Understanding Quantum-Wave Analogies with a Focus on Spin Waves
 Fusion Project in collaboration with Kōji Satō, Ryu Iguchi and Kei Yamamoto

Max Lein
Advanced Institute of Materials Research, Tohoku University
2017.06.09@Tea Time

Some Relevant Wave Equations

Classical Electromagnetism

$$
\begin{aligned}
\left(\begin{array}{c}
\varepsilon \\
0 \\
\mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathrm{E}}{\mathrm{H}} & =\binom{+\nabla \times \mathrm{H}}{-\nabla \times \mathrm{E}}-\binom{j}{0} \\
\binom{\nabla \cdot \varepsilon \mathrm{E}}{\nabla \cdot \mu \mathrm{H}} & =\binom{\rho}{0}
\end{aligned}
$$

Transverse Acoustic Waves

$$
\frac{\partial}{\partial t}\binom{\rho}{v}=\left(\begin{array}{cc}
-\rho_{0}^{-{ }^{0}}{ }^{0} \nabla \gamma v_{s}^{2} & \left.\begin{array}{c}
-\nabla_{0} \rho_{0} \\
0
\end{array}\right)\binom{\rho}{v}
\end{array}\right.
$$

Magnons aka Spin Waves

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\beta^{\beta}(k)}{\beta^{\dagger}(-k)}=\sigma_{3} H(k)\binom{\beta(k)}{\beta^{\dagger}(-k)}
$$

Characteristics

(1) First order in time
(2) Product structure of operators
(3) Waves take values in \mathbb{R}^{n}

Other examples Plasmons, magnetoplasmons, van Alfvén waves, etc.

Some Relevant Wave Equations

Classical Electromagnetism

$$
\begin{aligned}
\left(\begin{array}{c}
\varepsilon \\
0 \\
\hline
\end{array}\right) \frac{\partial}{\partial t}\left(\begin{array}{c}
\mathrm{E}
\end{array}\right) & =\binom{+\nabla \times \mathbf{H}}{-\nabla \times \mathbb{E}}-\binom{j}{0} \\
\binom{\nabla \cdot \varepsilon \mathrm{E}}{\nabla \cdot \mu \mathbf{H}} & =\binom{\rho}{0}
\end{aligned}
$$

Transverse Acoustic Waves

$$
\frac{\partial}{\partial t}\binom{p}{v}=\left(\begin{array}{cc}
-\rho_{0}^{-1}{ }^{0} \nabla r v_{s}^{2} & -\nabla_{0}^{\rho_{0}} \\
0
\end{array}\right)\binom{\rho}{v}
$$

Magnons aka Spin Waves

$$
\mathbf{i} \frac{\partial}{\partial t}\binom{\beta^{\dagger}(k)}{\beta^{\dagger}(-k)}=\sigma_{3} H(k)\binom{\beta(k)}{\beta^{\dagger}(-k)}
$$

Characteristics

(1) First order in time

Product structure of
operators
Waves take values in \mathbb{R}^{n}

Other examples

Plasmons, magnetoplasmons, van Alfvén waves, etc.

Some Relevant Wave Equations

Classical Electromagnetism

$$
\begin{aligned}
\left(\begin{array}{c}
e \\
0 \\
\hline
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathrm{E}}{\mathrm{H}} & =\binom{+\nabla \times \mathrm{H}}{-\nabla \times \mathrm{E}}-\binom{j}{0} \\
\binom{\nabla \cdot \varepsilon \mathrm{E}}{\nabla \cdot \mu \mathrm{H}} & =\binom{\rho}{0}
\end{aligned}
$$

Transverse Acoustic Waves

$$
\frac{\partial}{\partial t}\binom{\rho}{v}=\left(\begin{array}{cc}
-\rho_{0}^{-{ }^{-}}{ }^{0} \nabla \gamma v_{s}^{2} & -\nabla_{0} \rho_{0} \\
0
\end{array}\right)\binom{\rho}{v}
$$

Magnons aka Spin Waves

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\beta^{\dagger}(k)}{\beta^{\dagger}(-k)}=\sigma_{3} H(k)\binom{\beta(k)}{\beta^{\dagger}(-k)}
$$

Characteristics

(1) First order in time
(2) Product structure of operators
Waves take values in \mathbb{R}^{n}
Other examples
Plasmons, magnetoplasmons, van Alfvén waves, etc.

