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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Figure 1 | 1D phononic crystal interface system. a, Experimental set-up. The green arrow marks the position of the interface separating the PC with
configuration S1 on the left and the PC with configuration S2 on the right. The large white arrow shows the incidence direction. b–d, Simulated pressure
eigenfunctions of an S1 unit cell. b, Lowest even mode, located at 3,341 Hz. c, Odd mode, located at 4,421 Hz. d, First transverse mode, located at 4,527 Hz.
Red/blue colour indicates positive/negative local pressure. Eigenfunctions of the PC configurations S2, S3 and S4 are qualitatively similar, but have di�erent
eigenfrequencies. e, Band structure of S1, where the black lines represent fundamental modes and the green line a higher order mode. Red dots mark the
eigenfrequencies shown in b–d. The higher order mode marked by the green line is a ‘deaf mode’ that cannot be excited by the incident plane wave.
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Figure 2 | Topological transition in 1D PC system. The eigenfrequency of
eigenstates bounding the second bandgap (coloured regions) at the centre
of the Brillouin zone as a function of 1d=(dA �dB)/2. The red and black
curves correspond to even and odd modes (with respect to the central
cross-sectional plane of tube-A). As the length di�erence 1d increases, the
second bandgap closes and reopens, accompanied by the crossing of two
eigenmodes. This process is analogous to the band inversion process; thus
the second bandgaps are marked with di�erent colours to show that they
have di�erent topological characteristics. Four di�erent configurations are
considered, with the length di�erence 1d indicated with vertical dashed
lines. It can be seen that the second bandgaps of configurations S1 and S3
are topologically identical, and di�er from that of S2. The second bandgap
of S4 closes at the centre of the Brillouin zone.

closes at the zone centre where the two modes become degenerate
at k= 0 (Fig. 3c). This marks a topological transition point. This
is also shown in Fig. 2, where a gap closing and reopening process
can be seen if the parameters of the system are tuned continuously
from those of S1 or S3 to those of S2, passing through a transition
point at 1d=0.49cm. Furthermore, the system’s mirror symmetry
is preserved when we vary 1d , and none of the first bandgaps
of the four PCs closes during this process. It follows that the first
bandgaps of these four systems remain topologically identical. Note
that the topological property of a bandgap is determined by the
summation of the Zak phases of all the bands below this gap, but
has no dependence on the properties of the higher bands24,25. For S1
and S3, ✓Zak

2 =⇡, and so the topological characters of their first and
second bandgaps are identical. In contrast, ✓Zak

2 =0 for S2, indicating

that the second bandgap of S2 is topologically di�erent from that of
S1 or S3.

The determination of the GP has been theoretically proposed
and experimentally done in cold atom16,26 and photonic systems27,28.
In our acoustic system, we follow a di�erent scheme to determine
the GP experimentally. The bulk band GP can be determined
by measuring the reflection phase � at the boundary of the PC.
In a quasi-1D system, � of the reflected pressure field of a PC
for frequencies inside the bandgap is a manifestation of its Zak
phase24,25. The reflection phase satisfies � 2 {�⇡, 0} or � 2 {0, ⇡}
(mod 2⇡) inside a bandgap, depending on the topological character
of that gap25. The topological character of a gap is related to the
symmetry types (even or odd) of the band-edge states below or
above this gap, while the Zak phase yields the relationship between
the two band-edge states of a band. Thus, the Zak phase of a
bulk band and the topological characters of the two bandgaps
sandwiching this band can be related to each other through the
symmetry types of the band-edge states. Owing to the inversion
symmetry that is inherent in the system under consideration, the
geometric Zak phase can take only two values: either 0 or ⇡ (see
Supplementary Information I). It has been shown rigorously that
the relationship between sgn(�) of the first and second bandgaps
and the Zak phase of the second band is given by24.

sgn(�1)/sgn(�2)=�exp(i✓Zak
2 ), with ✓Zak

2 =0 or ⇡ (2)

where the subscripts indicate the number of bandgaps. In other
words, measuring the signs of the reflection phases of the two
bandgaps sandwiching an isolated bulk band provide su�cient
information to determine the Zak phase of that band. If the signs are
the same, the Zak phase of that band is⇡. Otherwise, it is zero. This is
the first method we use to measure the Zak phase of the bulk bands.
For the measurement, we add a homogeneous waveguide with an
identical inner radius to that of tube-A between the loudspeaker
and the PC. Figure 4a shows a schematic drawing of the set-up used
to measure the reflection phase. The measured fields in the second
common bandgaps of S1, S2 and S3 are shown in Fig. 4b, together
with that of a flat sound hard surface (steel plate) for reference. The
reflection fields of S1 and S3 seem to be ‘advanced’ with respect to
the steel plate, whereas the reflection field of S2 seems to be ‘delayed’.
Thus �2 values for the two topologically identical PCs—that is, S1
and S3—have the same sign, whereas �2 for S2 has the opposite sign.
In comparison, the measured reflection phases of the first common
bandgaps, �1, of all three PCs have the same sign (Fig. 4c). Excellent
agreement with the theoretical prediction is seen.
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We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses

kx
ky

Bandgap

b

c d

a
15 15 μm

x

y

kx
ky

Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and

a b

c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.
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FIG. 1. (Color online) Magnonic crystal with chiral edge modes.
Periodic array of holes is introduced into YIG, where iron (Fe) is filled
inside every hole. Chiral spin-wave edge modes are propagating along
the boundary in a unidirectional way (light purple arrow).

