformations" of vector bundles and equivalence

$$\mathcal{E}_{\mathbb{B}}(P_{\mathrm{rel}}):\bigsqcup_{k\in\mathbb{B}}\operatorname{ran}P_{\mathrm{rel}}(k)\overset{\pi}{\longrightarrow}\mathbb{B}$$

Gaps must remain open

 \iff dimension of fiber ran $P_{rel}(k)$ does not change!

- Continuous deformations of M_+
 - \implies continuous deformations of $P_{\rm rel}$
- Continuous deformations of $P_{\rm rel}$
 - \implies continuous deformation of $\mathcal{E}_{\mathbb{B}}(P_{\mathrm{rel}})$

Classification of vector bundles over the torus

Find a way to characterize the Bloch vector bundle "modulo continuous deformations" \rightsquigarrow This is a solved problem!

Theorem (Class A vector bundles over the torus)

For the cases of rank-m vector bundles over the d-dimensional torus listed below, the set of equivalence classes is countable and given by:

$$1 \quad d = 1, m \ge 1: \operatorname{Vec}_{\mathbb{C}}^{m}(\mathbb{S}^{1}) \cong \{0\}$$

2)
$$d \ge 2, m = 1: \operatorname{Vec}^1_{\mathbb{C}}(\mathbb{T}^d) \cong \mathbb{Z}$$

$$\exists \ d=2, m\geq 2 : \mathrm{Vec}^m_{\mathbb{C}}(\mathbb{T}^2)\cong \mathbb{Z}$$

$$\ \, {} \ \, d=3,m\geq 2{:}\, {\rm Vec}_{\mathbb C}^m(\mathbb T^3)\cong \mathbb Z^3$$

$$\ \, {\mathfrak S} \ \, d=4,m\geq 2{\rm :}\, {\rm Vec}^m_{\mathbb C}({\mathbb T}^2)\cong {\mathbb Z}^6\oplus {\mathbb Z}$$

6
$$d \ge 5$$
, $2m \ge d$: $\operatorname{Vec}^m_{\mathbb{C}}(\mathbb{T}^d) \cong \mathbb{Z}^k$ for $k = \binom{d}{k}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Class AI vector bundles over the torus) Suppose there exists an antiunitary operator V with $V^2 = +1$ and

$$V P_{\rm rel}(k) V^{-1} = P_{\rm rel}(-k).$$

For the cases of rank-m vector bundles over the d-dimensional torus listed below, the set of equivalence classes is countable and given by:

$$1 \quad d \ge 1, m = 1: \operatorname{Vec}_{\mathbb{C}}^{m}(\mathbb{T}^{d}) \cong \{0\}$$

②
$$d = 1, 2, 3, m \ge 1: \operatorname{Vec}^{1}_{\mathbb{C}}(\mathbb{T}^{d}) \cong \{0\}$$

$$\ \, {\mathfrak {S}} \ \, d=4, m\geq 2{\rm :} {\rm Vec}^m_{\mathbb C}(\mathbb T^4)\cong \mathbb Z$$

$$d \geq 5, 2m \geq d: \mathrm{Vec}^m_{\mathbb{C}}(\mathbb{T}^d) \cong \mathbb{Z}^k$$

\implies All odd Chern classes vanish (first, third, etc.)

Chern classes are *computable*!

- "Abstract non-sense" tells us that vector bundles are characterized by Z-valued Chern classes
- But: Given a particular set of Bloch functions, how do we compute Chern classes?
 Answer: From differential geometry! (E. g. the Berry curvature)

Topological Classification of Phases

Theorem (De Nittis & L. (2017))

Medium	CAZ Class	Dimension $d =$			
		1	2	3	4
Gyrotropic	А	0	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^6\oplus\mathbb{Z}$
Non-gyrotropic	AI	0	0	0	\mathbb{Z}
Magneto-electric	AI	0	0	0	\mathbb{Z}
Dual-symmetric, non-gyrotropic	2 imes AI	0	0	0	$\mathbb{Z}\oplus\mathbb{Z}$

