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Idea
Realizing Quantum Effects

with Classical Waves
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Quantum-Wave Analogies
The QuantumHall Effect

for light as a lens
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The Quantum Hall Effect: the Prototypical System

𝐵 ≠ 0 ⟹ time-reversal symmetry broken

𝜎𝑥𝑦
bulk(𝑡) ≈ 𝑒2

ℎ Chbulk = 𝑒2
ℎ Chedge ≈ 𝜎𝑥𝑦

edge(𝑡)

transverse conductivity = Chern #

Chbulk/edge = 1
2𝜋 ∫

ℬ
d𝑘 Ωbulk/edge(𝑘) ∈ ℤ

• Edge modes in spectral gaps
• Signed # edge channels = Ch(𝑃Fermi)
• Edge modes unidirectional
• Robust against disorder

TwoNobel Prizes
1985 for experiment: von Klitzing
2016 for theory: Thouless von Klitzing et al (1980)
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The Quantum Hall Effect: the Prototypical System
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• Signed # edge channels = Ch(𝑃Fermi)
• Edge modes unidirectional
• Robust against disorder
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1985 for experiment: von Klitzing
2016 for theory: Thouless von Klitzing et al (1980)
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Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...

(𝜀 0
0 𝜇) ≠ (𝜀 0

0 𝜇)

symmetry breaking

⎫}
⎬}⎭

⟹

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez

0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.

NATURE | Vol 461 | 8 October 2009 LETTERS

773
 Macmillan Publishers Limited. All rights reserved©2009

Joannopoulos, Soljačić et al (2009)
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Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)

Joannopoulos, Soljačić et al (2009)
Joannopoulos, Soljačić et al (2009)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Quantum Hall Effect for Light

Haldane’s photonic bulk-boundary correspondence
In a two-dimensional photonic crystals with boundary the
difference of the number of left- and right-moving boundary
modes

signed ♯ edge modes = Chedge = Chbulk

in bulk band gaps is a topologically protected quantity and equals
the Chern number associated to the frequency bands below the
bulk band gap.
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Analog of the QHE in Coupled Mechanical Oscillators

Video
Boundarymode traveling counter-clockwise.

https://youtu.be/eJJnEcnoiXA
https://youtu.be/eJJnEcnoiXA
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Topological Effects: Phenomenological Similarities

Light Coupled Oscillators
Quantum

Periodic structure ⇝ bulk band gap
Breaking of time-reversal symmetries
Unidirectional edge modes

Robust under perturbations
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Systematic Approach to Quantum-Wave Analogies

?QuantumMechanics

i 𝜕𝑡Ψ = 𝐻Ψ
𝐻 = (−i∇ − 𝐴)2 + 𝑉
(Schrödinger equation)

⎫}}
⎬}}⎭

←−−−→

⎧{{{{
⎨{{{{⎩

Classical Electromagnetism

(𝜀 0
0 𝜇) 𝜕

𝜕𝑡 (EH) = (−∇ ×H
+∇ × E)

(dynamical equations)

(∇⋅
∇⋅) (𝜀 0

0 𝜇) (EH) = (0
0)

(constraint equation)

Whether and to what extent do particular quantum-wave
analogies hold?

Transfer ideas and techniques initially developed for quantum
mechanics to classical waves.
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Today’s Goals

First Principles Approach to QHE for Light
1 Start with Maxwell’s equations for media with 𝑊 ≠ 𝑊 .

Correct equations?
2 Schrödinger formalism of classical electromagnetism

First- vs. second-order formalism, restriction to 𝜔 ≥ 0
3 Topological classification of electromagnetic media

Cartan-Altland-Zirnbauer classification for topological insulators
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1 Maxwell’s equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together
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1 Maxwell’s equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Goal of This Section
Derive Maxwell’s equations for gyrotropic media
Physical fields (E,H) are linear combination of complex ±𝜔 waves:

(E,H) = Ψ+ + Ψ− = 2ReΨ±

Material weights

𝑊+ = 𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇) ≠ 𝑊 = 𝑊−

⟹ Pair of equations

𝜔 > 0 ∶ {𝑊+ 𝜕𝑡Ψ+ = ( 0 +∇×
−∇× 0 ) Ψ+

Div𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {𝑊− 𝜕𝑡Ψ− = ( 0 +∇×
−∇× 0 ) Ψ−

Div𝑊− Ψ− = 0
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Goal of This Section
Derive Maxwell’s equations for gyrotropic media
Physical fields (E,H) are linear combination of complex ±𝜔 waves:

(E,H) = Ψ+ + Ψ+ = 2ReΨ±

Material weights

𝑊+ = 𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇) ≠ 𝑊 = 𝑊−

⟹ Pair of equations

𝜔 > 0 ∶ {𝑊+ 𝜕𝑡Ψ+ = ( 0 +∇×
−∇× 0 ) Ψ+

Div𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {𝑊+ 𝜕𝑡Ψ− = ( 0 +∇×
−∇× 0 ) Ψ−

Div𝑊+ Ψ− = 0
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Goal of This Section
Derive Maxwell’s equations for gyrotropic media
Physical fields (E,H) are linear combination of complex ±𝜔 waves:

(E,H) = Ψ+ + Ψ− = 2ReΨ+

Material weights

𝑊+ = 𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇) ≠ 𝑊 = 𝑊−

⟹ Pair of equations

𝜔 > 0 ∶ {𝑊+ 𝜕𝑡Ψ+ = ( 0 +∇×
−∇× 0 ) Ψ+

Div𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {𝑊− 𝜕𝑡Ψ− = ( 0 +∇×
−∇× 0 ) Ψ−

Div𝑊− Ψ− = 0
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Strategy

1 Start with Maxwell’s equations for linear, dispersive media.
2 Neglect dispersion.

Crucial ingredient: Real-valuedness of physical fields
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Fundamental Equations
Maxwell’s equations in media

1 Maxwell’s equations

𝜕
𝜕𝑡 (DB) = (+∇ ×H

−∇ × E) − (J0) (dynamical eqns.)

(∇ ⋅ D
∇ ⋅ B) = (𝜌

0) (constraint eqns.)

2 Constitutive relations

(DB) = 𝒲 (EH)

3 Conservation of charge

∇ ⋅ J+ 𝜕𝑡𝜌 = 0
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Fundamental Equations
Maxwell’s equations in media

1 Maxwell’s equations

𝜕
𝜕𝑡 (DB) = (+∇ ×H

−∇ × E) (dynamical eqns.)

(∇ ⋅ D
∇ ⋅ B) = (0

0) (constraint eqns.)

2 Constitutive relations

(DB) = 𝒲 (EH)

3 Conservation of charge ⇝ neglect sources for simplicity

∇ ⋅ J+ 𝜕𝑡𝜌 = 0
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Constitutive Relations for Linear Media

(D(𝑡),B(𝑡)) = ∫
𝑡

−∞
d𝑠 𝑊(𝑡 − 𝑠) (E(𝑠),H(𝑠))

Assumption (Constitutive relations)

We assume that 𝑊(𝑡, 𝑥) = ( 𝜀(𝑡, 𝑥) 𝜒𝐸𝐻(𝑡, 𝑥)
𝜒𝐻𝐸(𝑡, 𝑥) 𝜇(𝑡, 𝑥) ) ∈ Matℂ(6)

1 is real, 𝑊 = 𝑊 , and
2 satisfies the causality condition 𝑊(𝑡) = 0 for all 𝑡 < 0.
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Constitutive Relations for Linear Media

(D(𝑡),B(𝑡)) = (𝑊 ∗ (E,H))(𝑡)∫
𝑡

−∞

Assumption (Constitutive relations)

We assume that 𝑊(𝑡, 𝑥) = ( 𝜀(𝑡, 𝑥) 𝜒𝐸𝐻(𝑡, 𝑥)
𝜒𝐻𝐸(𝑡, 𝑥) 𝜇(𝑡, 𝑥) ) ∈ Matℂ(6)

1 is real, 𝑊 = 𝑊 , and
2 satisfies the causality condition 𝑊(𝑡) = 0 for all 𝑡 < 0.
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Reality Condition in Frequency Space

(E(𝑡),H(𝑡)) = (E(𝑡) , H(𝑡))
⟺

(Ê(−𝜔) , Ĥ(−𝜔)) = (Ê(+𝜔) , Ĥ(+𝜔))

Similarly for other quantities such as 𝑊(𝑡) and J(𝑡)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

Rewriting the Dynamical Equations

𝜕
𝜕𝑡𝑊 ∗ Ψ = −i RotΨ ∶= −i ( 0 +i∇×

−i∇× 0 ) Ψ

⟺

i
𝜕
𝜕𝑡𝑊 ∗ Ψ = RotΨ

where Ψ = (E,H) is the electromagnetic field
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Heuristically Neglecting Dispersion in Maxwell’s Equations

i 𝜕
𝜕𝑡𝑊 ∗ Ψ(𝑡) = RotΨ(𝑡)

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

i 𝜕
𝜕𝑡𝑊 ∗ Ψ(𝑡) = RotΨ(𝑡)

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

± 𝜔 𝑊(±𝜔0) Ψ̂(±𝜔) = Rot Ψ̂(±𝜔)

≈

��
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1 Apply inverse Fourier transform in
time to go from time-dependent to
frequency-dependent equations.

2 Approximate material weights
𝑊(±𝜔) ≈ 𝑊(±𝜔0) = 𝑊± for
frequencies ±𝜔 ≈ ±𝜔0.
+𝜔0 and −𝜔0 contributions
necessary to reconstruct real
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3 Undo Fourier transform to obtain
dynamical equations in the
absence of dispersion.
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Dispersion-Free Maxwell Equations for Gyrotropic Media

Real solutions linear combination of complex ±𝜔 waves:

(E,H) = Ψ+ + Ψ− = 2ReΨ±

⟹ Pair of equations

𝜔 > 0 ∶ {𝑊+ i𝜕𝑡Ψ+ = RotΨ+
Div𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {𝑊− i𝜕𝑡Ψ− = RotΨ−
Div𝑊− Ψ− = 0

(𝑊 = 𝑊 ⟺ 𝑊− = 𝑊+)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Restricting to 𝜔 ≥ 0 ≠ Technicality!

Weights for “dual-symmetric” medium described by

𝑊 = (𝜀 𝜒
𝜒 𝜀) = 𝟙 ⊗ 𝜀 + 𝜎1 ⊗ 𝜒

where

𝜀 = ⎛⎜
⎝

𝜀⟂ 0 0
0 𝜀⟂ 0
0 0 𝜀𝑧

⎞⎟
⎠

𝜒 = ⎛⎜
⎝

0 +i𝜅 0
−i𝜅 0 0

0 0 0
⎞⎟
⎠
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Restricting to 𝜔 ≥ 0 ≠ Technicality!

