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Quantum-Wave Analogies
The Quantum Hall Effect

for light as alens
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The Quantum Hall Effect: the Prototypical System

B #0 = time-reversal symmetry broken

2 2
o-;u‘]/k( ) eh Chhulk - T Chedge ~ Uedge<t)

transverse conductivity = Chern #

1
Chbulk/edge = % / dk Qbulk/edge(k) Sy
B

e Edge modes in spectral gaps

e Signed # edge channels = Ch(
e Edge modes unidirectional

e Robust against disorder

Ferml) electrons can move along edge (conducting)

electrons localized in obits (insulating)

Two Nobel Prizes
1985 for experiment: von Klitzing
2016 for theory: Thouless
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The Quantum Hall Effect: the Prototypical System
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Ubulk(t) ~ h Chhulk = % Chedge ~ U:::lfge(t)

o}

ve along edge (conducting)

electrons localized in obits (insulating)
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Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...
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Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)
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Quantum Hall Effect for Light

Haldane’s photonic bulk-boundary correspondence

In a two-dimensional photonic crystals with boundary the
difference of the number of left- and right-moving boundary
modes

signed f edge modes = Ch,gge = Chyy

in bulk band gaps is a topologically protected quantity and equals
the Chern number associated to the frequency bands below the
bulk band gap.
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Analog of the QHE in Coupled Mechanical Oscillators

Summary

Video .
Boundary mode traveling counter-clockwise.


https://youtu.be/eJJnEcnoiXA
https://youtu.be/eJJnEcnoiXA

Maxwell’s equations Schrédinger formalism

Topological classification Summary

Topological Effects: Phenomenological Similarities

Coupled Oscillators

o Periodic structure +» bulk band gap
o Breaking of time-reversal symmetries
o Unidirectional edge modes

o Robust under perturbations

Quantum
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Systematic Approach to Quantum-Wave Analogies

( Classical Electromagnetism

Quantum Mechanics e 0\ 9 (E\_ (-VxH
. 0 un) ot \H +V xE
18’5\1’ =HV < (dynamical equations)

H=(—iV—A)2+V

. . \v2 e 0 E 0
(Schrodinger equation) (V) (O ,u) (H) = (O)

L (constraint equation)

o Whether and to what extent do particular quantum-wave
analogies hold?

o Transfer ideas and techniques initially developed for quantum
mechanics to classical waves.



Maxwell’s equations Schrodinger formalism Topological classification Summary

Today’s Goals

First Principles Approach to QHE for Light
@ Start with Maxwell’s equations for media with 17/ = /.
Correct equations?
@ Schrodinger formalism of classical electromagnetism
First- vs. second-order formalism, restriction to w > 0

@ Topological classification of electromagnetic media
Cartan-Altland-Zirnbauer classification for topological insulators
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(1 Maxwell’s equations in linear, non-dispersive media

@ Schrédinger formalism of classical electromagnetism

@ Topological classification of electromagnetic media

@ Putting All The Pieces Together
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() Maxwell’s equations in linear, non-dispersive media
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Goal of This Section
Derive Maxwell’s equations for gyrotropic media
Physical fields (E, H) are linear combination of complex 4w waves:
(E,H) =V, + 7 —2ReW,

Material weights

W, =W = (i X) LW =w._

— Pair of equations
_ v
pror  [WOT= (5T,
DiviW, ¥, =0

il W (‘)t\IIT — (7%X ’g/ ) U
DiviV_V¥_ =0
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Goal of This Section
Derive Maxwell’s equations for gyrotropic media

Physical fields (E, H) are linear combination of complex 4w waves:
(E;H) =0, + 0¥, =2ReV,

Material weights
W, =W= (6* X) #szf

— Pair of equations

w>0: W+8t\1’+:<—%x+gx)qj+
DiviV, ¥, =0

weor  [TOI=( 8w
DiviV, ¥_ =0
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Goal of This Section
Derive Maxwell’s equations for gyrotropic media

Physical fields (E, H) are linear combination of complex 4w waves:
(E,H) = 2Re U,

Material weights
W, =W= (6* X) #szf

— Pair of equations

-Vv* 0

w>0: W, 0,9, =(_g« "5 )Y,
DiviV, ¥, =0
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Strategy

@ Start with Maxwell's equations for linear, dispersive media.

@ Neglect dispersion.

Crucial ingredient: Real-valuedness of physical fields

Summary
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Fundamental Equations

Maxwell’s equations in media
@ Maxwell’s equations

Q D) _ (+V xH — J (dynamical egns.)
ot \B) " \—VxE 0 y ans.

V-D\ [(p .
(V _ B) = (0) (constraint egns.)

@ Constitutive relations

@ Conservation of charge

Summary
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Fundamental Equations

Maxwell’s equations in media
@ Maxwell’s equations

QD——'—VXH (dynamical egns.)
2% \B) = | _vxE ynamical egns.

V-D) _ (0 (constraint eqns.)
V-B)  \o "

@ Constitutive relations
D E
(5) =" ()

@ Conservation of charge ~» neglect sources for simplicity
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Constitutive Relations for Linear Media

(D). B(0) = [ dsW(t ) (B(s), H(s)

Assumption (Constitutive relations)

e(t,z)  xPH(, x))
We assume that W (t, x) = € Matg (6
,2) (xHE<t,x) plt, ) c(©)

@ isreal, W = W, and
@ satisfies the causality condition W (t) = O forallt < 0.
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Constitutive Relations for Linear Media

(D(?),B(t)) = (W = (E,H))(?)

Assumption (Constitutive relations)

e(t,z)  xPH(, x))
We assume that W (t, x) = € Matg (6
,2) (xHE<t,x) plt, ) c(©)

@ satisfies the causality condition W (t) = 0 forallt < 0.
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Reality Condition in Frequency Space

(E(~w), H(—w)) = (E(+w), H(+w))

Similarly for other quantities such as W (¢) and J(¢)
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Rewriting the Dynamical Equations

1 X
;W*\P:—iRot\If::—i( 0 v >\If

—

igW*‘ll = Rot¥
ot

where ¥ = (E, H) is the electromagnetic field

Summary
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Heuristically Neglecting Dispersion in Maxwell’s Equations

i 2W xU(t) = Rot U(t)
@ Apply inverse Fourier transform in
F-1 time to go from time-dependent to
frequency-dependent equations.