(Classification of Bloch vector bundles with symmetries.) First and second Chern numbers

Topological Classification of Phases

Theorem (De Nittis & L. (2017))

Medium	CAZ Class	Dimension $d =$			
		1	2	3	4
Gyrotropic	А	0	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^6\oplus\mathbb{Z}$
Non-gyrotropic	AI	0	0	0	\mathbb{Z}
Magneto-electric	AI	0	0	0	\mathbb{Z}
Dual-symmetric, non-gyrotropic	2 imes Al	0	0	0	$\mathbb{Z}\oplus\mathbb{Z}$

(Classification of Bloch vector bundles with symmetries.) First and second Chern numbers

Consequences of the Classification Result

- Is the Quantum Hall Effect for Light really analogous to the Quantum Hall Effect?
 Answer: Yes! Both systems are in Class A!
- ② Are there other topological effects?
 Answer: In d ≤ 3 (unfortunately) no!
 (E. g. no analog of the Quantum Spin Hall Effect (class All))
 In d = 4: Effects due to second Chern number or numbers?

Consequences of the Classification Result

Is the Quantum Hall Effect for Light really analogous to the Quantum Hall Effect?
 Answer: Yes! Both systems are in Class A!
 Are there other topological effects?
 Answer: In d < 3 (unfortunately) no!

(E. g. no analog of the Quantum Spin Hall Effect (class All)

In d = 4: Effects due to second Chern number or numbers?

Maxwell's equations

Schrödinger formalism

Topological classification

Summary

Comparison First- and Second-Order Formalism

Topological classification

Summary

ω spectrum vs. $|\omega|$ spectrum

First-order formulation $M(k) \varphi_n(k) = \omega_n(k) \, \varphi_n(k)$

Second-order formulation $M(k)^{2}\varphi_{n}(k)=\left|\omega_{n}(k)\right|^{2}\,\varphi_{n}(k)$

ω spectrum vs. $|\omega|$ spectrum

• Points X_i and Y_i are *artificial* band crossings

▲ロト 4 団 ト 4 団 ト 4 団 ト 三 の Q (C)

Summary

ω spectrum vs. $|\omega|$ spectrum

- Points X_j and Y_j are *artificial* band crossings
- No graphene-like physics
 - \sim eigenfunctions well-behaved at artificial crossings

Symmetries

Classification of (anti-)unitary U with $U^2=\pm\mathbbm{1}$ with

$$U\,M(k)^2\,U^{-1}=M(\pm k)^2$$

in Cartan-Altland-Zirnbauer scheme, e. g. if $W_{+} = \overline{W_{+}}$

 $\begin{array}{c} C \, M(k) \, C = -M(-k) \\ \Rightarrow \, C \, M(k)^2 \, C = +M(-k)^2 \end{array} \hspace{1.5cm} \text{vs.} \hspace{1.5cm} \left\{ \begin{array}{c} T \, M(k) \, T = +M(-k) \\ \Rightarrow \, T \, M(k)^2 \, T = +M(-k)^2 \end{array} \right.$

- ⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification **impossible** in second-order framework!

・ロト・西ト・ヨー シック

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Symmetries

Classification of (anti-)unitary U with $U^2=\pm\mathbbm{1}$ with

$$U\,M(k)^2\,U^{-1} = M(\pm k)^2$$

in Cartan-Altland-Zirnbauer scheme, e. g. if $W_+ = \overline{W_+}$

$$\begin{array}{c} C\,M(k)\,C=-M(-k)\\ \Rightarrow\,\,C\,M(k)^2\,C=+M(-k)^2 \end{array} \hspace{0.2cm} \text{vs.} \hspace{0.2cm} \left\{ \begin{array}{c} T\,M(k)\,T=+M(-k)\\ \Rightarrow\,\,T\,M(k)^2\,T=+M(-k)^2 \end{array} \right. \end{array}$$

⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!