Weights for “dual-symmetric” medium described by

𝑊 = (𝜀 𝜒
𝜒 𝜀) = 𝟙 ⊗ 𝜀 + 𝜎1 ⊗ 𝜒

commute with operator

𝑈1 = (0 𝟙
𝟙 0) = 𝜎1 ⊗ 𝟙
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Restricting to 𝜔 ≥ 0 ≠ Technicality!

Weights for “dual-symmetric” medium described by

𝑊 = 𝟙 ⊗ 𝜀 + 𝜎1 ⊗ 𝜒

Rewrite Maxwell equations

𝜕𝑡Ψ↑/↓ = …

in (pseudospin) eigenbasis Ψ↑/↓ = 𝜓𝐸 ± 𝜓𝐻 of 𝑈1 = 𝜎1 ⊗ 𝟙

What went wrong here?
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Restricting to 𝜔 ≥ 0 ≠ Technicality!

What went wrong here?

Material weights complex!

𝑊 = 𝟙 ⊗ 𝜀 + 𝜎1 ⊗ 𝜒 ≠ 𝟙 ⊗ 𝜀 − 𝜎1 ⊗ 𝜒 = 𝑊

Maxwell equations for ±𝜔 > 0 components different!

⟹ Ψ↑/↓ cannot be a solution to Maxwell’s equations!
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Restricting to 𝜔 ≥ 0 ≠ Technicality!

What went wrong here?

Free Maxwell operator

Rot = ( 0 +i∇×

−i∇× 0 ) = −𝜎2 ⊗ ∇×

anticommutes with 𝑈1 = 𝜎1 ⊗ 𝟙
⟹ 𝑈1 maps 𝜔 > 0 states onto 𝜔 < 0 states

Ψ↑/↓ = 𝜓𝐸 ± 𝜓𝐻 consist of 𝜔 > 0 and 𝜔 < 0 waves

⟹ Ψ↑/↓ cannot be a solution to Maxwell’s equations!
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Restricting to 𝜔 ≥ 0 ≠ Technicality!

What went wrong here?

⟹ Ψ↑/↓ violate transversality condition

Even if (𝜓𝐸, 𝜓𝐻) is transversal in the sense

Div𝑊(𝜓𝐸, 𝜓𝐻) = (∇ ⋅ (𝜀𝜓𝐸 + 𝜒𝜓𝐻)
∇ ⋅ (𝜒𝜓𝐸 + 𝜀𝜓𝐻)) = 0,

the eigenvectors Ψ↑/↓ are not transversal as 𝜔 < 0 obey a
different transversality constraint Div𝑊 Ψ− = 0.

⟹ Ψ↑/↓ cannot be a solution to Maxwell’s equations!
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Restricting to 𝜔 ≥ 0 ≠ Technicality!

To be continued …
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Today’s Goals

First Principles Approach to QHE for Light
1 Start with Maxwell’s equations for media with 𝑊 ≠ 𝑊 .

Correct equations?
2 Schrödinger formalism of classical electromagnetism

First- vs. second-order formalism, restriction to 𝜔 ≥ 0
3 Topological classification of electromagnetic media

Cartan-Altland-Zirnbauer classification for topological insulators
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Maxwell’s equations Schrödinger formalism Topological classification Summary

1 Maxwell’s equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together
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Mathematical Frameworks of Physical Theories

Hamilton

Lagrange

BB

eq
ui
va
len

ce

��
�

����
�

SchrödingerLagrange oo_ _ _ _ _ _ Schrödinger

Hamilton

defines :::::

\\:::::

1 Derive Schrödinger formalism for classical electromagnetic
waves

2 Application of Schrödinger formalism: Classify topological
photonic crystals

3 Schrödinger and Lagrangian formalism: finding constants of
motion in electromagnetism
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Making Quantum-Wave Analogies Rigorous

?QuantumMechanics

i 𝜕𝑡Ψ = 𝐻Ψ
𝐻 = (−i∇ − 𝐴)2 + 𝑉
(Schrödinger equation)

⎫}}
⎬}}⎭

←−−−→

⎧{{{{
⎨{{{{⎩

Classical Electromagnetism

(𝜀 0
0 𝜇) 𝜕

𝜕𝑡 (EH) = (−∇ ×H
+∇ × E)

(dynamical equations)

(∇⋅
∇⋅) (𝜀 0

0 𝜇) (EH) = (0
0)

(constraint equation)

1 States describe the configuration of the system at a given
time.

2 Observables represent experimentally measurable quantities.
3 Dynamics explain how states or observables evolve over time.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Assumptions on the Medium

Assumption (Material weights)

𝑊(𝑥) = ( 𝜀(𝑥) 𝜒(𝑥)
𝜒(𝑥)∗ 𝜇(𝑥))

1 The medium is lossless.
(𝑊 ∗ = 𝑊 )

2 𝑊 describes a positive
index medium.
(eigenvalues 𝑤𝑗(𝑥) of 𝑊(𝑥)
satisfy 0 < 𝑐 ≤ 𝑤𝑗(𝑥) ≤ 𝐶)
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Recap: States and Dynamics in Quantum Mechanics

States and Dynamics
1 A selfadjoint Hamilton operator, e. g.

𝐻 = 1
2𝑚(−i∇ − 𝐴)2 + 𝑉

𝐻 = 𝑚 𝛽 + (−i∇ − 𝐴) ⋅ 𝛼 + 𝑉

2 A Hilbert space ℋ and states are represented by its elements,

e. g. 𝐿2(ℝ𝑑, ℂ𝑛) with ⟨𝜙, 𝜓⟩ = ∫
ℝ𝑑

d𝑥 𝜙(𝑥) ⋅ 𝜓(𝑥).
3 Dynamics given by the Schrödinger equation

i 𝜕𝑡𝜓(𝑡) = 𝐻𝜓(𝑡), 𝜓(0) = 𝜙
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Recap: States and Dynamics in Quantum Mechanics

States and Dynamics
1 A selfadjoint Hamilton operator 𝐻
2 A Hilbert space ℋ and states are represented by its elements.
3 Dynamics given by the Schrödinger equation

Properties
𝐻 = 𝐻∗

𝜓(𝑡) = e−i𝑡𝐻𝜙
∥𝜓(𝑡)∥2 = ‖𝜓(0)‖2 (conservation of propability)
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Schrödinger Formalism of Electromagnetism
States and Dynamics

1 “Hamilton” operator 𝑀+ = 𝑊 −1 Rot ∣𝜔>0 = 𝑀∗𝑊
+ where

Rot = ( 0 +i∇×

−i∇× 0 )

2 Hilbert space ℋ+ = {Ψ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ is 𝜔 > 0 state}
with energy scalar product

⟨Φ, Ψ⟩𝑊 = ∫
ℝ3

d𝑥 Φ(𝑥) ⋅ 𝑊(𝑥)Ψ(𝑥)

3 Dynamics given by Schrödinger equation

i 𝜕𝑡Ψ+(𝑡) = 𝑀+Ψ+(𝑡), Ψ+(0) = 𝑃+(E,H) ∈ ℋ+

4 Real-valuedness of physical solutions:

(E(𝑡),H(𝑡)) = 2ReΨ+(𝑡)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Schrödinger Formalism of Electromagnetism

States and Dynamics
1 “Hamilton” operator 𝑀+ = 𝑊 −1 Rot ∣𝜔>0 = 𝑀∗𝑊

+

2 Hilbert space ℋ+ = {Ψ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ is 𝜔 > 0 state}
with energy scalar product ⟨ ⋅ , ⋅ ⟩𝑊

3 Dynamics given by Schrödinger equation
4 Real-valuedness of physical solutions

Properties
𝑀∗𝑊

+ = 𝑀+
Ψ(𝑡) = e−i𝑡𝑀+Φ
∥Ψ(𝑡)∥2

𝑊 = ‖Ψ(0)‖2
𝑊 (conserved quantity, e. g. energy)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Reduction to Complex Fields with 𝜔 > 0

A complex plane wave with 𝜔 > 0

Ψ+(𝑡, 𝑘, 𝑥) = e−i𝑡𝜔(𝑘) e+i𝑘⋅𝑥 (E0,H0), 𝜔(𝑘) = |𝑘| , E0,H0 ⟂ 𝑘,

defines two linearly independent real waves:

(ERe ,HRe ) = ReΨ+ = cos(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0,H0)
(EIm ,HIm ) = ImΨ+ = sin(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0,H0)

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+ = ran𝑃+:

𝛼Re (ERe ,HRe ) + 𝛼Im (EIm ,HIm ) = Re((𝛼Re − i𝛼Im ) Ψ+)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Reduction to Complex Fields with 𝜔 > 0

A complex plane wave with 𝜔 > 0

Ψ+(𝑡, 𝑘, 𝑥) = e−i𝑡𝜔(𝑘) e+i𝑘⋅𝑥 (E0,H0), 𝜔(𝑘) = |𝑘| , E0,H0 ⟂ 𝑘,

defines two linearly independent real waves:

(ERe ,HRe ) = ReΨ+ = cos(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0,H0)
(EIm ,HIm ) = ImΨ+ = sin(𝑘 ⋅ 𝑥 − 𝜔𝑡) (E0,H0)

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+ = ran𝑃+:

𝛼Re (ERe ,HRe ) + 𝛼Im (EIm ,HIm ) = Re((𝛼Re − i𝛼Im ) Ψ+)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Reduction to Complex Fields with 𝜔 > 0

Bloch waves with 𝜔 > 0

Ψ+(𝑡, 𝑘, 𝑥) = e−i𝑡𝜔𝑛(𝑘) 𝜑𝑛(𝑘, 𝑥), 𝑀+(𝑘) 𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘),

defines two linearly independent real waves: Still true?

(ERe ,HRe ) = ReΨ+
(EIm ,HIm ) = ImΨ+

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+: Still true?

𝛼Re (ERe ,HRe ) + 𝛼Im (EIm ,HIm ) = Re((𝛼Re − i𝛼Im ) Ψ+)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Reduction to Complex Fields with 𝜔 > 0

Identification ℝ-VS 𝐿2
trans(ℝ3, ℝ6) with ℂ-VS ℋ+: Still true!