Q
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Heuristically Neglecting Dispersion in Maxwell’s Equations

Sr—l
W W(w) (Il\(w) _ Rot/\I7(w) @ Approximate material weights
W(tw) = W(dtw,) = W_ for
frequencies +w ~ +w,.
- +w, and —w,, contributions
. . . necessary to reconstruct real
+ wW(4wy) ¥(4+w) = Rot ¥(+w) solutions.
F
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Heuristically Neglecting Dispersion in Maxwell’s Equations

Sr—l

+ wW(+wg) ¥(+w) = Rot ¥(+w)

@ Undo Fourier transform to obtain
F dynamical equations in the
absence of dispersion.

—

W(twg) i %\Iji@) =Rot ¥, (?)



Maxwell’s equations Schrodinger formalism Topological classification Summary

Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex +w waves:
(ELH) =W, +V_ =2ReV,

= Pair of equations

. W_i0, ¥, = RotV¥
w0 { DivW, ¥, =0
oy W_i0,¥_ = Rot ¥
o DiviV.¥_ =0
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Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex +w waves:
(E,H) =0, +¥_=2ReV,

= Pair of equations

. W,10,7, = Rot T,
w=>0: { DivIV, ¥, =0

, W, 10,¥_ = Rot¥_
w<0: { DivIV, ¥ =0

(W:W = W,zﬁ)



Maxwell’s equations Schrodinger formalism Topological classification Summary

Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex 4w waves:
(E,H) = 2ReV
= Pair of equations

o0 {I/I/+i(9t\11+—P{ot\Il+

Div W, ¥, =0
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Restricting to w > 0 # Technicality!

Weights for “dual-symmetric” medium described by

£ X
o (2 ) 1oshmen

e, 0 0 0 +ik O
e=10 ¢ 0 x=|—-ik 0 0
0 0 e, 0 0 0

where
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Restricting to w > 0 # Technicality!

Weights for “dual-symmetric” medium described by
_ (& X\ _
I () [T

commute with operator

0 1
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Restricting to w > 0 # Technicality!

Weights for “dual-symmetric” medium described by
W=1®e+o0,®X
Rewrite Maxwell equations
0 Wy =

in (pseudospin) eigenbasis ¥, | = ¥ + 7 of U} =0, ®1
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Restricting to w > 0 # Technicality!

Weights for “dual-symmetric” medium described by
W=1®e+o0,®X
Rewrite Maxwell equations
0 Wy =

in (pseudospin) eigenbasis ¥, | = ¥ + 7 of U} =0, ®1

What went wrong here?
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Restricting to w > 0 # Technicality!

What went wrong here?

o Material weights complex!
W=1Qece+0, X #1Q®@e—0,x=W

o Maxwell equations for +w > 0 components different!



Maxwell’s equations Schrodinger formalism Topological classification

Restricting to w > 0 # Technicality!

What went wrong here?

o Free Maxwell operator
0 +iV*
Rot = (iVX 0 ) =—0,Q0V"

anticommutes withU; =0, ® 1
0 = U; mapsw > 0 states onto w < 0 states
o U, =¥ £ consist of w > 0 and w < 0 waves

Summary
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Restricting to w > 0 # Technicality!

What went wrong here?

o = U, violate transversality condition

o Evenif (vF H)istransversal in the sense

V(P + x9N
V- (P +ept) ’
the eigenvectors W, are not transversal asw < 0 obey a
different transversality constraint DivIV ¥_ = 0.

Div IV (4, ) — (

= U, , cannot be a solution to Maxwell’s equations!
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Restricting to w > 0 # Technicality!

To be continued ...
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Today’s Goals

Summary

First Principles Approach to QHE for Light

@ Start with Maxwell’s equations for media with W # W.
Correct equations?
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@ Schrodinger formalism of classical electromagnetism
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Mathematical Frameworks of Physical Theories

Hamilton
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Mathematical Frameworks of Physical Theories

Hamilton

@ Derive Schrédinger formalism for classical electromagnetic
waves
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Mathematical Frameworks of Physical Theories

Hamilton

@ Application of Schrodinger formalism: Classify topological
photonic crystals



Maxwell’s equations Schrédinger formalism Topological classification Summary

Mathematical Frameworks of Physical Theories

Hamilton

@ Schrodinger and Lagrangian formalism: finding constants of
motion in electromagnetism
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Mathematical Frameworks of Physical Theories

Hamilton

@ Derive Schrédinger formalism for classical electromagnetic
waves

@ Application of Schrodinger formalism: Classify topological
photonic crystals

@ Schrodinger and Lagrangian formalism: finding constants of
motion in electromagnetism
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Making Quantum-Wave Analogies Rigorous

Quantum Mechanics
i0,V=HV
H=(-iV—-A)2+V

(Schrodinger equation)

Classical Electromagnetism

G40 (3

(dynamical equations)

(5) (60 () = )

(constraint equation)

@ States describe the configuration of the system at a given

time.

@ Observables represent experimentally measurable quantities.

@ Dynamics explain how states or observables evolve over time.
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Assumptions on the Medium

Summary

Assumption (Material weights)
| b | o= (29, X0

x(@)* p(x)

@ The medium is lossless.
W*=MW)

@ W describes a positive
index medium.
(eigenvalues w,(z) of W (x)
satisfy 0 < ¢ <w;(z) < C)

it
S
»
i)
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Recap: States and Dynamics in Quantum Mechanics

States and Dynamics
@ A selfadjoint Hamilton operator, e. g.

