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Some Relevant Wave Equations

Classical Electromagnetism
Characteristics

(S 2) be <:) - Cgi:) B (6> @ First order in time
V -eE
(V-un) = (S) @ Product structure of
operators

Transverse Acoustic Waves @ Waves take values in R™

F@) = (opome 7))
: Other examples
. Plasmons, magnetoplasmons,
Magnons aka Spin Waves van Alfvén waves, etc.
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Overarching Interest
Establish Quantum-Wave Analogies



Three Frameworks in Which to Study Physical Systems

Hamilton

Lagrange < — —m— —

O Seemingly clear and insurmount-
able difference between classical
and worlds

O Difference in physical theories

?
= Incompatibility of
mathematical frameworks



Three Frameworks in Which to Study Physical Systems

Hamilton
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O Seemingly clear and insurmount-
able difference between classical
and quantum worlds

O Difference in physical theories ==
Incompatibility of mathematical
frameworks ~» False



Three Frameworks in Which to Study Physical Systems

Hamilton

Lagrange + — — — — » Schrodinger

@ Hamiltonian and Lagrangian
mechanics equivalent

(subject to mathematical conditions)



Three Frameworks in Which to Study Physical Systems

Lagrange < —defines— —

@ Schrodinger equation gives rise to

linear Hamiltonian equations
(Marsden & Ratiu, Corollary 2.5.2 & Proposition 2.6.3)



Three Frameworks in Which to Study Physical Systems

Lagrange — —defines— -

@ Koopman formalism: Hamiltonian
systems can be expressed as linear
(1) Liouville equation



Three Frameworks in Which to Study Physical Systems

Lagrange — —defines— -

@ Case-by-case basis: Schrodinger
formalism can be established

(e. g. linear electromagnetism in media,
transverse acoustic waves)



Quantum-Wave Analogy of Interest
Topological Phenomena

[m] [ = = = A



The Quantum Hall Effect: the Prototypical System

physical observable «— abstract mathematics

Quantum Hall Effect
7 2 2 X
Ubu'lllk<t) ~ eTChbqu = %Chedge ~ O-edée<t> M
transverse conductivity = Chern # 51 &
1 10, &
Chbulk/edge = on / dk Qpuijedge (k) € Z . JUVL,
B 3

e Edge modes in spectral gaps

e Signed # edge channels = Ch( Proi)
e Edge modes unidirectional

e Robust against disorder

Two Nobel Prizes

1980 for experiment: von Klitzing

2016 for theory: Thouless




A Novel Class of Materials: Topological Photonic Crystals

Predicted theoretically by Raghu & Haldane (2005) ...
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symmetry breaking



A Novel Class of Materials: Topological Photonic Crystals

Predicted theoretically by Raghu & Haldane (2005) ...
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A Novel Class of Materials: Topological Photonic Crystals

.. and realized experimentally by Joannopoulos et al (2009)

a N
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.




Mechanical

Topological Insulators for Other Waves: Experiments

Acoustic

PN



Claim: Three Experiments are
Different Manifestations of Same

Underlying Physical Principles.



Phenomenological Similarities

electrons can move along edge (conducting)

Coupled Oscillators
Quantum

o Periodic structure

o Breaking of time-reversal symmetries
o Boundary modes

o Robust under perturbations



What About Spin Waves?

Magnonic Crystals

Fe H”T

Ch:i/de(k)gz —
21 5

-» So far not observed experimentally.



The Problem of Defining Chern Numbers for Spin Systems

QM & EM

Spin Waves

Space

Hilbert space

Krein space

Inner Product

scalar product (¢, 1)

indeterminate inner
product

(6,0), = (6, 050)

Dynamical . _ . _
eation | 1000 = H() | i0,(t) = oy H(1)
Hamiltonian selfadjoint Krein-selfadjoint



The Problem of Defining Chern Numbers for Spin Systems

QM & EM Spin Waves
Space Hilbert space Krein space with
with (9, ¢) (9.1),_ = (#,05%)
Berry . .
“Connection” A =1{pn: Vion) A =i {pn, Vk@n>og
Berry B B
“Curvature” =0y, Az = O, Ay | =0y, Ay — 0y, Ay
u 1 1
chern /dk Q(k) € Z /dk Q(k) € 72
Number” 27 oy 21 Jy
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QM & EM Spin Waves
Space Hilbert space Krein space with
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Berry B B
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Interlude
The Schrodinger Formalism of

Electromagnetism in Media



Quantum-Wave Analogies

Quantum Mechanics
i0, 0 =HY
H= (—iV—A)2+V

(Schrodinger equation)

——

: Electromagnetism

Classical Electromagnetism

(50) o (5) - (95%)

(dynamical equations)

(v) (5 0) (8) =)

(constraint equation)



Schrédinger Formalism of Electromagnetism

(55) 2 (5)-(23:8) } — { 10,0 = MW

dynamical Maxwell equations “Schrédinger-type equation”

U(t) = (E(t),H(t)) € H = {\Il € L%, (R3,C%) | \Iftransversal}

o) (e ")

! =D
Maxwell equations Adaptation of techniques
= = from quantum mechanics
Maxwell operator M = M*w to electromagnetism



Schroédinger Formalism for Classical Waves

States and Dynamics
@ “Hamilton” operator M = W D where
o W=W*0<cl<W<C1
(positive, bounded, bounded inverse)
o D = D* (potentially unbounded)

@ Complex (1) weighted Hilbert space 7 C L%,(R%,C™) where

(,0),, = (2, W¥) = [ dz®(x) W(x)¥(z)
Ra

@ Dynamics given by Schrédinger equation
10, W (t) = MU(t), v0)=2a

@ Real-valuedness of physical solutions



Schroédinger Formalism for Classical Waves

States and Dynamics
@ “Hamilton” operator M = W D with product structure
@ Complex (1) weighted Hilbert space H C L%,(R%,C™)
@ Dynamics given by Schrédinger equation
@ Real-valuedness of physical solutions

Properties
o M*w =M
o U(t)=e tMp
o |w( || = |®|%, (conserved quantity, here field energy)
0 Ree "M = e MRe whereRe = 1(1 + C)

(existence of real solutions)



Doubling of Degrees of Freedom

One of the tenets of electromagnetism:
E and H are real vector fields.