Symmetries

Classification of (anti-)unitary U with $U^2=\pm\mathbbm{1}$ with

$$U\,M(k)^2\,U^{-1}=M(\pm k)^2$$

in Cartan-Altland-Zirnbauer scheme, e. g. if $W_+ = \overline{W_+}$

$$\begin{array}{c} C\,M(k)\,C=-M(-k)\\ \Rightarrow\,\,C\,M(k)^2\,C=+M(-k)^2 \end{array} \hspace{0.2cm} \text{vs.} \hspace{0.2cm} \left\{ \begin{array}{c} T\,M(k)\,T=+M(-k)\\ \Rightarrow\,\,T\,M(k)^2\,T=+M(-k)^2 \end{array} \right. \end{array}$$

- ⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification **impossible** in second-order framework!

・ロト・日本・モート ヨー つくぐ

Symmetries

Classification of (anti-)unitary U with $U^2=\pm\mathbbm{1}$ with

$$U\,M(k)^2\,U^{-1}=M(\pm k)^2$$

in Cartan-Altland-Zirnbauer scheme, e. g. if $W_+ = \overline{W_+}$

$$\begin{array}{c} C\,M(k)\,C=-M(-k)\\ \Rightarrow\,\,C\,M(k)^2\,C=+M(-k)^2 \end{array} \hspace{0.2cm} \text{vs.} \hspace{0.2cm} \left\{ \begin{array}{c} T\,M(k)\,T=+M(-k)\\ \Rightarrow\,\,T\,M(k)^2\,T=+M(-k)^2 \end{array} \right. \end{array}$$

- ⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification impossible in second-order framework!

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Symmetries

Classification of (anti-)unitary U with $U^2=\pm\mathbbm{1}$ with

$$U\,M(k)^2\,U^{-1}=M(\pm k)^2$$

in Cartan-Altland-Zirnbauer scheme, e. g. if $W_+ = \overline{W_+}$

$$\begin{array}{c} C\,M(k)\,C=-M(-k)\\ \Rightarrow\,\,C\,M(k)^2\,C=+M(-k)^2 \end{array} \hspace{0.2cm} \text{vs.} \hspace{0.2cm} \left\{ \begin{array}{c} T\,M(k)\,T=+M(-k)\\ \Rightarrow\,\,T\,M(k)^2\,T=+M(-k)^2 \end{array} \right. \end{array}$$

- ⇒ No way to distinguish PH and TR symmetry! Ditto for chiral vs. proper symmetry
- ⇒ CAZ classification impossible in second-order framework!

Proper definition of the Berry Connection

$$\begin{split} \mathcal{A}(k) &= \mathbf{i} \left\langle \varphi_n(k), \nabla_k \varphi_n(k) \right\rangle_{W_{\pm}} = \mathbf{i} \left\langle \varphi_n(k), W_{\pm} \nabla_k \varphi_n(k) \right\rangle \\ &= \mathbf{i} \left\langle \varphi_n^E(k), \varepsilon \, \nabla_k \varphi_n(k) \right\rangle + \mathbf{i} \left\langle \varphi_n^H(k), \mu \, \nabla_k \varphi_n^H(k) \right\rangle \end{split}$$

- Berry connection sometimes computed using only $\varphi^E_n(k)$
- However: $\|\mathbf{E}(t)\|_{\epsilon}^{2} = \langle \mathbf{E}(t), \epsilon \mathbf{E}(t) \rangle$ not conserved quantity!
- $\Rightarrow \mathcal{A}^E(k) = \mathrm{i}\left\langle \varphi_n^E(k), \varepsilon \, \nabla_k \varphi_n^E(k) \right\rangle$ not a connection
- Magnetic field necessary to compute Berry connection!
- Same arguments hold for φ_n^H .