𝛼Re (ERe ,HRe ) + 𝛼Im (EIm ,HIm ) = Re((𝛼Re − i𝛼Im ) Ψ+)

Proposition (De Nittis & L. (2017))
The ℝ-vector space of transversal, real vector fields 𝐿2

trans(ℝ3, ℝ6) can
be canonically identified with the ℂ-vector space of complex positive
frequency fields ℋ+ = 𝑃+[𝐿2

𝑊+
(ℝ3, ℂ6)]. The vector space

isomorphisms are

𝑃+ ∶ 𝐿2
trans(ℝ3, ℝ6) ⟶ ℋ+,

2Re ∶ ℋ+ ⟶ 𝐿2
trans(ℝ3, ℝ6).
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

𝑀aux
+ = ( 𝜀(𝑥) 𝜒(𝑥)

𝜒(𝑥)∗ 𝜇(𝑥))
−1

( 0 +i∇×

−i∇× 0 )

= 𝑊 −1
+ Rot

𝑀aux
+ = 𝑀aux

+
∗𝑊 selfadjoint on weighted Hilbert space

𝐿2
𝑊+

(ℝ3, ℂ6)

⟨Ψ, 𝑀aux
+ Φ⟩𝑊+

= ⟨Ψ, 𝑊+ 𝑊 −1
+ RotΦ⟩ = ⟨RotΨ, Ψ⟩

= ⟨𝑊+ 𝑀aux
+ Ψ, Φ⟩ = ⟨𝑀aux

+ Ψ, 𝑊+ Φ⟩ = ⟨𝑀aux
+ Ψ, Φ⟩𝑊+

⇒ e−i𝑡𝑀aux
+ unitary, yields conservation of energy
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

𝑀aux
+ = ( 𝜀(𝑥) 𝜒(𝑥)

𝜒(𝑥)∗ 𝜇(𝑥))
−1

( 0 +i∇×

−i∇× 0 )

= 𝑊 −1
+ Rot

𝑀aux
+ = 𝑀aux

+
∗𝑊 selfadjoint on weighted Hilbert space

𝐿2
𝑊+

(ℝ3, ℂ6)

⟨Ψ, 𝑀aux
+ Φ⟩𝑊+

= ⟨Ψ, 𝑊+ 𝑊 −1
+ RotΦ⟩ = ⟨RotΨ, Ψ⟩

= ⟨𝑊+ 𝑀aux
+ Ψ, Φ⟩ = ⟨𝑀aux

+ Ψ, 𝑊+ Φ⟩ = ⟨𝑀aux
+ Ψ, Φ⟩𝑊+

⇒ e−i𝑡𝑀aux
+ unitary, yields conservation of energy
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

𝑀aux
+ = ( 𝜀(𝑥) 𝜒(𝑥)

𝜒(𝑥)∗ 𝜇(𝑥))
−1

( 0 +i∇×

−i∇× 0 )

= 𝑊 −1
+ Rot

𝑀aux
+ = 𝑀aux

+
∗𝑊 selfadjoint on weighted Hilbert space

𝐿2
𝑊+

(ℝ3, ℂ6)

⟨Ψ, 𝑀aux
+ Φ⟩𝑊+

= ⟨Ψ, 𝑊+ 𝑊 −1
+ RotΦ⟩ = ⟨RotΨ, Ψ⟩

= ⟨𝑊+ 𝑀aux
+ Ψ, Φ⟩ = ⟨𝑀aux

+ Ψ, 𝑊+ Φ⟩ = ⟨𝑀aux
+ Ψ, Φ⟩𝑊+

⇒ e−i𝑡𝑀aux
+ unitary, yields conservation of energy
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

𝑀aux
+ = ( 𝜀(𝑥) 𝜒(𝑥)

𝜒(𝑥)∗ 𝜇(𝑥))
−1

( 0 +i∇×

−i∇× 0 )

= 𝑊 −1
+ Rot

𝑀aux
+ = 𝑀aux

+
∗𝑊 selfadjoint on weighted Hilbert space

𝐿2
𝑊+

(ℝ3, ℂ6)

⟨Ψ, 𝑀aux
+ Φ⟩𝑊+

= ⟨Ψ, 𝑊+ 𝑊 −1
+ RotΦ⟩ = ⟨RotΨ, Ψ⟩

= ⟨𝑊+ 𝑀aux
+ Ψ, Φ⟩ = ⟨𝑀aux

+ Ψ, 𝑊+ Φ⟩ = ⟨𝑀aux
+ Ψ, Φ⟩𝑊+

⇒ e−i𝑡𝑀aux
+ unitary, yields conservation of energy



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

Identifying physical states
𝑀aux

+ = 𝑊 −1 Rot

𝑀aux
+ Ψ𝜔 = 𝜔 Ψ𝜔

has (pseudo) eigenfunctions also for negative frequencies 𝜔 < 0!
But: the −𝜔 > 0 states of 𝑀aux

+ are unphysical
Solution
Define the spectral projection onto the physical states

𝑃+ = 1(0,∞)(𝑀aux
+ )
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

Identifying physical states
𝑀aux

+ = 𝑊 −1 Rot

𝑀aux
+ Ψ𝜔 = 𝜔 Ψ𝜔

has (pseudo) eigenfunctions also for negative frequencies 𝜔 < 0!
But: the −𝜔 > 0 states of 𝑀aux

+ are unphysical
Solution
Define the spectral projection onto the physical states

𝑃+ = 1(0,∞)(𝑀aux
+ )
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Auxiliary Maxwell Operator

Identifying physical states
𝑀aux

+ = 𝑊 −1 Rot has states for 𝜔 > 0, 𝜔 = 0 and 𝜔 < 0

Solution
Define the spectral projection onto the physical states

𝑃+ = 1(0,∞)(𝑀aux
+ )

and the Hilbert space

ℋ+ = 𝑃+[𝐿2
𝑊+

(ℝ3, ℂ6)] = {Ψ+ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ+ is 𝜔 > 0 state}
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Reduction to Complex Fields with 𝜔 > 0

Proposition (De Nittis & L. (2017))
The ℝ-vector space of transversal, real vector fields 𝐿2

trans(ℝ3, ℝ6) can
be canonically identified with the ℂ-vector space of complex positive
frequency fields ℋ+ = 𝑃+[𝐿2

𝑊+
(ℝ3, ℂ6)]. The vector space

isomorphisms are

𝑃+ ∶ 𝐿2
trans(ℝ3, ℝ6) ⟶ ℋ+,

2Re ∶ ℋ+ ⟶ 𝐿2
trans(ℝ3, ℝ6).

(E,H) = 2ReΨ+ ⟷ Ψ+ = 𝑃+(E,H)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Maxwell Operator

Restriction of auxiliary Maxwell operator to 𝜔 > 0:

𝑀+ = 𝑀aux
+ ∣𝜔>0 = 𝑊 −1

+ Rot ∣𝜔>0 = 𝑀∗𝑊+
+

Acts on ℋ+ = {Ψ+ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ+ is 𝜔 > 0 state}
Inherits selfadjointness from auxiliary Maxwell operator
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Schrödinger Formalism of Maxwell’s Equations

Theorem (De Nittis & L. (2017))

Real transversal states
(E,H) = 2ReΨ+

(𝜀 𝜒
𝜒∗ 𝜇) 𝜕

𝜕𝑡 (𝜓𝐸
+

𝜓𝐻
+

) = (+∇ × 𝜓𝐸
+

−∇ × 𝜓𝐻
+

)

⎫}
⎬}⎭

⟷
⎧{{
⎨{{⎩

Complex states with 𝜔 > 0
Ψ+ = 𝑃+(E,H)

𝑀+ = 𝑊 −1
+ Rot |𝜔>0 = 𝑀∗𝑊

+
i 𝜕𝑡Ψ+ = 𝑀+Ψ+

ℋ+ = {Ψ+ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ+ is 𝜔 > 0 state}

⟨Φ, Ψ⟩𝑊+
= ∫

ℝ3
d𝑥 Φ(𝑥) ⋅ 𝑊+(𝑥)Ψ(𝑥)

Energy scalar product

(De Nittis & L., The Schrödinger Formalism of
Electromagnetism and Other Classical Waves (2017))
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Helmholtz Decomposition

Traditional Helmholtz decomposition
Vector fields

𝐶 = 𝐶⟂ + 𝐶∥
= ∇ × 𝐴 + ∇𝑉 ∈ 𝐿2(ℝ3, ℂ3) = 𝒥 ⊕ 𝒢

can be uniquely decomposed into the sum of a (transversal)
divergence-free field

∇ × 𝐴 ∈ ran∇× = ker(∇⋅) = 𝒥

and a (longitudinal) gradient field

∇𝑉 ∈ ran∇ = ker∇× = 𝒢
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Helmholtz Decomposition
Helmholtz decomposition adapted to themedium

Ψ = Ψ⟂ + Ψ∥
∈ 𝐿2

𝑊+
(ℝ3, ℂ6) = 𝒥aux

+ ⊕ 𝒢

where the longitudinal gradient fields make up

𝒢 = {(∇𝜑𝐸, ∇𝜑𝐻) ∈ 𝐿2(ℝ3, ℂ6) ∣ 𝜑𝐸, 𝜑𝐻 ∈ 𝐿2
loc(ℝ3)}

= ran (∇, ∇) = ker𝑀aux
+

and the transversal divergence-free fields are ⟨ ⋅ , ⋅ ⟩𝑊+
-orthogonal,

𝒥aux
+ = 𝒢⟂𝑊+ = {Ψ ∈ 𝐿2(ℝ3, ℂ6) ∣ Div𝑊+Ψ = 0}

= ker(Div𝑊+) = ran𝑀aux
+ .
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Maxwell’s equations Schrödinger formalism Topological classification Summary

The Helmholtz Decomposition

Spectral interpretation
Longitudinal fields: eigenfunctions of 𝑀aux

+ Ψ∥ = 0 to 𝜔 = 0

⟹ ℋ+ = {Ψ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ is 𝜔 > 0 state}

⊂ 𝒢⟂𝑊+ = 𝒥aux
+ = {Ψ ∈ 𝐿2(ℝ3, ℂ6) ∣ Div𝑊+Ψ = 0}

⟹ States in ℋ+ satisfy constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Obtaining the Schrödinger Formalism for EM Waves

Starting point

(E,H) = Ψ+ + Ψ− = 2ReΨ±

±𝜔 > 0 ∶ {𝑊± i𝜕𝑡Ψ± = RotΨ±
Div𝑊± Ψ± = 0

Strategy
1 Find a one-to-one correspondence between real-valued,

physical fields (E,H) and complex waves.
2 Rewrite the dynamical Maxwell equation in Schrödinger form.
3 Verify that the solution satisfies the constraint equation.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Schrödinger Formalism of Electromagnetism

States and Dynamics
1 “Hamilton” operator 𝑀+ = 𝑊 −1 Rot ∣𝜔>0 for 𝜔 > 0
2 Hilbert space ℋ+ ⊂ 𝐿2

𝑊(ℝ3, ℂ6)
3 Dynamics given by Schrödinger equation

i 𝜕𝑡Ψ+(𝑡) = 𝑀+Ψ+(𝑡), Ψ+(0) = 𝑃+(E,H) ∈ ℋ+

4 Real-valuedness of physical solutions:

(E(𝑡),H(𝑡)) = 2ReΨ+(𝑡)

Note
This also applies to gyrotropic materials where 𝑊 = ( 𝜀 𝜒

𝜒∗ 𝜇 ) ≠ 𝑊 .
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Bloch-Floquet Theory for Photonic Crystals

Assumption (Periodic Medium)
Suppose in addition that 𝑊+(𝑥) is periodic.