—> Replacing L}, | (R3,R®) «» L, | (R?,CO)
doubles the degrees of freedom!

On the other hand, if we want to apply the theory of selfadjoint
operators we need to work with complex Hilbert spaces!



Restriction to Complex Fields with w > 0

CMC=-M = (Ce ™M = M implies
e 1M (Eg, Hy) = e 1M (Re W, ) = Re (e MW )
where Re = 1(1 + C) is the real part operator and

v, = 1{w>0}(]\/[> (Eo: Ho) = P+(EOv Ho)
v = 1{w<0}<M) (Eo, Hy) = P—<E07 HO) =Cv,

are the positive and negative frequency contributions



Restriction to Complex Fields with w > 0

CMC=-M = (Ce M = e *Mimplies
e "M (E  Hy) =e M (ReV,) =Re (e_‘tM\IIi>
Re = P.! = Study M, := M|, p,

Real transversal states Complex states with w > 0
(E;,H) =Re VW

0 o [E V % H — \I/Jr = P+(E?H>
€ -V x .. o
(0 u) at <H> N <+v x E) 10,0, =M,



Fundamental Constituents

Reduced Description
@ “Hamilton” operator M, = W1 D)|

ran P,
@ Hilbertspace 7. = ran P, C L%,(R3,C5)
@ Dynamics given by Schrédinger equation

10V, (t) =M,V (1), V. (0)=P,(E,H) eran P,
@ Real-valuedness of physical solutions:

(E(2),H(t)) = Re W, (¢)



Fundamental Constituents

Reduced Description
@ “Hamilton” operator M, = W1 D)|

ran P,
@ Hilbertspace 7. = ran P, C L%,(R3,C5)
@ Dynamics given by Schrédinger equation

10V, (t) =M,V (1), V. (0)=P,(E,H) eran P,
@ Real-valuedness of physical solutions:
(E(t),H(t)) = Re W (1)

Note
This also applies to gyrotropic materials where W = .



Back to
Magnons

[m] [ = = = A



Fundamental Constituents

Reduced Description
@ “Hamilton” operator M, = o3 H| _

@ Hilbertspace 7 = ran P,
@ Dynamics given by Schrédinger equation

10V, (t) =M,V (1), V. (0)=P,SeranP,
@ Real-valuedness of physical solutions:

S(t) =Re U, (1)



Crucial Difference Between EM and Spin Waves

Spin Waves

Classical Electromagnetism
———

e 0
W_(O M)>0

M = o4 H is not selfadjoint (hermitian)
=
Definition of P, = 1¢ (03 H) (restriction tow > 0)?



Fortuitous Coincidence: Transf. to Selfadj. Operator

In this specific case: M = o5 H can be diagonalized via a
Krein-unitary

Definition (Krein unitary)
U : H — H invertible with

(U, Uy) = (U¢,o3U¢) =(,9), -

g3

Equivalently: U* = 0, U* 03 = U~ !



Fortuitous Coincidence: Transf. to Selfadj. Operator

In this specific case: M = o4 H can be diagonalized via a
Krein-unitary

U(k) M) U(R) ™ = o (h%m h<3k>):(h(0k> —h<0—’f>)

where h(k) >0

Define projection onto w > 0 states via

P.(k) = U(k)! (g 8) U(k).



Fortuitous Coincidence: Transf. to Selfadj. Operator

Define projection onto w > 0 states via

P.(k) = U(k) (g 8) U(k).

Claim
On ran P_ (k) the weighted inner product is a scalar product.



Fortuitous Coincidence: Transf. to Selfadj. Operator

Claim
Onran P, (k) the weighted inner product is a scalar product.

Let ¢(k), (k) € ran P, (k):



Fortuitous Coincidence: Transf. to Selfadj. Operator

Claim
On ran P_ (k) the weighted inner product is a scalar product.

Let ¢(k), (k) € ran P_(k):

Strictness (s 0 for ¢(k), (k) # 0) follows from 1 = (£ 9) + (9 9)



Fundamental Constituents

Reduced Description Consistent (even though o5 % 0)
@ “Hamilton” operator M, = o3 H| _

@ Hilbertspace 7 = ran P,
@ Dynamics given by Schrédinger equation

10V, (t) =M,V (1), V. (0)=P,SeranP,
@ Real-valuedness of physical solutions:

S(t) =Re U, (1)



The Problem of Defining Chern Numbers for Spin Systems

QM & EM Spin Waves
Space Hilbert space Krein space with
with (6, ) (6,9), = (6, 050)
Berry . .
“Connection” A =1{pn: Vion) A =i {pn, Vk@n>a3
Berry B B
“Curvature” Q =0y, Az = O, Ay | Q=0 Ay =0y, Aq
" 1 1
Chern > / dkQk)eZ | o= / dk Q(k)e Z Yes!
Number” 27 oy 27 Jy




Thank you very much

«Or «Fr A Er «E>»
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