Some Relevant Wave Equations

Classical Electromagnetism

$$
\begin{aligned}
\left(\begin{array}{c}
\varepsilon \\
0 \\
\mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathrm{E}}{\mathrm{H}} & =\binom{+\nabla \times \mathrm{H}}{-\nabla \mathrm{E}}-\binom{j}{0} \\
\binom{\nabla \cdot \varepsilon \mathrm{E}}{\nabla \cdot \mu \mathrm{H}} & =\binom{\rho}{0}
\end{aligned}
$$

Transverse Acoustic Waves

$$
\frac{\partial}{\partial t}\binom{p}{v}=\left(\begin{array}{cc}
-\rho_{0}^{-{ }^{-1} \nabla \gamma v_{s}^{2}} & -\nabla_{0} \rho_{0} \\
0
\end{array}\right)\binom{p}{v}
$$

Magnons aka Spin Waves

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\beta(k)}{\beta^{\dagger}(-k)}=\sigma_{3} H(k)\binom{\beta(k)}{\beta^{\dagger}(-k)}
$$

Characteristics

(1) First order in time
(2) Product structure of
operators
(3) Waves take values in \mathbb{R}^{n}

Other examples
Plasmons, magnetoplasmons, van Alfvén waves, etc.

Some Relevant Wave Equations

Classical Electromagnetism

$$
\begin{aligned}
\left(\begin{array}{c}
\varepsilon \\
0 \\
\mu
\end{array}\right) \frac{\partial}{\partial t}\binom{\mathrm{E}}{\mathrm{H}} & =\binom{+\nabla \times \mathrm{H}}{-\nabla \times \mathrm{E}}-\binom{j}{0} \\
\binom{\nabla \cdot \varepsilon \mathrm{E}}{\nabla \cdot \mu \mathrm{H}} & =\binom{\rho}{0}
\end{aligned}
$$

Transverse Acoustic Waves

$$
\frac{\partial}{\partial t}\binom{\rho}{v}=\left(\begin{array}{cc}
-\rho_{0}^{-{ }^{0}}{ }^{0} \nabla \gamma v_{s}^{2} & \left.\begin{array}{c}
-\nabla_{0} \rho_{0} \\
0
\end{array}\right)\binom{\rho}{v}
\end{array}\right.
$$

Magnons aka Spin Waves

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{\beta^{\beta}(k)}{\beta^{\dagger}(-k)}=\sigma_{3} H(k)\binom{\beta(k)}{\beta^{\dagger}(-k)}
$$

Characteristics

(1) First order in time
(2) Product structure of operators
(3) Waves take values in \mathbb{R}^{n}

Other examples Plasmons, magnetoplasmons, van Alfvén waves, etc.

Overarching Interest Establish Quantum-Wave Analogies

Three Frameworks in Which to Study Physical Systems

- Seemingly clear and insurmountable difference between classical and quantum worlds
- Difference in physical theories
$\stackrel{?}{\Longrightarrow}$ Incompatibility of mathematical frameworks
- Hamiltonian and Lagrangian mechanics equivalent
- Schrödinger equation gives rise to
linear Hamiltonian equations
- Koopman formalism: Hamiltonian
systems can be expressed as linear
(!) Liouville equation
Case-by-case basis: Schrödinger
formalism can be established

Three Frameworks in Which to Study Physical Systems

- Seemingly clear and insurmountable difference between classical and quantum worlds
- Difference in physical theories \nRightarrow Incompatibility of mathematical frameworks \leadsto False

Hamiltonian and Lagrangian
mechanics equivalent

- Schrödinger equation gives rise to
linear Hamiltonian equations
- Koopman formalism: Hamiltonian
systems can be expressed as linear
(!) Liouville equation

Three Frameworks in Which to Study Physical Systems

- Seemingly clear and insurmountable difference between classical
- Schrödinger equation gives rise to
and quantum worlds
- Difference in physical theories
- Koopman formalism: Hamiltonian

Incompatibility of mathematical
systems can be expressed as linear
frameworks
(!) Liouville equation

- Hamiltonian and Lagrangian mechanics equivalent
(subject to mathematical conditions)