𝑀+ ≅ ℱ 𝑀+ ℱ−1 = ∫
⊕

𝔹
d𝑘 𝑀+(𝑘)

= ∫
⊕

𝔹
d𝑘 ( 𝜀 𝜒

𝜒∗ 𝜇)
−1

( 0 −(−i∇ + 𝑘)×

+(−i∇ + 𝑘)× 0 )
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Bloch-Floquet Theory for Photonic Crystals

Physical bands

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘)

Frequency band functions 𝑘 ↦ 𝜔𝑛(𝑘)
Bloch functions 𝑘 ↦ 𝜑𝑛(𝑘)
both locally continuous everywhere

both locally analytic away from band crossings
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Bloch-Floquet Theory for Photonic Crystals

A+

n2

n-4

n-3

n-2

n-1

n1

n3

n4

A-

B-

B+

-Π Π
k

Ω
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Justifying effective tight-binding models

Relevant frequency bands
𝜎rel(𝑘) = ⋃𝑛∈ℐ{𝜔𝑛(𝑘)} separated by a spectral gap from the
others.

⇝ Projection onto the relevant bands

𝑃rel(𝑘) = ∑
𝑛∈ℐ

|𝜑𝑛(𝑘)⟩⟨𝜑𝑛(𝑘)|
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Justifying effective tight-binding models

A+

n2

n-4

n-3

n-2

n-1

n1

n3

n4
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B-

B+

-Π Π
k
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Justifying effective tight-binding models

Relevant frequency bands
𝜎rel(𝑘) = ⋃𝑛∈ℐ{𝜔𝑛(𝑘)} separated by a spectral gap from the
others.

⇝ Projection onto the relevant bands

𝑃rel(𝑘) = ∑
𝑛∈ℐ

|𝜑𝑛(𝑘)⟩⟨𝜑𝑛(𝑘)|
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Justifying effective tight-binding models

Idea of an effective tight-binding operator
Suppose the effective Maxwell operator 𝑀eff commutes up to an
error with 𝑃rel,

[𝑀eff , 𝑃rel] = 𝒪(𝜆𝑛),

and approximates the full Maxwell operators for states from the
relevant bands,

(𝑀+ − 𝑀eff) 𝑃rel = 𝒪(𝜆𝑛),

where 𝜆 ≪ 1 is a perturbation parameter (that could be 𝜆 = 0).
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Justifying effective tight-binding models

Idea of an effective tight-binding operator

[𝑀eff , 𝑃rel] = 𝒪(𝜆𝑛)
(𝑀+ − 𝑀eff) 𝑃rel= 𝒪(𝜆𝑛)

(e−i 𝑡
𝜆𝑘 𝑀+ − e−i 𝑡

𝜆𝑘 𝑀eff) 𝑃rel =

= ∫
𝑡

0
d𝑠 d

d𝑠(e−i 𝑠
𝜆𝑘 𝑀+ e−i (𝑡−𝑠)

𝜆𝑘 𝑀eff) 𝑃rel

= − i
𝜆𝑘 ∫

𝑡

0
d𝑠 e−i 𝑠

𝜆𝑘 𝑀+ (𝑀+ − 𝑀eff) 𝑃rel⏟⏟⏟⏟⏟⏟⏟
=𝒪(𝜆𝑛)

e−i (𝑡−𝑠)
𝜆𝑘 𝑀eff 𝑃rel

= 𝒪(𝜆𝑛−𝑘)
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Justifying effective tight-binding models

Idea of an effective tight-binding operator

[𝑀eff , 𝑃rel] = 𝒪(𝜆𝑛)
(𝑀+ − 𝑀eff) 𝑃rel= 𝒪(𝜆𝑛)

(e−i 𝑡
𝜆𝑘 𝑀+ − e−i 𝑡

𝜆𝑘 𝑀eff) 𝑃rel =

= ∫
𝑡

0
d𝑠 d

d𝑠(e−i 𝑠
𝜆𝑘 𝑀+ e−i (𝑡−𝑠)

𝜆𝑘 𝑀eff) 𝑃rel

= − i
𝜆𝑘 ∫

𝑡

0
d𝑠 e−i 𝑠

𝜆𝑘 𝑀+ (𝑀+ − 𝑀eff) 𝑃rel⏟⏟⏟⏟⏟⏟⏟
=𝒪(𝜆𝑛)

e−i (𝑡−𝑠)
𝜆𝑘 𝑀eff 𝑃rel

= 𝒪(𝜆𝑛−𝑘)
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Justifying effective tight-binding models

Symmetry properties of effective tight-binding operator 𝑀eff

(e−i 𝑡
𝜆𝑘 𝑀+ − e−i 𝑡

𝜆𝑘 𝑀eff) 𝑃rel = 𝒪(𝜆𝑛−𝑘)

Symmetry of 𝑀eff ⟹ symmetry of 𝑀+
⟹ tight binding model must not possess symmetries
incompatible with full Maxwell operator 𝑀+
Compared to 𝑀+, the effective tight-binding operator 𝑀eff
may “lose” symmetries
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Comparison
First- and Second-Order Formalism
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Maxwell’s equations Schrödinger formalism Topological classification Summary

First- vs. Second-Order Framework

Assume 𝑊 = (𝜀 0
0 𝜇), i. e. 𝜒 = 0 (no bianisotropy).
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First- vs. Second-Order Framework

first order second order

i𝜕𝑡(𝜓𝐸

𝜓𝐻) = 𝑀+(𝜓𝐸

𝜓𝐻) ⟺ (𝜕2
𝑡 + 𝑀2

+)(𝜓𝐸

𝜓𝐻) = 0

𝑀+ = ( 0 +i𝜀−1 ∇×
−i𝜇−1 ∇× 0 ) ∣

𝜔>0
⟹ 𝑀2

+ = (𝜀−1 ∇× 𝜇−1 ∇× 0
0 𝜇−1 ∇× 𝜀−1 ∇×) ∣

𝜔>0

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘) ⟹ 𝑀+(𝑘)2 𝜑𝑛(𝑘) = (𝜔𝑛(𝑘))2 𝜑𝑛(𝑘)

Ψ(𝑡) = e−i𝑡𝑀+Ψ(0) /⟹ 𝜓𝐸(𝑡) ≠ e−i𝑡𝑀2
𝐸𝜓𝐸(0)
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First- vs. Second-Order Framework

first order second order

i𝜕𝑡(𝜓𝐸

𝜓𝐻) = 𝑀+(𝜓𝐸

𝜓𝐻) ⟺ (𝜕2
𝑡 + 𝑀2

+)(𝜓𝐸

𝜓𝐻) = 0

𝑀+ block-offdiagonal ⟹ 𝑀2
+ block-diagonal

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘) ⟹ 𝑀+(𝑘)2 𝜑𝑛(𝑘) = (𝜔𝑛(𝑘))2 𝜑𝑛(𝑘)

Ψ(𝑡) = e−i𝑡𝑀+Ψ(0) /⟹ 𝜓𝐸(𝑡) ≠ e−i𝑡𝑀2
𝐸𝜓𝐸(0)
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First- vs. Second-Order Framework

first order second order

i𝜕𝑡(𝜓𝐸

𝜓𝐻) = 𝑀+(𝜓𝐸

𝜓𝐻) ⟺ {(𝜕2
𝑡 + 𝑀2

𝐸)𝜓𝐸 = 0
(𝜕2

𝑡 + 𝑀2
𝐻)𝜓𝐻 = 0

𝑀+ = ( 0 +i𝜀−1 ∇×
−i𝜇−1 ∇× 0 ) ∣

𝜔>0
⟹ 𝑀2

+ = (𝑀2
𝐸 0

0 𝑀2
𝐻

)

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘) ⟹ 𝑀+(𝑘)2 𝜑𝑛(𝑘) = (𝜔𝑛(𝑘))2 𝜑𝑛(𝑘)

Ψ(𝑡) = e−i𝑡𝑀+Ψ(0) /⟹ 𝜓𝐸(𝑡) ≠ e−i𝑡𝑀2
𝐸𝜓𝐸(0)
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First- vs. Second-Order Framework

first order second order

i𝜕𝑡(𝜓𝐸

𝜓𝐻) = 𝑀+(𝜓𝐸

𝜓𝐻) ⟺ {(𝜕2
𝑡 + 𝑀2

𝐸)𝜓𝐸 = 0
(𝜕2

𝑡 + 𝑀2
𝐻)𝜓𝐻 = 0
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𝜔>0
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+ = (𝑀2
𝐸 0

0 𝑀2
𝐻

)
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First- vs. Second-Order Framework

first order second order
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𝜓𝐻) = 𝑀+(𝜓𝐸
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𝐸)𝜓𝐸 = 0
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𝐻)𝜓𝐻 = 0

𝑀+ = ( 0 +i𝜀−1 ∇×
−i𝜇−1 ∇× 0 ) ∣

𝜔>0
⟹ 𝑀2

+ = (𝑀2
𝐸 0

0 𝑀2
𝐻

)

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘) ⟹ 𝑀𝐸(𝑘)2 𝜑𝐸
𝑛 (𝑘) = (𝜔𝑛(𝑘))2 𝜑𝐸

𝑛 (𝑘)

Ψ(𝑡) = e−i𝑡𝑀+Ψ(0) /⟹ 𝜓𝐸(𝑡) ≠ e−i𝑡𝑀2
𝐸𝜓𝐸(0)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