H= 1 (-iv—A4)°+Vv

2m

H=mp+ (-iV—-A)-a+V

@ AHilbert space 7 and states are represented by its elements,
e.g. L2(R,C™)with (6.6) = | deg(o) - v(a).
R4

@ Dynamics given by the Schrédinger equation

10,0(t) = Hijp(t), ¥(0) =¢
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Recap: States and Dynamics in Quantum Mechanics

States and Dynamics
@ A selfadjoint Hamilton operator H
@ AHilbert space / and states are represented by its elements.
@ Dynamics given by the Schrédinger equation

Properties
o H=H*
o () = et
° H¢(t)||2 = |(0)||? (conservation of propability)
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Schroédinger Formalism of Electromagnetism
States and Dynamics
@ “Hamilton” operator M, = W~'Rot| = M," where

Rot:< 0 +iV )

—iv> 0
@ Hilbert space 7, = {\I/ € L*(R3,C%) | Visw >0 state}
with energy scalar product
(®, \II>W = / dz ®(x) - W(x)¥(x)
R3

@ Dynamics given by Schrédinger equation

10, W, (t) = M,V (t), v, (0) =P (EH)eH,
@ Real-valuedness of physical solutions:

(E(1). H(1)) = 2Re W, (1)
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Schrodinger Formalism of Electromagnetism

States and Dynamics
" H ” _ —1 _ *p
@ “Hamilton” operator M = W~'Rot| =M,

@ Hilbert space 7, = {\If € L*(R3,C%) | Visw >0 state}
with energy scalar product (-, - ).,
@ Dynamics given by Schrédinger equation

@ Real-valuedness of physical solutions

Properties
o MW =M,
o U(t)=etM
o |w( || = |®(0)|3;, (conserved quantity, e. g. energy)
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy
@ Find a one-to-one correspondence between real-valued,
physical fields (E, H) and complex waves.

@ Rewrite the dynamical Maxwell equation in Schrodinger form.
@ Verify that the solution satisfies the constraint equation.
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy

@ Find a one-to-one correspondence between real-valued,
physical fields (E, H) and complex waves.
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Reduction to Complex Fields with w > 0

A complex plane wave with w > 0
U (t, k,z) = e itwF etikz (B Hy), w(k)= k|, Eq,Hy Lk,
defines two linearly independent real waves:

(Eim,Hyy ) =Im W, =sin(k -z — wt) (Ey, Hy)
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Reduction to Complex Fields with w > 0

A complex plane wave with w > 0
U (t, k,z) = e itwF etikz (B Hy), w(k)= k|, Eq,Hy Lk,
defines two linearly independent real waves:

(Eim,Hyy ) =Im W, =sin(k -z — wt) (Ey, Hy)

Identification R-VS L2, (R3, R®) with C-VS | = ran P,:

ORe (ERe ) HRe) + O1m (Elm ) HIm) =Re <<aRe - iO‘Im) \I/+>
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Reduction to Complex Fields with w > 0

Bloch waves with w > 0
U, (tk,x) = e Mg (kx), M (k) 9, (k) = w, (k) 9, (k),
defines two linearly independent real waves: Still true?

(ERe ’ HRe) =Re \II+
(EIm ’ HIm ) =Im \Ij+

Identification R-VS L2, (R3, R%) with C-VS 7 : Still true?

ORe (ERe ) HRe) + O1m (Elm ) HIm) =Re <<aRe - iOélm) \I/+>
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Reduction to Complex Fields with w > 0
Identification R-VS L2, (R3, RS) with C-VS _: Still true!

ORe (ERe ) HRe) + Oqm (EIm ’ HIm) =Re <(aRe - iO‘Im) \I]-ﬁ-)

Proposition (De Nittis & L. (2017))

The R-vector space of transversal, real vector fields L2,,,(R3,R®) can
be canonically identified with the C-vector space of complex positive
frequency fields H, = P [L2 (R3, C®)]. The vector space
isomorphisms are

P Lt2rans<[R3 [R6) — ‘7{+’

2Re : H, — L2, (R3 RO).
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The Auxiliary Maxwell Operator

o= (335 (e V)
= W1 Rot
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Topological classification

The Auxiliary Maxwell Operator

g <e<x> x(@)

x(z)* u(ﬂ«“)>1< v

—iv< 0 )
=W ! Rot

Summary
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The Auxiliary Maxwell Operator

o= (335 (e V)
= W1 Rot

MZ™ = Mi“x*w selfadjoint on weighted Hilbert space

L%‘Q([R?’, C)

<\I/,Miux<1>>w+ = (U, W, W 'Rot®) = (Rot U, U)
= (W, MI, @) = (MU, @) = (M0, )

+
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Topological classification

The Auxiliary Maxwell Operator

yaus— (2@ x@) (0 4V
5T e ww) =i o
= W1 Rot

Ly, (R%,C)

M = Mi“x*w selfadjoint on weighted Hilbert space

(U, MI™®) = (V. W, W, Rot @)

=e

(Rot W, W)

—it M

unitary, yields conservation of energy

(W, M, &) = (M0, W, &) = (MI*T, )

Summary
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The Auxiliary Maxwell Operator

Identifying physical states
M2* = W~1 Rot
Miux \I/w =w \Il

w

has (pseudo) eigenfunctions also for negative frequencies w < 0!
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The Auxiliary Maxwell Operator

Identifying physical states
M2* = W~1 Rot

Miux \ij — (U\II

w

has (pseudo) eigenfunctions also for negative frequencies w < 0!

But: the —w > 0 states of M 3" are unphysical
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The Auxiliary Maxwell Operator

Identifying physical states
M2 = W~1 Rot has states for w > 0, = Oand w < 0

Solution
Define the spectral projection onto the physical states

P» - lr(),oc)(ﬂ'[?ux)
and the Hilbert space

I, = P [Liy (R®,CO)] = {‘h € L*(R®,C%) | ¥ isw>0 state}



Maxwell’s equations Schrédinger formalism Topological classification Summary

Reduction to Complex Fields with w > 0

Proposition (De Nittis & L. (2017))

The R-vector space of transversal, real vector fields L2, (R3, R®) can
be canonically identified with the C-vector space of complex positive
frequency fields 3¢ = P, [L3;, (R, C°)]. The vector space
isomorphisms are

P Lt2rans<[R3 [RG) — .7'[+,
2Re : H, — L2, (R3,RO).