Proper definition of the Berry Connection

$$\begin{split} \mathcal{A}(k) &= \mathbf{i} \left\langle \varphi_n(k), \nabla_k \varphi_n(k) \right\rangle_{W_{\pm}} = \mathbf{i} \left\langle \varphi_n(k), W_{\pm} \nabla_k \varphi_n(k) \right\rangle \\ &= \mathbf{i} \left\langle \varphi_n^E(k), \varepsilon \, \nabla_k \varphi_n(k) \right\rangle + \mathbf{i} \left\langle \varphi_n^H(k), \mu \, \nabla_k \varphi_n^H(k) \right\rangle \end{split}$$

- Berry connection sometimes computed using only $\varphi_n^E(k)$
- However: $\|\mathbf{E}(t)\|_{\varepsilon}^{2} = \langle \mathbf{E}(t), \varepsilon \mathbf{E}(t) \rangle$ not conserved quantity!
- $\bullet \ \Rightarrow \mathcal{A}^E(k) = \mathrm{i}\left\langle \varphi^E_n(k), \varepsilon \, \nabla_k \varphi^E_n(k) \right\rangle \textit{not a connection}$
- Magnetic field necessary to compute Berry connection!
- Same arguments hold for φ_n^H .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proper definition of the Berry Connection

$$\begin{split} \mathcal{A}(k) &= \mathrm{i} \left\langle \varphi_n(k), \nabla_k \varphi_n(k) \right\rangle_{W_{\pm}} = \mathrm{i} \left\langle \varphi_n(k), W_{\pm} \nabla_k \varphi_n(k) \right\rangle \\ &= \mathrm{i} \left\langle \varphi_n^E(k), \varepsilon \, \nabla_k \varphi_n(k) \right\rangle + \mathrm{i} \left\langle \varphi_n^H(k), \mu \, \nabla_k \varphi_n^H(k) \right\rangle \end{split}$$

- Berry connection sometimes computed using only $\varphi^E_n(k)$
- However: $\|\mathbf{E}(t)\|_{\varepsilon}^{2} = \langle \mathbf{E}(t), \varepsilon \mathbf{E}(t) \rangle$ not conserved quantity!
- $\bullet \ \Rightarrow \mathcal{A}^E(k) = \mathrm{i}\left\langle \varphi^E_n(k), \varepsilon \, \nabla_k \varphi^E_n(k) \right\rangle \, \textit{not a connection}$
- Magnetic field necessary to compute Berry connection!
- Same arguments hold for φ_n^H .

Summary

1 Maxwell's equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

Putting All The Pieces Together

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

Comparison with Other Works

Unidirectional Modes of Fixed (Pseudo)spin

- Works of Xiao Hu et al and Aleksander Khanikaev et al
- Pseudospin degree of freedom in a time-reversal-symmetric medium
- "Hamiltonian" aka Maxwell operator $M = \begin{pmatrix} M_{\uparrow} & 0 \\ 0 & M_{\downarrow} \end{pmatrix}$ has a block decomposition
- Topological classification must be applied to $M_{\uparrow/\downarrow}$
- M_{↑/↓} of (pseudo) spin ↑/↓ may not possess time-reversal symmetry

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Comparison with Other Works

Wu & Hu (2015)

- Edge modes topological
- Pseudospin degree of freedom in a time-reversal-symmetric medium
- Time-reversal symmetry $T_3 \neq T_{\uparrow} \oplus T_{\downarrow}$ not blockdiagonal $\implies M_{\uparrow/\downarrow}$ class A (no symmetry)
- Chern numbers $C_{\uparrow} = -C_{\downarrow} \neq 0$ possible
- Not in contradiction, edge modes come in ↑ / ↓ pairs
- Topologically protected against perturbations which preserve T_3 symmetry and honeycomb structure

Wu & Hu (2015)

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト

Schrödinger formalism

Topological classification

Summary

Comparison with Other Works

Khanikaev et al (2013)

- Mathematics and numerics correct
- Unfortunately, equations unphysical

Khanikaev et al (2012)

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Maxwell's equations

Schrödinger formalism

Topological classification

Summary

Thank you for your attention!

<ロト < 部 ト < 注 ト < 注 ト 三 の < @</p>