First- vs. Second-Order Framework

first order second order

i𝜕𝑡(𝜓𝐸

𝜓𝐻) = 𝑀+(𝜓𝐸

𝜓𝐻) ⟺ {(𝜕2
𝑡 + 𝑀2

𝐸)𝜓𝐸 = 0
(𝜕2

𝑡 + 𝑀2
𝐻)𝜓𝐻 = 0

𝑀+ = ( 0 +i𝜀−1 ∇×
−i𝜇−1 ∇× 0 ) ∣

𝜔>0
⟹ 𝑀2

+ = (𝑀2
𝐸 0

0 𝑀2
𝐻

)

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘) ⟹ 𝑀𝐸(𝑘)2 𝜑𝐸
𝑛 (𝑘) = (𝜔𝑛(𝑘))2 𝜑𝐸

𝑛 (𝑘)

Ψ(𝑡) = e−i𝑡𝑀+Ψ(0) /⟹ 𝜓𝐸(𝑡) ≠ e−i𝑡𝑀2
𝐸𝜓𝐸(0)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

First- vs. Second-Order Framework

first order second order

i𝜕𝑡(𝜓𝐸

𝜓𝐻) = 𝑀+(𝜓𝐸

𝜓𝐻) ⟺ {(𝜕2
𝑡 + 𝑀2

𝐸)𝜓𝐸 = 0
(𝜕2

𝑡 + 𝑀2
𝐻)𝜓𝐻 = 0

𝑀+ = ( 0 +i𝜀−1 ∇×
−i𝜇−1 ∇× 0 ) ∣

𝜔>0
⟹ 𝑀2

+ = (𝑀2
𝐸 0

0 𝑀2
𝐻

)

𝑀+(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘) ⟹ 𝑀+(𝑘)2 𝜑𝑛(𝑘) = (𝜔𝑛(𝑘))2 𝜑𝑛(𝑘)

Ψ(𝑡) = e−i𝑡𝑀+Ψ(0) /⟹ 𝜓𝐸(𝑡) ≠ e−i𝑡𝑀2
𝐸𝜓𝐸(0)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

First- vs. Second-Order Framework

second order

{(𝜕2
𝑡 + 𝑀2

𝐸)𝜓𝐸 = 0
(𝜕2

𝑡 + 𝑀2
𝐻)𝜓𝐻 = 0

𝑀2
𝐸(𝑘)𝜑𝐸

𝑛 (𝑘) = (𝜔𝑛(𝑘))2 𝜑𝐸
𝑛 (𝑘)

𝜓𝐸(𝑡) “ = ” 2Re(e−i𝑡√𝑀2
𝐸 𝜙𝐸

+ (𝜓𝐸(0) , 𝜕𝑡𝜓𝐸(0)))

Problems

How to take √𝑀2
𝐸?

𝜙𝐸(𝜓𝐸(0) , 𝜓𝐻(0)) depends on electric and magnetic field at time 𝑡 = 0.
How to distinguish between physical 𝜔 > 0 components
and unphysical 𝜔 < 0 components?
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First- vs. Second-Order Framework

second order

{(𝜕2
𝑡 + 𝑀2

𝐸)𝜓𝐸 = 0
(𝜕2

𝑡 + 𝑀2
𝐻)𝜓𝐻 = 0

𝑀2
𝐸(𝑘)𝜑𝐸

𝑛 (𝑘) = (𝜔𝑛(𝑘))2 𝜑𝐸
𝑛 (𝑘)

𝜓𝐸(𝑡) “ = ” 2Re(e−i𝑡√𝑀2
𝐸 𝜙𝐸(𝜓𝐸(0) , 𝜓𝐻(0)))

Problems

How to take √𝑀2
𝐸?

𝜙𝐸(𝜓𝐸(0) , 𝜓𝐻(0)) depends on electric and magnetic field at time 𝑡 = 0.
How to distinguish between physical 𝜔 > 0 components
and unphysical 𝜔 < 0 components?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

First- vs. Second-Order Framework

Compute frequency bands starting from

𝑀𝐸(𝑘)2𝜑𝐸
𝑛 (𝑘) = (𝜆𝑛(𝑘))2 𝜑𝐸

𝑛 (𝑘)

Assumption 𝜆𝑛(𝑘) ≥ 0 ⟹ yields |𝜔| spectrum

⇝ Sign important for dynamics!

0 = (𝜕2
𝑡 + 𝑀+(𝑘)2)(𝜓𝐸

𝜓𝐻) = (𝜕𝑡 + i𝑀+(𝑘)) (𝜕𝑡 − i𝑀+(𝑘))(𝜓𝐸

𝜓𝐻)
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First- vs. Second-Order Framework
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Comparison to Second-Order Formalism

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤

1 Obtain band spectrum by solving a second-order equation for
electric/magnetic field only, e. g.
𝑀+(𝑘)2

𝐸 𝜑𝐸
𝑛 (𝑘) = 𝜆𝑛(𝑘)2 𝜑𝐸

𝑛 (𝑘)
2 Pick a family of bands, e. g. with a conical intersection (𝐴+, 𝑌1)
3 Use a graphene-type tight-binding model to understand light

propagation for states located near intersection
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Caution!

Procedure yields tight-binding operator 𝑀eff

Problems
1 Connection of 𝑀eff to dynamics?
2 Nature of symmetries?
3 Correct notion of Berry connection?
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Caution!

Procedure yields tight-binding operator 𝑀eff

Problems
1 Connection of 𝑀eff to dynamics?
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Today’s Goals

First Principles Approach to QHE for Light
1 Start with Maxwell’s equations for media with 𝑊 ≠ 𝑊 .

Correct equations?
2 Schrödinger formalism of classical electromagnetism

First- vs. second-order formalism, restriction to 𝜔 ≥ 0
3 Topological classification of electromagnetic media

Cartan-Altland-Zirnbauer classification for topological insulators



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

1 Maxwell’s equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together
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Topological Phenomena as Quantum-Wave Analogies?

1 Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?

2 Are there other topological effects?

⇝ Topological classification of electromagnetic media
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Material vs. Crystallographic Symmetries

Material

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇)

Properties of and relations
between 𝜀, 𝜇 and 𝜒
Example:

𝑊 = (𝜀 0
0 𝜇) ≠ 𝑊, 𝜀 ≠ 𝜇

Only these are considered here!

Crystallographic

Wu & Hu (2015)

© 2013 Macmillan Publishers Limited.  All rights reserved. 

direct-product group of I4132 and inversion. The red gyroid in
Fig. 1a is defined by filling the inner space of the isosurface
( g(r) . 1.1) with high-refractive-index material (

!!
1

√
= n = 4) and

air otherwise. The magnetic permeability m is unity everywhere.
(These values for the dielectrics correspond to germanium and air
at optical frequencies.) The blue gyroid is the inversion counterpart
of the red gyroid with respect to the origin; the two gyroids do not
overlap in space. The band structures of both the SG photonic
crystal and the DG photonic crystal are plotted in Fig. 2a in
orange and blue, respectively. The SG photonic crystal26 has a
32% complete bandgap between the second and third bands from
0.42 to 0.58 in normalized frequencies. The DG photonic crystal
band structure26 contains a unique frequency-isolated threefold
degeneracy among the third, fourth and fifth bands at the centre
of the Brillouin zone (G), which is highlighted by green ellipses in
Fig. 2a. The first and second bands are almost degenerate, as are
the third and fourth bands, which concave downwards and touch
the fifth band, which concaves upwards. The threefold degenerate
point is well isolated in frequency from other states in the band
structure, making it an ideal starting point for applying
symmetry-breaking perturbations.

Line nodes and their flat surface bands
The threefold degeneracy of quadratic dispersions at G can be lifted
by breaking the I4132 space group without breaking P or T sym-
metries. This is done by replacing a part of the gyroid material
with two air-spheres (one on each gyroid). The first air-sphere is
placed in the red gyroid as illustrated in Fig. 1a, and the other is
its inversion counterpart in the blue gyroid (not shown in
Fig. 1a). This perturbation lifts the fifth band out of the threefold
degeneracy with the third and fourth bands at G, as shown in
Fig. 2b. The fourth and fifth bands cross one another linearly,
forming a closed line degeneracy around the G point in the (101)
plane through G, inside an otherwise complete frequency gap.
The area enclosed by this nodal line can be controlled by the
strength of the perturbations (the radii of the air-spheres).

Similar to the line-node semimetals27, the surface states associ-
ated with this line-node bulk bandstructure contain flat dispersion
bands. We constructed an interface between the DG and SG photo-
nic crystals by removing only the perturbed gyroid (Fig. 1c). The
suface states are trapped by the pseudo-gap of the DG and the full
gap of the SG. We define a termination parameter t (0 ≤ t , 1)
to indicate the periodically equivalent termination positions along
the [101] direction. t¼ 0 is set at the origin of the unit cell, as
shown in Fig. 1c.

Figure 3a shows one surface band in the bulk pseudo-gap of the
original DG photonic crystal of quadratic point degeneracy. When t
increases periodically, the surface dispersion, at every surface k
point, moves from the air band (conduction band) through the
pseudo-gap to the dielectric band (valence band)28. At G, the
surface dispersion is pinned into the bulk states at the degeneracy
point. The surface band of t¼ 0.0, except for the H−P region, is
very flat. The high density of states associated with the flat surface
dispersion is potentially useful for enhancing the light–matter inter-
actions at the surface. Even more interesting surface states are shown
in Fig. 3b for the line-node photonic crystal. The nodal line bulk
states project onto the (101) surface Brillouin zone as a closed line
that separates the surface Brillouin zone into two disconnected
areas. So, the surface dispersions can be flat bands in either of the
two regions in the Brillouin zone. The green dispersion in Fig. 3b
has all its frequencies nearly degenerate inside the line-node area,
while the red dispersion is relatively flat in the rest of the
Brillouin zone. The general features of the flat surface dispersions
do not change when the line-node photonic crystal is terminated
by other means. For example, when the SG photonic crystal is
replaced by air, one could selectively enhance, by changing the
surface terminations, the light emission of surface sources into
either radiative or non-radiative surface modes (that is, inside or
outside the light cone of air).

Phase diagrams of Weyl points under PT-breaking
In what follows, we break the PT symmetry to obtain Weyl points of
photons for the first time. We start by individually breaking P or T
of the DG photonic crystal, and then consider the general case
where P and T are broken simultaneously.