(E,H) = 2Re¥, <> ¥, = P, (E,H)
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Obtaining the Schrodinger Formalism for EM Waves

Summary

Starting point

(E,H) =0, +U_=2ReV,

) W_i0, ¥, =RotV¥_
w0 >0 { DivIV, ¥, =0
Strategy

@ Find a one-to-one correspondence between real-valued,
physical fields (E, H) and complex waves.
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy

@ Rewrite the dynamical Maxwell equation in Schrodinger form.
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The Maxwell Operator

Restriction of auxiliary Maxwell operator to w > 0:

_ _ -1 _astw
M+_Mji“"]w>0—W+ Rot| =M.

w>0

o Actson H, = {\Il+ € L*(R3,C%) | v, isw>Ostate}

o Inherits selfadjointness from auxiliary Maxwell operator
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Topological classification Summary
Schrodinger Formalism of Maxwell’s Equations

Theorem (De Nittis & L. (2017))

Real transversal states Complex states with w > 0
(E,H) = 2Re U, R v, =P, (EH)
e x\ O (¢P\ _ (+V xyF
X" u) ot \f) -V xplf

M, =WRot|,  ,=M"
10,¥, = M, 0,
g0, ={w, € L2(R%,C0) | W, isw > Ostate}

(2, \I!>W = [ dz®(z) W, (2)¥(z)
+ |R3
Energy scalar product

(De Nittis & L., The Schrédinger Formalism of
Electromagnetism and Other Classical Waves (2017))

[m]

=
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy

@ Rewrite the dynamical Maxwell equation in Schrédinger form.
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy

@ Verify that the solution satisfies the constraint equation.
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The Helmholtz Decomposition

Traditional Helmholtz decomposition
Vector fields

=VXxA+VVel?R3C3=g8

can be uniquely decomposed into the sum of a (transversal)
divergence-free field

VxAeranV* =ker(V:) =7
and a (longitudinal) gradient field

VV eranV =kerV* =G
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The Helmholtz Decomposition
Helmholtz decomposition adapted to the medium

V=0, 7,
€ L3 (R3,CO) =@ g

where the longitudinal gradient fields make up
9= {(V9P,VoH) € L2(R%,C) | o® oM € L2, (R%)}
=ran(V,V) = ker M2
and the transversal divergence-free fields are (-, -) ., -orthogonal,

g3 = gt = {w € I2(R%,C°) | DivIW, ¥ =0}
= ker(DivW, ) = ran M3"™*.
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The Helmholtz Decomposition

Spectral interpretation
Longitudinal fields: eigenfunctions of MV =0tow =0

— 76, = {we I2(R%,C%) | Wisw> Ostate}

c gt =73 = {w e L2(R3,C%) | DivW, ¥ =0}

= States in /{__satisfy constraint equation.
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy

@ Verify that the solution satisfies the constraint equation.
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Obtaining the Schrodinger Formalism for EM Waves

Starting point

(E,H)= U, +U_ = 2Rel,
{Wi i0,¥, =Rot ¥

w0 >0 DivIV, ¥, =0

Strategy
@ Find a one-to-one correspondence between real-valued,
physical fields (E, H) and complex waves.

@ Rewrite the dynamical Maxwell equation in Schrodinger form.
@ Verify that the solution satisfies the constraint equation.
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Schroédinger Formalism of Electromagnetism

States and Dynamics
@ “Hamilton” operator M/, = W' Rot| _ forw >0
w>0

@ Hilbert space 7, C L}, (R3,C%)
@ Dynamics given by Schrédinger equation

i0, W, (t) =M,V (1), v (0)=P,(EH)e
@ Real-valuedness of physical solutions:
(E(t). H(t)) = 2Re W (1)

Note

This also applies to gyrotropic materials where W = ( . %) # W.
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Bloch-Floquet Theory for Photonic Crystals

Assumption (Periodic Medium)
Suppose in addition that W__(x) is periodic.

5]
M, =F M, F! :/ dk M (k)
B

:/jdk (¢ Z)l (+<—ivo+ )" _HVOM)X)
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Bloch-Floquet Theory for Photonic Crystals

Physical bands

M, (k) (k) = w, (k) @y, ()

Frequency band functions k — w,, (k)
Bloch functions k& — ¢, (k)
both locally continuous everywhere

© 0 o0 o

both locally analytic away from band crossings



Maxwell’s equations

Schrédinger formalism

Bloch-Floquet Theory for Photonic Crystals

Topological classification

Summary
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Justifying effective tight-binding models

Relevant frequency bands
0rei(k) = U, ., 1w, (k) } separated by a spectral gap from the
others.
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Justifying effective tight-binding models

Summary
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Justifying effective tight-binding models

Relevant frequency bands
0rei(k) = U, ., 1w, (k) } separated by a spectral gap from the
others.

~» Projection onto the relevant bands

Pr(k) =Y lon (k) (¢, (k)]

neJ
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Justifying effective tight-binding models

Idea of an effective tight-binding operator
Suppose the effective Maxwell operator M. commutes up to an
error with P,

el

[Meff7 Prel] = 0<)‘n)7

and approximates the full Maxwell operators for states from the
relevant bands,

<M+ - Meff) Prel - 0()\71)’

where A « 1is a perturbation parameter (that could be A = 0).
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Justifying effective tight-binding models
Idea of an effective tight-binding operator

[Meffv Prel] = O(An)
(MJr - Meff) Prel: 0()‘”)

it M it Mg .
(e Ak + —@ '\ e Prel —
t
d i _jt=s)
:/ ds £<e 1)\k M+e 1 Nk Meff) Prel
0
i

t
o —is M —i%=2) pr,
__Ak;/ ds e 3T (M+_Meff) Prel e ffPrel
0]

—O(A")
= (A" k)
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Justifying effective tight-binding models
Idea of an effective tight-binding operator

[Meffv Prel] = (9(/\”)
(]w+ - AJeff) Prel: 0()‘”)

rel —

111‘ )M
/ds P TR My e )Prel

——/\k/ ds e 5 M (M, — M) P € R P
0

(efi%kz\/.u o efi%kMeff> P

—0(x")
= (A" k)
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Justifying effective tight-binding models

Symmetry properties of effective tight-binding operator 1/
(e,iﬁc M. _ o-isk Meff> P = O(A™F)

o Symmetry of M.; = symmetry of M

o = tight binding model must not possess symmetries
incompatible with full Maxwell operator M,

o Compared to M_, the effective tight-binding operator M
may “lose” symmetries
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Comparison
First- and Second-Order Formalism
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First- vs. Second-Order Framework