where β
†
k ≡ [β†

1,k, . . . ,β
†
N,k] denote spin-wave (boson) cre-

ation operators. Describing volume-type modes, the operators
are already Fourier-transformed in a two-dimensional space
with the periodic boundary conditions and the wave vector
k ≡ (kx,ky). N is a number of internal degrees of freedom
considered within a unit cell. A 2N by 2N Hermitian matrix
(H k) stands for a bosonic Bogoliubov–de Gennes (BdG)
Hamiltonian, whose explicit form will be derived from a
linearized Landau-Lifshitz equation later. With the magnetic
dipolar interaction, the Hamiltonian thus derived acquires not
only N by N normal parts (particle-hole channel), ak and a∗

−k,
but also N by N anomalous parts (particle-particle channel),
bk and b∗

−k,

H k ≡
[

ak bk

b∗
−k a∗

−k

]
.

Such a bosonic BdG Hamiltonian is diagonalized in terms
of a paraunitary matrix T k instead of a unitary matrix,33

T †
k H k T k =

[
Ek

E−k

]
, (2)

with [γ †
k,γ −k]T †

k = [β†
k,β−k]. Ek is a diagonal matrix, whose

diagonal element gives a dispersion relation for respective
volume-mode band. The orthogonality and completeness of a
new basis (γ field) are derived as

T †
kσ 3T k = σ 3, T kσ 3T †

k = σ 3, (3)

respectively, where a diagonal matrix σ 3 takes ±1 in the
particle/hole space, i.e., [σ 3]jm = δjmσj with σj = +1 for j =
1, . . . ,N and σj = −1 for j = N + 1, . . . ,2N . This additional
structure comes from the fact that the magnon obeys the boson
statistics. Each column vector encoded in the paraunitary
matrix T k stands for the (periodic part of) Bloch wave function
for the respective volume-mode band.

Provided that a Hermite matrix H k is unitarily equivalent
to a positive-definite diagonal matrix, a paraunitary matrix T k
which diagonalizes H k can be obtained by a method based
on the Cholesky decomposition.33 In the method, we first
decompose H k into a product between an upper triangle matrix
K k and its Hermite conjugate, H k = K †

k K k. The unitarily
positive definiteness of H k always allows this decomposition
and also guarantees the existence of K−1

k . We next introduce
a unitary matrix U k which diagonalizes a Hermite matrix

W k ≡ K kσ 3 K †
k,

U†
kW kU k =

[
Ek

−E−k

]
.

Owing to Sylvester’s law of inertia, both Ek and E−k can be
made positive-definite N by N diagonal matrices. One can see
a posteriori that these two diagonal matrices are nothing but
those in the right-hand side of Eq. (2). Namely, the following
paraunitary matrix satisfies Eq. (3):33

T k = K−1
k U k

[
E1/2

k

E1/2
−k

]

(4)

and it diagonalizes the Hamiltonian as

H kT k = σ 3T k

[
Ek

−E−k

]
. (5)

The upper N by N diagonal matrix in the right-hand side, Ek,
is positive definite, so we will refer to them as (dispersions
for) “particle bands,” while the lower N by N diagonal matrix,
−E−k, is negative definite, whose diagonal elements are thus
referred to as (dispersion for) “hole bands.” Due to the trivial
redundancy, σ 1 H∗

kσ 1 = H−k with [σ 1]jm = δ|j−m|,N , either
one of these two N by N diagonal matrices gives the full
information of the dispersions for the volume-mode bands.

B. Chern integers in bosonic BdG systems

To introduce the Chern number for the j th volume-mode
band, let us first define a projection operator Pj in the 2N -
dimensional vector space, which filters out those bands other
than the j th volume-mode band at each momentum point k,

Pj ≡ T k$jσ 3T †
kσ 3. (6)

Here $j is a diagonal matrix taking +1 for the j th diagonal
component and zero otherwise. Equation (3) suggests that the
operator obeys

∑
j P j = 1 and Pj Pm = δjm Pj . In terms of

the projection operator, the Chern number for the j th band is
given as follows:34

Cj ≡ iϵµν

2π

∫

BZ
dkTr[(1 − P j )(∂kµ

Pj )(∂kν
Pj )], (7)

where the integral is over the first Brillouin zone (BZ) in the
two-dimensional k space.

Equation (7) is integer-valued and characterizes a certain
global phase structure associated with a Bloch wave function
over the BZ. To see this, we follow the same argument as in the
quantum Hall case,35,36 and introduce field strength (Berry’s
curvature) Bj and gauge connection (gauge field) (Aj,x,Aj,y)
for each volume-mode band,

Bj (k) ≡ ∂kx
Aj,y(k) − ∂ky

Aj,x(k), (8)

Aj,ν(k) ≡ iTr[$jσ 3T †
kσ 3(∂kν

T k)], (9)

with j = 1, . . . ,2N . The Chern number for a volume-mode
band reduces to an integral of the respective Berry’s curvature
over the BZ,

Cj = 1
2π

∫

BZ
d2kBj (k). (10)
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