First, we break P while preserving T. Because T maps a Weyl
point at k to 2k with the same chirality (as velocities and sy
change signs), there must exist at least two other Weyl points,
both of opposite chirality, to neutralize the whole system. So, the
minimal number of Weyl points in this case has to be four. As
illustrated in Fig. 1a, we break P by placing only one air-sphere
on one of the gyroids (but not the other) at the middle point of
two neighbouring triple junctions. Under this pure P-breaking
perturbation, two pairs of Weyl points, shown in Fig. 2c, emerge
along G-N and G-H directions. The fact that all the Weyl
points appear along high-symmetry lines significantly simplifies
the analysis. There are no other states in the vicinity of the Weyl
points’ frequencies.

aẑ

ax̂

x̂

ŷ

ẑ

aŷ

a2

a c

a3

a1

3a2

a3 a1

o

r

τ = 0

Surface BZ

Bulk BZ

H

P
N

Γ

Γ

P−
H− N

H’

(101)
plane

b

Figure 1 | Real-space unit cell and reciprocal-space Brillouin zone of the
gyroid photonic crystals. a, Real-space geometry in a bcc unit cell where
a1 = (−1, 1, 1)a/2, a2 = (1,−1, 1)a/2 and a3 = (1, 1,−1)a/2. The two
identical gyroid structures in red and blue are high-refractive-index (n¼ 4)
materials; they are inversion pairs with respect to the origin (o). The
illustrated air-sphere of radius r (r/a¼0.13) located at (1/4,−1/8, 1/2)a is
only placed there when structural symmetry needs to be broken. b, The bulk
and (101) surface Brillouin zones of the bcc lattice. Weyl points and line
nodes investigated in this work lie in the green (101) plane through the
origin (G) of the bulk Brillouin zone, projecting onto the (101) surface
Brillouin zone. G-N is along [101] and G-H is along [010] (ŷ). c, An
air-isolated DG surface can be formed by terminating the perturbed gyroid
(red) but not the other (blue). The SG photonic crystal on top has a large
complete bandgap, as shown in Fig. 2a.
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Material vs. Crystallographic Symmetries

Material

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇)

Properties of and relations
between 𝜀, 𝜇 and 𝜒
Example:

𝑊 = (𝜀 0
0 𝜇) ≠ 𝑊, 𝜀 ≠ 𝜇

Only these are considered here!

Crystallographic

Wu & Hu (2015)

© 2013 Macmillan Publishers Limited.  All rights reserved. 

direct-product group of I4132 and inversion. The red gyroid in
Fig. 1a is defined by filling the inner space of the isosurface
( g(r) . 1.1) with high-refractive-index material (

!!
1

√
= n = 4) and

air otherwise. The magnetic permeability m is unity everywhere.
(These values for the dielectrics correspond to germanium and air
at optical frequencies.) The blue gyroid is the inversion counterpart
of the red gyroid with respect to the origin; the two gyroids do not
overlap in space. The band structures of both the SG photonic
crystal and the DG photonic crystal are plotted in Fig. 2a in
orange and blue, respectively. The SG photonic crystal26 has a
32% complete bandgap between the second and third bands from
0.42 to 0.58 in normalized frequencies. The DG photonic crystal
band structure26 contains a unique frequency-isolated threefold
degeneracy among the third, fourth and fifth bands at the centre
of the Brillouin zone (G), which is highlighted by green ellipses in
Fig. 2a. The first and second bands are almost degenerate, as are
the third and fourth bands, which concave downwards and touch
the fifth band, which concaves upwards. The threefold degenerate
point is well isolated in frequency from other states in the band
structure, making it an ideal starting point for applying
symmetry-breaking perturbations.

Line nodes and their flat surface bands
The threefold degeneracy of quadratic dispersions at G can be lifted
by breaking the I4132 space group without breaking P or T sym-
metries. This is done by replacing a part of the gyroid material
with two air-spheres (one on each gyroid). The first air-sphere is
placed in the red gyroid as illustrated in Fig. 1a, and the other is
its inversion counterpart in the blue gyroid (not shown in
Fig. 1a). This perturbation lifts the fifth band out of the threefold
degeneracy with the third and fourth bands at G, as shown in
Fig. 2b. The fourth and fifth bands cross one another linearly,
forming a closed line degeneracy around the G point in the (101)
plane through G, inside an otherwise complete frequency gap.
The area enclosed by this nodal line can be controlled by the
strength of the perturbations (the radii of the air-spheres).

Similar to the line-node semimetals27, the surface states associ-
ated with this line-node bulk bandstructure contain flat dispersion
bands. We constructed an interface between the DG and SG photo-
nic crystals by removing only the perturbed gyroid (Fig. 1c). The
suface states are trapped by the pseudo-gap of the DG and the full
gap of the SG. We define a termination parameter t (0 ≤ t , 1)
to indicate the periodically equivalent termination positions along
the [101] direction. t¼ 0 is set at the origin of the unit cell, as
shown in Fig. 1c.

Figure 3a shows one surface band in the bulk pseudo-gap of the
original DG photonic crystal of quadratic point degeneracy. When t
increases periodically, the surface dispersion, at every surface k
point, moves from the air band (conduction band) through the
pseudo-gap to the dielectric band (valence band)28. At G, the
surface dispersion is pinned into the bulk states at the degeneracy
point. The surface band of t¼ 0.0, except for the H−P region, is
very flat. The high density of states associated with the flat surface
dispersion is potentially useful for enhancing the light–matter inter-
actions at the surface. Even more interesting surface states are shown
in Fig. 3b for the line-node photonic crystal. The nodal line bulk
states project onto the (101) surface Brillouin zone as a closed line
that separates the surface Brillouin zone into two disconnected
areas. So, the surface dispersions can be flat bands in either of the
two regions in the Brillouin zone. The green dispersion in Fig. 3b
has all its frequencies nearly degenerate inside the line-node area,
while the red dispersion is relatively flat in the rest of the
Brillouin zone. The general features of the flat surface dispersions
do not change when the line-node photonic crystal is terminated
by other means. For example, when the SG photonic crystal is
replaced by air, one could selectively enhance, by changing the
surface terminations, the light emission of surface sources into
either radiative or non-radiative surface modes (that is, inside or
outside the light cone of air).

Phase diagrams of Weyl points under PT-breaking
In what follows, we break the PT symmetry to obtain Weyl points of
photons for the first time. We start by individually breaking P or T
of the DG photonic crystal, and then consider the general case
where P and T are broken simultaneously.

First, we break P while preserving T. Because T maps a Weyl
point at k to 2k with the same chirality (as velocities and sy
change signs), there must exist at least two other Weyl points,
both of opposite chirality, to neutralize the whole system. So, the
minimal number of Weyl points in this case has to be four. As
illustrated in Fig. 1a, we break P by placing only one air-sphere
on one of the gyroids (but not the other) at the middle point of
two neighbouring triple junctions. Under this pure P-breaking
perturbation, two pairs of Weyl points, shown in Fig. 2c, emerge
along G-N and G-H directions. The fact that all the Weyl
points appear along high-symmetry lines significantly simplifies
the analysis. There are no other states in the vicinity of the Weyl
points’ frequencies.
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H
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b

Figure 1 | Real-space unit cell and reciprocal-space Brillouin zone of the
gyroid photonic crystals. a, Real-space geometry in a bcc unit cell where
a1 = (−1, 1, 1)a/2, a2 = (1,−1, 1)a/2 and a3 = (1, 1,−1)a/2. The two
identical gyroid structures in red and blue are high-refractive-index (n¼ 4)
materials; they are inversion pairs with respect to the origin (o). The
illustrated air-sphere of radius r (r/a¼0.13) located at (1/4,−1/8, 1/2)a is
only placed there when structural symmetry needs to be broken. b, The bulk
and (101) surface Brillouin zones of the bcc lattice. Weyl points and line
nodes investigated in this work lie in the green (101) plane through the
origin (G) of the bulk Brillouin zone, projecting onto the (101) surface
Brillouin zone. G-N is along [101] and G-H is along [010] (ŷ). c, An
air-isolated DG surface can be formed by terminating the perturbed gyroid
(red) but not the other (blue). The SG photonic crystal on top has a large
complete bandgap, as shown in Fig. 2a.
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Antenna B

CES waveguide
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variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Photonic bulk-edge correspondences

↓
Identify topological observables
𝑂 = 𝑇 + error

↓
Find all topological invariants 𝑇

↓
Classification of PhCs by symmetries

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Photonic bulk-edge correspondences

↓
Identify topological observables
𝑂 = 𝑇 + error

↓
Find all topological invariants 𝑇

↓
Classification of PhCs by symmetries

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Topological Classes

Symmetries of 𝐻 ⟷ Topological Class of 𝐻

Relies on i𝜕𝑡𝜓 = 𝐻𝜓 (Schrödinger equation)

3 types of (pseudo) symmetries:
𝑈 unitary/antiunitary, 𝑈2 = ±𝟙,

𝑈 𝐻(𝑘) 𝑈−1 = +𝐻(−𝑘) time-reversal symmetry (±TR)
𝑈 𝐻(𝑘) 𝑈−1 = −𝐻(−𝑘) particle-hole (pseudo) symmetry (±PH)
𝑈 𝐻(𝑘) 𝑈−1 = −𝐻(+𝑘) chiral (pseudo) symmetry (𝜒)

1 + 5 + 4 = 10 topological classes

Physics crucially depends on topological class.
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Maxwell’s equations Schrödinger formalism Topological classification Summary

Phases Inside Topological Classes

Inequivalent phases inside each topological class

Continuous, symmetry-preserving deformations of 𝐻 cannot change
topological phase, unless either
– the energy gap closes (periodic case) or
– a localization-delocalization transition happens (random case)

Phases labeled by finite set of topological invariants
(e. g. Chern numbers but also others)

Number and type of topological invariants determined by
– symmetries ⟺ topological class and
– dimension of the system

Notion that Topological Insulator ⟺ Chern number ≠ 0 false!
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Phases labeled by finite set of topological invariants
(e. g. Chern numbers but also others)

Number and type of topological invariants determined by
– symmetries ⟺ topological class and
– dimension of the system

Notion that Topological Insulator ⟺ Chern number ≠ 0 false!
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Notion that Topological Insulator ⟺ Chern number ≠ 0 false!
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Bulk-Edge Correspondences

Properties on the boundary can be inferred from the bulk

Consists of 3 equalities:

𝑂bulk(𝑡)≈ 𝑇bulk

𝑂edge(𝑡)≈ 𝑇edge

𝑇bulk= 𝑇edge

Number and form depends on the topological class

Find topological observables
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Find topological observables
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Bulk-Edge Correspondences

Properties on the boundary can be inferred from the bulk
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Back to Business
Classification of Topological PhCs
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Maxwell’s equations Schrödinger formalism Topological classification Summary

No Additional Symmetries Assumption

Assumption
Apart from those below the system (i. e. theMaxwell operator 𝑀 ) has
no additional unitary, commuting symmetries.