Assume W = (g 2>,i. e. x = 0 (no bianisotropy).
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First- vs. Second-Order Framework

first order second order
i0, (V) =M. (n) = 02+ M2)(1) =0

—iplvx 0 0 plvie v

M, = ( 0 tielvx ) ‘ = M2?= (54 Vo v 0 )\WO
w>0
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First- vs. Second-Order Framework

first order second order

E E
M block-offdiagonal = Mf block-diagonal

Summary



Maxwell’s equations Schrédinger formalism

Topological classification

First- vs. Second-Order Framework

first order

E

10, () = 20, (1)

i=—1 X
M :( 0 +ie ™+ V
+ —ipt v 0
s w>0

second order
(0F + M) =0
= {<az + M3)pH =0

M?2 0
2 _ E
— M+_(O M%)

Summary
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Topological classification Summary

First- vs. Second-Order Framework

first order

E

0, (ﬁ) =M, <¢H>
M, = (—mg v +iEiolvx) ‘w>0

M, (k)@ (k) = w, (k) ¢, (k)

second order

— {(83 +ME)ypP =0

(0F + ME)y™ =0
Mz 0 )
0 M3
2

= M. (k)2 ¢, (k) = (w,(k))" ¢, (k)
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First- vs. Second-Order Framework

first order second order

o,(Un) =m0 (Un) e {0
M2, 0)

— 0 tie v 2 _
M, = (qkrlvx 0 ) ‘w>0 = Mi= ( 0 M

M. (k) (k) = w, (k) o, (k) = Mp(k)® @l (k) = (w, (k)" @k (k
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First- vs. Second-Order Framework

first order second order

i0, (V) =M. () = {53251%%553
M2% 0 )

— 0 tie v 2 _
M, = (qkrlvx 0 ) ‘w>0 = Mi= ( 0 M

M, (k) (k) = w, (k) on(k) =  My(k)2oE(k) = (w, (k) pE(k
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Topological classification Summary

First- vs. Second-Order Framework

first order

E

10, (r) = M. ()
M

_ ( 0 +ie~l vx
+ 7 \ —iptvx 0
e w>0

M, (k)@ (k) = w, (k) ¢, (k)

W(t) = e Mg (0)

L |

second order

(0F + M) =0

(07 + Mz )™ =0

o (M% 0
My —( 0 Mg,)

M, (k)2 ¢, (k) = (w, (k)" 0, (K)

PP(t) # e Moy (0)
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First- vs. Second-Order Framework

second order
(02 + MZ)pE =0
(0F + ME)p™ =0
ME(R)pE (k) = (wn (k) 0B (k)

V(1) « = 7 2Re (€ VME GE (4P (0), 0,05(0)) )

Problems
O How to take \/M%?
o ¢F(yE(0), 1 (0)) depends on electric and magnetic field at time ¢ = 0.

@ How to distinguish between physical w > 0 components
and unphysical w < 0 components?



Maxwell’s equations Schrédinger formalism Topological classification

First- vs. Second-Order Framework

Summary

second order

(0 + Mg)v® =0
(0F + ME)p™ =0

ME(k)E (k) = (w, (k) oE (k)

YE(t) < =7 2Re (€ VM GE(E(0), 47 (0)) )

Problems

Q@ How to take \/M%?

0 ¢F(yF(0), ¢ (0)) depends on electric and magnetic field at time ¢t = 0

@ How to distinguish between physical w > 0 components
and unphysical w < 0 components?

it
S
)
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First- vs. Second-Order Framework

Compute frequency bands starting from

Mp(k)2pE (k) = (A, (k)" 0E (k)
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First- vs. Second-Order Framework

Compute frequency bands starting from

Mp(k)2pE (k) = (A, (k)" 0E (k)

Assumption )\ , (k) > 0 = yields |w| spectrum
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First- vs. Second-Order Framework

Compute frequency bands starting from

Mp(k)2pE (k) = (A, (k)" 0E (k)

Assumption )\ , (k) > 0 = yields |w| spectrum
- Sign important for dynamics!

0= (07 + M_(k)?) ($i> = (0, +1 M, (k)) (9, —i M, (k)) (ﬁ)



Maxwell’s equations

Schrédinger formalism

Topological classification

Comparison to Second-Order Formalism

NNy

Summary
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Comparison to Second-Order Formalism

Summary

Ny, Ny

()

Obtain band spectrum by solving a second-order equation for
electric/magnetic field only, e. g.
M, (k) o7 (k) =

A (k)2 037 (k)
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Comparison to Second-Order Formalism

@ Obtain band spectrum by solving a second-order equation for
electric/magnetic field only, e. g.

M, (k)% 7 (k) = A, (F)2 @7 (k)
@ Pick a family of bands, e. g. with a conical intersection (4, Y7)

it
«
€
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Comparison to Second-Order Formalism

@ Obtain band spectrum by solving a second-order equation for
electric/magnetic field only, e. g.
M, (k)% E(k) = A, (k)2 0B (k)

@ Pick a family of bands, e. g. with a conical intersection (4, Y;)

@ Use a graphene-type tight-binding model to understand light
propagation for states located near intersecmtionﬁ



Maxwell’s equations Schrédinger formalism Topological classification

Caution!

Procedure yields tight-binding operator M

Problems
@ Connection of M to dynamics?
@ Nature of symmetries?
@ Correct notion of Berry connection?

Summary
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Caution!

Procedure yields tight-binding operator M

Problems
@ Connection of M to dynamics?
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Today’s Goals

First Principles Approach to QHE for Light
@ Start with Maxwell’s equations for media with 17 £ V.
Correct equations?

@ Schrodinger formalism of classical electromagnetism
First- vs. second-order formalism, restriction to w > 0
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@ Topological classification of electromagnetic media
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Topological Phenomena as Quantum-Wave Analogies?

@ |Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?

@ Are there other topological effects?

~» Topological classification of electromagnetic media
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Material vs. Crystallographic Symmetries

Material Crystallographic
.o. oo. oo:lgo’..b:. ..