Otherwise
1 Block-decompose according to unitary, commuting symmetry.
2 Repeat until no extraneous symmetries are left.
3 Analyze each block separately with the tools used here.
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Symmetries Used in Classification

Example

𝑇3 = (𝜎3 ⊗ 𝟙) 𝐶 ∶ (EH) ↦ (+𝟙 0
0 −𝟙) 𝐶 (EH) = (+E

−H)

Pauli matrix 𝜎3 = ( 1 0
0 −1 ) in electro-magnetic splitting
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Symmetries Used in Classification

Unitary symmetries

𝑈𝑛 = 𝜎𝑛 ⊗ 𝟙, 𝑛 = 1, 2, 3

Antiunitary symmetries

𝑇𝑛 = (𝜎𝑛 ⊗ 𝟙) 𝐶, 𝑛 = 0, 1, 2, 3

𝐶 is complex conjugation

𝜎0 = 𝟙 the identity

𝜎1, 𝜎2 and 𝜎3 are the Pauli
matrices in the E-H splitting

𝑈𝑛 and 𝑇𝑛 (anti)commute
with free Maxwell operator

Rot = ( 0 +i∇×

−i∇× 0 )

= −𝜎2 ⊗ ∇×
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Admissible Symmetries

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇) =

3
∑
𝑛=0

𝜎𝑛 ⊗ 𝑤𝑛

where e. g. 𝑤0 = 1
2(𝜀 + 𝜇) and 𝑤3 = 1

2(𝜀 − 𝜇)
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Admissible Symmetries

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇) =

3
∑
𝑛=0

𝜎𝑛 ⊗ 𝑤𝑛

Symmetry 𝑉 = 𝑤0 = 𝑤1 = 𝑤2 = 𝑤3 = Symmetry Type

𝑇1 = (𝜎1 ⊗ 𝟙) 𝐶 Re𝑤0 Re𝑤1 Re𝑤2 i Im𝑤3 +TR

𝑈2 = 𝜎2 ⊗ 𝟙 𝑤0 0 𝑤2 0 ordinary

𝑇3 = (𝜎3 ⊗ 𝟙) 𝐶 Re𝑤0 i Im𝑤1 Re𝑤2 Re𝑤3 +TR

Admissibility Conditions
Reality of (E,H) ⟺ 𝜔 > 0 fields ↦ 𝜔 > 0 fields ⟹ 𝑉 𝑀 = 𝑀 𝑉
Compatibility with energy scalar product ⟹ 𝑉 𝑊 = 𝑊 𝑉

⟹ exclude anticommuting symmetries
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Admissible Symmetries

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇) =

3
∑
𝑛=0

𝜎𝑛 ⊗ 𝑤𝑛

Symmetry 𝑉 = 𝑤0 = 𝑤1 = 𝑤2 = 𝑤3 = Symmetry Type

𝑇1 = (𝜎1 ⊗ 𝟙) 𝐶 Re𝑤0 Re𝑤1 Re𝑤2 i Im𝑤3 +TR

𝑈2 = 𝜎2 ⊗ 𝟙 𝑤0 0 𝑤2 0 ordinary

𝑇3 = (𝜎3 ⊗ 𝟙) 𝐶 Re𝑤0 i Im𝑤1 Re𝑤2 Re𝑤3 +TR

Admissibility Conditions
⟹ exclude anticommuting symmetries

Relevance to Classification
⟹ exclude unitary, commuting symmetries
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Revisiting
Example from the Previous Section
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Restricting to 𝜔 ≥ 0 ≠ Technicality!

Weights for “dual-symmetric” medium described by

𝑊 = (𝜀 𝜒
𝜒 𝜀) = 𝟙 ⊗ 𝜀 + 𝜎1 ⊗ 𝜒 ≠ 𝟙 ⊗ 𝜀 − 𝜎1 ⊗ 𝜒 = 𝑊

where

𝜀 = ⎛⎜
⎝

𝜀⟂ 0 0
0 𝜀⟂ 0
0 0 𝜀𝑧

⎞⎟
⎠

𝜒 = ⎛⎜
⎝

0 +i𝜅 0
−i𝜅 0 0

0 0 0
⎞⎟
⎠

commute with operator

𝑈1 = (0 𝟙
𝟙 0) = 𝜎1 ⊗ 𝟙

But: 𝑈1 is not a symmetry of the physical system!
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Restricting to 𝜔 ≥ 0 ≠ Technicality!

Weights for “dual-symmetric” medium described by

𝑊 = (𝜀 𝜒
𝜒 𝜀) = 𝟙 ⊗ 𝜀 + 𝜎1 ⊗ 𝜒 ≠ 𝟙 ⊗ 𝜀 − 𝜎1 ⊗ 𝜒 = 𝑊

commute with operator

𝑈1 = (0 𝟙
𝟙 0) = 𝜎1 ⊗ 𝟙

But: 𝑈1 is not a symmetry of the physical system!
𝑈1 anticommutes with Rot ⟹ 𝑈1 ∶ 𝜔 > 0 ↦ 𝜔 < 0
𝑈1 does not commute with 𝑀+!
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Back to
Topological Classification of EMMedia
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic

𝑊 = ( 𝜀 0
0 𝜇 ) = ( 𝜀 0

0 𝜇 )

𝑇3 = (𝜎3 ⊗ 𝟙) 𝐶

Dual-symmetric, non-gyrotr.

𝑊 = ( 𝜀 −i𝜒
+i𝜒 𝜀 ) = ( 𝜀 −i𝜒

+i𝜒 𝜀 )

𝑇1 = (𝜎1 ⊗ 𝟙) 𝐶, 𝑇3 = (𝜎3 ⊗ 𝟙) 𝐶

Gyrotropic

𝑊 = ( 𝜀 0
0 𝜇 ) ≠ ( 𝜀 0

0 𝜇 )

No symmetries

Magneto-electric

𝑊 = ( 𝜀 𝜒
𝜒 𝜀 ) = ( 𝜀 𝜒

𝜒 𝜀 )

𝑇1 = (𝜎1 ⊗ 𝟙) 𝐶



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic
Class AI

Realized, e. g. dielectrics

Dual-symmetric, non-gyrotr.
Two +TR ⟹ 2 × Class AI

Realized, e. g. vacuum and YIG

Gyrotropic
Class A (Quantum Hall Class)

Realized, e. g. YIG for microwaves

Magneto-electric
Class AI

Realized, e. g. Tellegen media

4 different topological classes of EMmedia
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic
Class AI

Realized, e. g. dielectrics

Dual-symmetric, non-gyrotr.
Two +TR ⟹ 2 × Class AI

Realized, e. g. vacuum and YIG

Gyrotropic
Class A (Quantum Hall Class)
Realized, e. g. YIG for microwaves

Magneto-electric
Class AI

Realized, e. g. Tellegen media

Only one is topologically non-trivial in 𝑑 ≤ 3



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

Topological Photonic Crystals
Topology of What?
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The Topology of Light States in Periodic Media

Relevant frequency bands
𝜎rel(𝑘) = ⋃𝑛∈ℐ{𝜔𝑛(𝑘)} separated by a spectral gap from the
others.

⇝ Projection onto the relevant bands

𝑃rel(𝑘) = ∑
𝑛∈ℐ

|𝜑𝑛(𝑘)⟩⟨𝜑𝑛(𝑘)|
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The Topology of Light States in Periodic Media

A+

n2

n-4

n-3

n-2

n-1

n1

n3

n4

A-

B-

B+

-Π Π
k

Ω
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The Topology of Light States in Periodic Media

Relevant frequency bands
𝜎rel(𝑘) = ⋃𝑛∈ℐ{𝜔𝑛(𝑘)} separated by a spectral gap from the
others.

⇝ Projection onto the relevant bands

𝑃rel(𝑘) = ∑
𝑛∈ℐ

|𝜑𝑛(𝑘)⟩⟨𝜑𝑛(𝑘)|
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The Topology of Light States in Periodic Media

Existence of topological
boundary states

} ⟷
⎧{
⎨{⎩

Topology of the (bulk)
Bloch bundle

ℰ𝔹(𝑃rel) = (𝜉𝔹
𝜋−→ 𝔹)

where

𝜉𝔹(𝑃rel) = ⨆
𝑘∈𝔹

ran𝑃rel(𝑘) = ⨆
𝑘∈𝔹

span{𝜑𝑛(𝑘)}𝑛∈ℐ

is associated to finitely many frequency bands⋆ separated by a
spectral gap from the others.

⋆ Not ground state bands!
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The Topology of Light States in Periodic Media
“Continuous deformations” of vector bundles and equivalence

ℰ𝔹(𝑃rel) ∶ ⨆
𝑘∈𝔹

ran𝑃rel(𝑘) 𝜋−−→ 𝔹

Gaps must remain open
⟺ dimension of fiber ran𝑃rel(𝑘) does not change!

Continuous deformations of 𝑀+
⟹ continuous deformations of 𝑃rel

Continuous deformations of 𝑃rel
⟹ continuous deformation of ℰ𝔹(𝑃rel)

Classification of vector bundles over the torus
Find a way to characterize the Bloch vector bundle “modulo
continuous deformations” ⇝ This is a solved problem!
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The Topology of Light States in Periodic Media

Theorem (Class A vector bundles over the torus)
For the cases of rank-𝑚 vector bundles over the 𝑑-dimensional torus
listed below, the set of equivalence classes is countable and given by:

1 𝑑 = 1, 𝑚 ≥ 1: Vec𝑚
ℂ (𝕊1) ≅ {0}

2 𝑑 ≥ 2, 𝑚 = 1: Vec1
ℂ(𝕋𝑑) ≅ ℤ

3 𝑑 = 2, 𝑚 ≥ 2: Vec𝑚
ℂ (𝕋2) ≅ ℤ

4 𝑑 = 3, 𝑚 ≥ 2: Vec𝑚
ℂ (𝕋3) ≅ ℤ3

5 𝑑 = 4, 𝑚 ≥ 2: Vec𝑚
ℂ (𝕋2) ≅ ℤ6 ⊕ ℤ

6 𝑑 ≥ 5, 2𝑚 ≥ 𝑑: Vec𝑚
ℂ (𝕋𝑑) ≅ ℤ𝑘 for 𝑘 = (𝑑

𝑘)
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The Topology of Light States in Periodic Media

Theorem (Class AI vector bundles over the torus)
Suppose there exists an antiunitary operator 𝑉 with 𝑉 2 = +𝟙 and

𝑉 𝑃rel(𝑘) 𝑉 −1 = 𝑃rel(−𝑘).