=7
X

o Properties of and relations
between ¢, uand x

o Example:

ve ) e on
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Material vs. Crystallographic Symmetries

Material

=7
X

o Properties of and relations
between ¢, uand x

o Example:

ve ) e on

Only these are considered here!
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A Novel Class of Materials: Photonic Topological Insulators

(69 - TR

symmetry breaking

c ‘ J T
| _—
oo el
i
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2
Negative 0 Positive
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A Novel Class of Materials: Photonic Topological Insulators

bpGal — TR

symmetry breaking

b NI
—> —>
@ Photonic bulk-edge correspondences LJJA
O Identify topological observables .
O =T +error ° ‘ T
| _—
+ | J
1
@ Find all topological invariants T"
Q@ Classification of PhCs by symmetries
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A Novel Class of Materials: Photonic Topological Insulators

69:69) - T

symmetry breaking

b . .
c B
‘ i
!
e el
i
£, - -
Negative 0 Positive

O Classification of PhCs by symmetries
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Interjection
A Primer on Topological Insulators
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Fundamental Notions

Altland-Zirnbauer Classification
of Topological Insulators
The 10-fold way

@ Topological class «— Discrete symmetries of H

Phases inside each Labeled by
topological class topological invariants

@ Bulk-edge correspondences

physical topological
> . .
observable invariant
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Fundamental Notions

Altland-Zirnbauer Classification
of Topological Insulators
The 10-fold way

@ Topological class «— Discrete symmetries of H

Phases inside each Labeled by
topological class topological invariants
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Topological Classes

Symmetries of H <— Topological Class of H

@ Reliesonid,v) = H1 (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +1,

Summary
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Topological Classes

Summary

Symmetries of I <— Topological Class of H

0 Reliesonid,y = H1 (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +1,

UH(k)U ' =+H(—k) time-reversal symmetry (+TR)
UH(k)U!=—H(—k) particle-hole (pseudo) symmetry (-PH)
UH(k)U ' =—H(+k) chiral (pseudo) symmetry (x)
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Topological Classes

Symmetries of H <— Topological Class of H

0 Reliesonid,y = H1 (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +1,
UH(k)U™!'=+H(—k) time-reversal symmetry (+TR)
UH(k)U!'=—H(—k) particle-hole (pseudo) symmetry (4-PH)
UH(k)U ' =—H(+k) chiral (pseudo) symmetry (x)
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Topological Classes

Symmetries of H <— Topological Class of H

0 Reliesonid,y = H1 (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +1,
UH(k)U™! =+H(—k) time-reversal symmetry (+TR)
UH(k)U!=—-H(—k) particle-hole (pseudo) symmetry (+-PH)
UH(k)U ' =—H(+k) chiral (pseudo) symmetry (x)
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Topological Classes

Summary

Symmetries of H <— Topological Class of H

0 Reliesonid,y = H1 (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +1,

UH(k)U™ =+H(—k) time-reversal symmetry (+TR)
UH(k)U!=—H(—k) particle-hole (pseudo) symmetry (-PH)
UH(k)U ' =—H(+k) chiral (pseudo) symmetry ()
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Topological Classes

Symmetries of I <— Topological Class of H

0 Reliesonid,y = H1 (Schrodinger equation)

0 3types of (pseudo) symmetries:
U unitary/antiunitary, U? = +1,

UH(k)U ' =+H(—k) time-reversal symmetry (+TR)
UH(k)U!=—H(—k) particle-hole (pseudo) symmetry (-PH)
UH(k)U ' =—H(+k) chiral (pseudo) symmetry (x)

0 1+5+4=10topological classes

@ Physics crucially depends on topological class.
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Phases Inside Topological Classes

o Inequivalent phases inside each topological class

@ Continuous, symmetry-preserving deformations of H cannot change
topological phase, unless either
- the energy gap closes (periodic case) or
- a localization-delocalization transition happens (random case)
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Phases Inside Topological Classes

o Inequivalent phases inside each topological class

@ Continuous, symmetry-preserving deformations of H cannot change
topological phase, unless either
- the energy gap closes (periodic case) or
- a localization-delocalization transition happens (random case)

0 Phases labeled by finite set of topological invariants
(e. g. Chern numbers but also others)

@ Number and type of topological invariants determined by
- symmetries <= topological class and
— dimension of the system
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Phases Inside Topological Classes

o Inequivalent phases inside each topological class

@ Continuous, symmetry-preserving deformations of H cannot change
topological phase, unless either
- the energy gap closes (periodic case) or
- a localization-delocalization transition happens (random case)

0 Phases labeled by finite set of topological invariants
(e. g. Chern numbers but also others)

@ Number and type of topological invariants determined by
- symmetries <= topological class and
— dimension of the system

@ Notion that Topological Insulator <= Chern number = 0 false!
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Bulk-Edge Correspondences

O Properties on the boundary can be inferred from the bulk
@ Consists of 3 equalities:
Opu(t)~ Tpuic
Oedge(t)% Te
Tbulk: Te

dge

dge
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Bulk-Edge Correspondences

O Properties on the boundary can be inferred from the bulk

@ Consists of 3 equalities:

Tyuk= Tedge

@ Number and form depends on the topological class
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Bulk-Edge Correspondences

O Properties on the boundary can be inferred from the bulk
@ Consists of 3 equalities:
Opu(t)~ Tpuic
Oedge(t)% Te
Tbulk: Te

dge

dge

@ Number and form depends on the topological class
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Bulk-Edge Correspondences

O Properties on the boundary can be inferred from the bulk
@ Consists of 3 equalities:
Opu (1)~ Tiuk
Oedge (t)% Te
Tbulk: Te

dge

dge

@ Number and form depends on the topological class

o Find topological observables
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Back to Business
Classification of Topological PhCs
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No Additional Symmetries Assumption

Assumption

Apart from those below the system (i. e. the Maxwell operator M) has
no additional unitary, commuting symmetries.

Otherwise
@ Block-decompose according to unitary, commuting symmetry.
@ Repeat until no extraneous symmetries are left.
@ Analyze each block separately with the tools used here.
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Symmetries Used in Classification

Example

re=enc: (5) (%) (E)-(E)

Pauli matrix o5 = (§ % ) in electro-magnetic splitting
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Symmetries Used in Classification

Unitary symmetries Antiunitary symmetries

U,=0,01, n=123 T,=(,®1)C, n=0,1,2,3

o ('is complex conjugation
0 0,y = 1theidentity

_ 0 +iVv~
© 04,05 and o4 are the Pauli Rot=|_.ox
matrices in the E-H splitting
. = —09 ® VX
o U, and T,, (anti)commute
with free Maxwell operator
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Admissible Symmetries

3
(& X)_
W_(X* M>_Z n®wn

n=0

wheree.g.wy = (e + p) and wg = (e — p)



Maxwell’s equations

Schrodinger formalism

Topological classification

Admissible Symmetries

3
€ X
W=1" = o, @wW
(x u) ;” "

Symmetry V' = | wy = | wy = | Wy = | Wy = | Symmetry Type
T, =(c,®1)C | Rew, | Rew; | Rew, | ilmw;, +TR
Uy,=0,®1 W 0 W,y 0 ordinary
T3=(0301)C | Rew, | ilmw; | Rew, | Rews, +TR

Admissibility Conditions

O Reality of (E,H) <= w > Ofieldst»w > Ofields = VM =MV
@ Compatibility with energy scalar product = VW =WV

= exclude anticommuting symmetries

Summary



Maxwell’s equations Schrédinger formalism Topological classification

Admissible Symmetries

Summary

W—(X u) Za R,

Symmetry V = | wy = | wy = | Wy = | Wy = | Symmetry Type
Rew; | Rew,

T, =(c,91)C | Rew, iImw, +TR

Ty =(0301)C | Rew,

ilmw; | Rew, | Rews, +TR

Admissibility Conditions
= exclude anticommuting symmetries
Relevance to Classification

= exclude unitary, commuting symmetries

DA
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Revisiting
Example from the Previous Section
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Restricting to w > 0 # Technicality!

Weights for “dual-symmetric” medium described by

W = (; ?) =1®c+0, X F1Q®e—0,x =W

e, 0 0 0 +ik 0
e=10 ¢ 0 x=|—-1k 0 O
0 0 e, 0 0 O

commute with operator

0 1
Ul:(:ﬂ_ 0>:O'1®:H_

But: U, is not a symmetry of the physical system!

where
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Restricting to w > 0 # Technicality!

Weights for “dual-symmetric” medium described by

W = (; ;‘) —1®c+ 0, O £1®c—0, @y =W

commute with operator

0 1

But: U is not a symmetry of the physical system!
o U, anticommuteswithRot = U; :w >0 w <0
o U, does not commute with M !
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Back to
Topological Classification of EM Media
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Topological classification

Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic

W= (52)=(

Ty=(0301)C

ol
Tlo
N—

Dual-symmetric, non-gyrotr.

W= (5 8) = ()

T, =(0,®1)C, T3:(03®IL)C

Gyrotropic

W=(5u)#(

No symmetries

o
Tlo
SN~—

Magneto-electric

W=(x%)=(

x| of

Q

T, = (0, ®1)

of |
SN——

Summary
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic Gyrotropic

Class Al Class A (Quantum Hall Class)
Realized, e. g. dielectrics Realized, e. g. YIG for microwaves
Dual-symmetric, non-gyrotr. Magneto-electric

Two +TR = 2 x Class Al Class Al

Realized, e. g. vacuum and YIG Realized, e. g. Tellegen media

4 different topological classes of EM media
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))
Gyrotropic
Class A (Quantum Hall Class)
Realized, e. g. YIG for microwaves

Only one is topologically non-trivialind < 3
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Topological classification

Summary

Topological Photonic Crystals
Topology of What?
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The Topology of Light States in Periodic Media

Relevant frequency bands
0rei(k) = U, ., 1w, (k) } separated by a spectral gap from the
others.

~» Projection onto the relevant bands

Pri(k) =Y lon (k) (¢ ()]

neJ
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The Topology of Light States in Periodic Media