For the cases of rank-𝑚 vector bundles over the 𝑑-dimensional torus
listed below, the set of equivalence classes is countable and given by:

1 𝑑 ≥ 1, 𝑚 = 1: Vec𝑚
ℂ (𝕋𝑑) ≅ {0}

2 𝑑 = 1, 2, 3, 𝑚 ≥ 1: Vec1
ℂ(𝕋𝑑) ≅ {0}

3 𝑑 = 4, 𝑚 ≥ 2: Vec𝑚
ℂ (𝕋4) ≅ ℤ

4 𝑑 ≥ 5, 2𝑚 ≥ 𝑑: Vec𝑚
ℂ (𝕋𝑑) ≅ ℤ𝑘

⟹ All odd Chern classes vanish (first, third, etc.)
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The Topology of Light States in Periodic Media

Chern classes are computable!
“Abstract non-sense” tells us that vector bundles are
characterized by ℤ-valued Chern classes

But: Given a particular set of Bloch functions, how do we
compute Chern classes?
Answer: From differential geometry! (E. g. the Berry curvature)
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Topological Classification of Phases
Theorem (De Nittis & L. (2017))

Medium CAZ Class Dimension 𝑑 =

1 2 3 4

Gyrotropic A 0 ℤ ℤ3 ℤ6 ⊕ ℤ

Non-gyrotropic AI 0 0 0 ℤ

Magneto-electric AI 0 0 0 ℤ
Dual-symmetric,
non-gyrotropic

2 × AI 0 0 0 ℤ ⊕ ℤ

(Classification of Bloch vector bundles with symmetries.)
First and second Chern numbers
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Topological Classification of Phases
Theorem (De Nittis & L. (2017))

Medium CAZ Class Dimension 𝑑 =

1 2 3 4

Gyrotropic A 0 ℤ ℤ3 ℤ6 ⊕ ℤ

Non-gyrotropic AI 0 0 0 ℤ

Magneto-electric AI 0 0 0 ℤ
Dual-symmetric,
non-gyrotropic

2 × AI 0 0 0 ℤ ⊕ ℤ

(Classification of Bloch vector bundles with symmetries.)
First and second Chern numbers
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Consequences of the Classification Result

1 Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?
Answer: Yes! Both systems are in Class A!

2 Are there other topological effects?
Answer: In 𝑑 ≤ 3 (unfortunately) no!
(E. g. no analog of the Quantum Spin Hall Effect (class AII))
In 𝑑 = 4: Effects due to second Chern number or numbers?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

Consequences of the Classification Result

1 Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?
Answer: Yes! Both systems are in Class A!

2 Are there other topological effects?
Answer: In 𝑑 ≤ 3 (unfortunately) no!
(E. g. no analog of the Quantum Spin Hall Effect (class AII))
In 𝑑 = 4: Effects due to second Chern number or numbers?
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Comparison
First- and Second-Order Formalism
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𝜔 spectrum vs. |𝜔| spectrum

First-order formulation
𝑀(𝑘)𝜑𝑛(𝑘) = 𝜔𝑛(𝑘) 𝜑𝑛(𝑘)

A+

n2

n-4

n-3

n-2

n-1

n1

n3

n4

A-

B-

B+

-Π Π
k

Ω

Second-order formulation
𝑀(𝑘)2𝜑𝑛(𝑘) = |𝜔𝑛(𝑘)|2 𝜑𝑛(𝑘)

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤
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𝜔 spectrum vs. |𝜔| spectrum

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤

Points 𝑋𝑗 and 𝑌𝑗 are artificial band crossings
No graphene-like physics
⇝ eigenfunctions well-behaved at artificial crossings
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𝜔 spectrum vs. |𝜔| spectrum

B- B+

A-A+

Y4

Y3Y2

Y1

X9

X8
X7

X6

X5

X4

X3

X2

X1

n1, n-1

n2

n-2

n3

n-3

n4

n-4

-Π Π
k

 Ω¤

Points 𝑋𝑗 and 𝑌𝑗 are artificial band crossings
No graphene-like physics
⇝ eigenfunctions well-behaved at artificial crossings



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maxwell’s equations Schrödinger formalism Topological classification Summary

Symmetries

Classification of (anti-)unitary 𝑈 with 𝑈2 = ±𝟙 with

𝑈 𝑀(𝑘)2 𝑈−1 = 𝑀(±𝑘)2

in Cartan-Altland-Zirnbauer scheme, e. g. if 𝑊+ = 𝑊+

𝐶 𝑀(𝑘) 𝐶 = −𝑀(−𝑘)
⇒ 𝐶 𝑀(𝑘)2 𝐶 = +𝑀(−𝑘)2} vs. { 𝑇 𝑀(𝑘) 𝑇 = +𝑀(−𝑘)

⇒ 𝑇 𝑀(𝑘)2 𝑇 = +𝑀(−𝑘)2

⇒ No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!
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Symmetries

Classification of (anti-)unitary 𝑈 with 𝑈2 = ±𝟙 with

𝑈 𝑀(𝑘)2 𝑈−1 = 𝑀(±𝑘)2

in Cartan-Altland-Zirnbauer scheme, e. g. if 𝑊+ = 𝑊+

𝐶 𝑀(𝑘) 𝐶 = −𝑀(−𝑘)
⇒ 𝐶 𝑀(𝑘)2 𝐶 = +𝑀(−𝑘)2} vs. { 𝑇 𝑀(𝑘) 𝑇 = +𝑀(−𝑘)

⇒ 𝑇 𝑀(𝑘)2 𝑇 = +𝑀(−𝑘)2

⇒ No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!
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Symmetries

Classification of (anti-)unitary 𝑈 with 𝑈2 = ±𝟙 with

𝑈 𝑀(𝑘)2 𝑈−1 = 𝑀(±𝑘)2

in Cartan-Altland-Zirnbauer scheme, e. g. if 𝑊+ = 𝑊+

𝐶 𝑀(𝑘) 𝐶 = −𝑀(−𝑘)
⇒ 𝐶 𝑀(𝑘)2 𝐶 = +𝑀(−𝑘)2} vs. { 𝑇 𝑀(𝑘) 𝑇 = +𝑀(−𝑘)

⇒ 𝑇 𝑀(𝑘)2 𝑇 = +𝑀(−𝑘)2

⇒ Noway to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!
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Symmetries

Classification of (anti-)unitary 𝑈 with 𝑈2 = ±𝟙 with

𝑈 𝑀(𝑘)2 𝑈−1 = 𝑀(±𝑘)2

in Cartan-Altland-Zirnbauer scheme, e. g. if 𝑊+ = 𝑊+

𝐶 𝑀(𝑘) 𝐶 = −𝑀(−𝑘)
⇒ 𝐶 𝑀(𝑘)2 𝐶 = +𝑀(−𝑘)2} vs. { 𝑇 𝑀(𝑘) 𝑇 = +𝑀(−𝑘)

⇒ 𝑇 𝑀(𝑘)2 𝑇 = +𝑀(−𝑘)2

⇒ No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!
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Symmetries

Classification of (anti-)unitary 𝑈 with 𝑈2 = ±𝟙 with

𝑈 𝑀(𝑘)2 𝑈−1 = 𝑀(±𝑘)2

in Cartan-Altland-Zirnbauer scheme, e. g. if 𝑊+ = 𝑊+

𝐶 𝑀(𝑘) 𝐶 = −𝑀(−𝑘)
⇒ 𝐶 𝑀(𝑘)2 𝐶 = +𝑀(−𝑘)2} vs. { 𝑇 𝑀(𝑘) 𝑇 = +𝑀(−𝑘)

⇒ 𝑇 𝑀(𝑘)2 𝑇 = +𝑀(−𝑘)2

⇒ No way to distinguish PH and TR symmetry!
Ditto for chiral vs. proper symmetry

⇒ CAZ classification impossible in second-order framework!
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Proper definition of the Berry Connection

𝒜(𝑘) = i ⟨𝜑𝑛(𝑘), ∇𝑘𝜑𝑛(𝑘)⟩𝑊±
= i ⟨𝜑𝑛(𝑘), 𝑊± ∇𝑘𝜑𝑛(𝑘)⟩

= i ⟨𝜑𝐸
𝑛 (𝑘), 𝜀 ∇𝑘𝜑𝑛(𝑘)⟩ + i ⟨𝜑𝐻

𝑛 (𝑘), 𝜇 ∇𝑘𝜑𝐻
𝑛 (𝑘)⟩

Berry connection sometimes computed using only 𝜑𝐸
𝑛 (𝑘)

However: ∥E(𝑡)∥2
𝜀 = ⟨E(𝑡), 𝜀E(𝑡)⟩ not conserved quantity!

⇒ 𝒜𝐸(𝑘) = i ⟨𝜑𝐸
𝑛 (𝑘), 𝜀 ∇𝑘𝜑𝐸

𝑛 (𝑘)⟩ not a connection

Magnetic field necessary to compute Berry connection!

Same arguments hold for 𝜑𝐻
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1 Maxwell’s equations in linear, non-dispersive media

2 Schrödinger formalism of classical electromagnetism

3 Topological classification of electromagnetic media

4 Putting All The Pieces Together
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Comparison with Other Works

Unidirectional Modes of Fixed
(Pseudo)spin

Works of Xiao Hu et al and
Aleksander Khanikaev et al

Pseudospin degree of freedom in a
time-reversal-symmetric medium

“Hamiltonian” aka Maxwell
operator 𝑀 = ( 𝑀↑ 0

0 𝑀↓
) has a

block decomposition

Topological classification must be
applied to 𝑀↑/↓

𝑀↑/↓ of (pseudo) spin ↑/↓ may not
possess time-reversal symmetry

Khanikaev et al (2012)
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Comparison with Other Works

Wu & Hu (2015)
Edgemodes topological

Pseudospin degree of freedom in a
time-reversal-symmetric medium

Time-reversal symmetry
𝑇3 ≠ 𝑇↑ ⊕ 𝑇↓ not blockdiagonal
⟹ 𝑀↑/↓ class A (no symmetry)

Chern numbers 𝐶↑ = −𝐶↓ ≠ 0
possible

Not in contradiction, edge modes
come in ↑ / ↓ pairs

Topologically protected against
perturbations which preserve 𝑇3
symmetry and honeycomb
structure

Wu & Hu (2015)
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Comparison with Other Works

Khanikaev et al (2013)
Mathematics and numerics correct

Unfortunately, equations
unphysical

Khanikaev et al (2012)
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Thank you for your attention!


	Maxwell's equations in linear, non-dispersive media
	Schrödinger formalism of classical electromagnetism
	Topological classification of electromagnetic media
	Putting All The Pieces Together