<<
~~
~~~~~~
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The Topology of Light States in Periodic Media

Relevant frequency bands
0rei(k) = U, ., 1w, (k) } separated by a spectral gap from the
others.

~» Projection onto the relevant bands

Pri(k) =Y lon (k) (¢ ()]

neJ



Maxwell’s equations Schrodinger formalism Topological classification Summary

The Topology of Light States in Periodic Media

. ¢ logical Topology of the (bulk)
Existence of topologica } o Bloch bundle

boundary states ™
E[B<Prel) = (5[8 - [B>

where

Pra1) |_| ran P (k) = |_| SPan{SOn(k)}nej

keB keB

is associated to finitely many frequency bands* separated by a
spectral gap from the others.
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The Topology of Light States in Periodic Media

“Continuous deformations” of vector bundles and equivalence

€B<Prel> ; I_I ranPrel(k) —B
keB

o Gaps must remain open
< dimension of fiber ran P, (k) does not change!

o Continuous deformations of M,
= continuous deformations of P,

o Continuous deformations of P,
= continuous deformation of £g(P,y)

Classification of vector bundles over the torus
Find a way to characterize the Bloch vector bundle “modulo
continuous deformations” -» This is a solved problem!
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The Topology of Light States in Periodic Media

Theorem (Class A vector bundles over the torus)

For the cases of rank-m vector bundles over the d-dimensional torus
listed below, the set of equivalence classes is countable and given by:

@ d=1,m > 1:Vec"(S!) = {0}

@ d>2,m=1:Vec;(T%) =7

@ d=2m>2Vec (T?) =7

@ d=3m>2Vec"(T3) =273

@ d=4m>2Vec'(T?) =707

@ d>52m > d:Vec(" (T4) =~ Z’“fork—( )

112



Maxwell’s equations Schrodinger formalism Topological classification Summary

The Topology of Light States in Periodic Media

Theorem (Class Al vector bundles over the torus)
Suppose there exists an antiunitary operator V with V2 = +1 and

VPrel(k> V_ - rel(_k)‘

For the cases of rank-m vector bundles over the d-dimensional torus
listed below, the set of equivalence classes is countable and given by:

@ d>1,m=1:Vecd"(T4) == {0}

@ d=1,2,3m > 1:Vecg (T%) = {0}
@ d=4m>2Vec (TH) =7

@ d >52m > d:Vec"(T4) = 7

= All odd Chern classes vanish (first, third, etc.)
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The Topology of Light States in Periodic Media

Chern classes are computable!

o “Abstract non-sense” tells us that vector bundles are
characterized by Z-valued Chern classes

o But: Given a particular set of Bloch functions, how do we
compute Chern classes?
Answer: From differential geometry! (E. g. the Berry curvature)



Maxwell’s equations

Topological Classification of Phases
Theorem (De Nittis & L. (2017))

Schrodinger formalism

Topological classification

Summary

Medium CAZ Class Dimension d =
2 3 4
Gyrotropic A z 73 | I@7
Non-gyrotropic Al 0 0 VA
Magneto-electric Al 0 0 Z
Dual-symmetric, 2 % Al 0 0 707

non-gyrotropic

(Classification of Bloch vector bundles with symmetries.)
First and second Chern numbers



Maxwell’s equations Schrédinger formalism

Topological classification
Topological Classification of Phases
Theorem (De Nittis & L. (2017))

Medium CAZ Class Dimension d =
1 2 3 4
Gyrotropic A 7 73 7297
Non-gyrotropic Al VA
Magneto-electric Al
DuaI—symmetch, 2 % Al
non-gyrotropic

Z

VA YA
(Classification of Bloch vector bundles with symmetries.)
First and second Chern numbers

DA

Summary
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Consequences of the Classification Result

@ Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?
Answer: Yes! Both systems are in Class A!

@ Are there other topological effects?
Answer: In d < 3 (unfortunately) no!
(E. g. no analog of the Quantum Spin Hall Effect (class All))

Summary
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Consequences of the Classification Result

@ Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?
Answer: Yes! Both systems are in Class A!

@ Are there other topological effects?
Answer: In d < 3 (unfortunately) no!

In d = 4: Effects due to second Chern number or numbers?
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Comparison
First- and Second-Order Formalism
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w spectrum vs. |w| spectrum

First-order formulation Second-order formulation
2
M(k)p, (k) = w, (k) ¢, (k) M(k)?@,, (k) = |w, (k)" @, (k)
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Schrodinger formalism

Topological classification

w| spectrum

w spectrum vs.

Summary
lwl|

Ny, Ny

k
o Points X ; and Y are artificial band crossings




Maxwell’s equations

Schrodinger formalism

w spectrum vs.

Topological classification

w| spectrum

lwl|

Summary

Ny, Ny

k
o Points X; and Y are artificial band crossings
o No graphene-like physics

[m]

~» eigenfunctions well-behaved at artificial crossings

=




Maxwell’s equations Schrodinger formalism Topological classification

Symmetries

Classification of (anti-)unitary U with U? = 41 with
UMK)2U = M(4k)?

in Cartan-Altland-Zirnbauer scheme,

Summary
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Symmetries

Classification of (anti-)unitary U with U? = 41 with
UMK)2U = M(4k)?
in Cartan-Altland-Zirnbauer scheme, e. g.if W, = W

C M(k)C = —M(—k) T M(k)
= CM(k)?C = +M(—k)2} Vs {



Maxwell’s equations Schrodinger formalism

Topological classification Summary

Symmetries

Classification of (anti-)unitary U with U2 = +1 with
UMK)2U = M(4k)?
in Cartan-Altland-Zirnbauer scheme, e. g.if W, = W

C M(k)C = —M(—k) T M(k)
= CM(k)?2C = +M(—k)2} Vs {

= No way to distinguish PH and TR symmetry!
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Topological classification Summary

Symmetries

Classification of (anti-)unitary U with U? = 41 with
UMK)2U = M(4k)?
in Cartan-Altland-Zirnbauer scheme, e. g.if W, = W

C M(k)C = —M(—k) T M(k)
= CM(k)?C = +M(—k)2} Vs {

= No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry
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Symmetries

Classification of (anti-)unitary U with U? = 41 with
UMK)2U = M(4k)?
in Cartan-Altland-Zirnbauer scheme, e. g.if W, = W

C M(k)C = —M(—k) T M(k)
= CM(k)?C = +M(—k)2} Vs {

= No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

= CAZ classification impossible in second-order framework!
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Proper definition of the Berry Connection

Ak) = 1{pn (k). Vipn (k) = 1{pn (k). Wo Ve, (K))
= i{py (k),e Vi, (k) + 107 (k), nV oyl (k)

o Berry connection sometimes computed using only pZ (k)
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Proper definition of the Berry Connection

Ak) = 1{pn (k). Vipn (k) = 1{pn (k). Wo Ve, (K))
= i{py (k),e Vi, (k) + 107 (k), nV oyl (k)

o Berry connection sometimes computed using only pZ (k)
o However: ||E(t)||z = (E(t),c E(t)) not conserved quantity!
o = AF(k) =i(pE(k),eVpE(k)) not a connection
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Proper definition of the Berry Connection

A(k) = 1(p, (k), Vo, (k) =1{pn(k), W, Ve, (k)

+

1(pf (k) e Vi, (k) +i(pr (k) 1 Vipr! (K))

©

Berry connection sometimes computed using only pZ (k)

(]

However: ||E(t)||z = (E(t),c E(t)) not conserved quantity!

©

= AP(k) =i{pE(k),e V0% (k)) not a connection
Magnetic field necessary to compute Berry connection!

©

(]

Same arguments hold for 1.
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Schrodinger formalism

Topological classification

Comparison with Other Works

Unidirectional Modes of Fixed
(Pseudo)spin

Q

Works of Xiao Hu et al and
Aleksander Khanikaev et al

Pseudospin degree of freedom in a
time-reversal-symmetric medium

“Hamiltonian” aka]\VIMaz)(weII
operator M = ( o Mi) has a
block decomposition

Topological classification must be
appliedto M.,

M, of (pseudo) spin 1/] may not
possess time-reversal symmetry

Summary




Maxwell’s equations

Schrodinger formalism

Topological classification

Comparison with Other Works

Wu & Hu (2015)

Q
Q

Edge modes topological

Pseudospin degree of freedom in a
time-reversal-symmetric medium

Time-reversal symmetry
T, # T, & T not blockdiagonal
= M, class A (no symmetry)

Chern numbers C;, = —C| # 0
possible

Not in contradiction, edge modes
comein / | pairs

Topologically protected against
perturbations which preserve T’
symmetry and honeycomb
structure

Wu & Hu (2015)

Summary




Maxwell’s equations Schrodinger formalism

Topological classification
Comparison with Other Works

Summary

Khanikaev et al (2013)

@ Mathematics and numerics correct

O Unfortunately, equations
unphysical
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Thank you for your attention!
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