Three Frameworks in Which to Study Physical Systems

- Seemingly clear and insurmountable difference between classical and quantum worlds

Difference in physical theories Incompatibility of mathematical frameworks

- Schrödinger equation gives rise to linear Hamiltonian equations
(Marsden \& Ratiu, Corollary 2.5.2 \& Proposition 2.6.3)
- Koopman formalism: Hamiltonian
systems can be expressed as linear
(!) Liouville equation
- Hamiltonian and Lagrangian mechanics equivalent

Case-by-case basis: Schrödinger
formalism can be established

Three Frameworks in Which to Study Physical Systems


```
Seemingly clear and insurmount-
able difference between classical
and quantum worlds
Difference in physical theories
Incompatibility of mathematical
frameworks
Hamiltonian and Lagrangian
mechanics equivalent
```

Seemingly clear and insurmount-
able difference between classical
and quantum worlds
Difference in physical theories
Incompatibility of mathematical
frameworks
Hamiltonian and Lagrangian
mechanics equivalent

- Schrödinger equation gives rise to linear Hamiltonian equations
- Koopman formalism: Hamiltonian systems can be expressed as linear (!) Liouville equation

Three Frameworks in Which to Study Physical Systems

- Seemingly clear and insurmount-
able difference between classical and quantum worlds

Difference in physical theories
Incompatibility of mathematical
frameworks

- Schrödinger equation gives rise to linear Hamiltonian equations
- Koopman formalism: Hamiltonian systems can be expressed as linear
(!) Liouville equation
- Case-by-case basis: Schrödinger formalism can be established
(e. g. linear electromagnetism in media,
transverse acoustic waves)

Quantum-Wave Anallogy of Interest Topological Phenomena

The Quantum Hall Effect: the Prototypical System

physical observable \longleftrightarrow abstract mathematics

Quantum Hall Effect

$$
\sigma_{\text {bulk }}^{x y}(t) \approx \frac{e^{2}}{h} \mathrm{Ch}_{\text {bulk }}=\frac{e^{2}}{h} \mathrm{Ch}_{\text {edge }} \approx \sigma_{\text {edge }}^{x y}(t)
$$

transverse conductivity = Chern \#
$\mathrm{Ch}_{\text {bulk } / \text { edge }}=\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega_{\text {buik/edge }}(k) \in \mathbb{Z}$

- Edge modes in spectral gaps
- Signed \# edge channels $=\operatorname{Ch}\left(P_{\text {Fermi }}\right)$
- Edge modes unidirectional
- Robust against disorder

Two Nobel Prizes 1980 for experiment: von Klitzing 2016 for theory: Thouless
electrons can move along edge (conducting)

von Klitzing et al (1980)

A Novel Class of Materials: Topological Photonic Crystals
Predicted theoretically by Raghu \& Haldane (2005) ...

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
\bar{\varepsilon} & 0 \\
0 & \bar{\mu}
\end{array}\right) \neq\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right) \\
\text { symmetry breaking }
\end{array}\right\} \quad \Longrightarrow \quad \mathrm{Ch}=\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \neq 0 \in \mathbb{Z}
$$

A Novel Class of Materials: Topological Photonic Crystals Predicted theoretically by Raghu \& Haldane (2005) ...

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
\bar{\varepsilon} & 0 \\
0 & \bar{\mu}
\end{array}\right) \neq\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \mu
\end{array}\right) \\
\text { symmetry breaking }
\end{array}\right\}
$$

c

A Novel Class of Materials: Topological Photonic Crystals

... and realized experimentally by Joannopoulos et al (2009)

Joannopoulos, Soljačić et al (2009)

Joannopoulos, Soljačić et al (2009)

Topological Insulators for Other Waves: Experiments

Süsstrunk \& Huber (2015)

Acoustic

Xiao, Ma et al (2015)
Periodic Waveguide Arrays

Rechtsman, Szameit et al (2013)

Claim: Three Experiments are Different Manifestations of Same Underlying Physical Principles.

Phenomenological Similarities

- Periodic structure
- Breaking of time-reversal symmetries
- Boundary modes
- Robust under perturbations

What About Spin Waves?

Magnonic Crystals

$$
\mathrm{Ch}=\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \stackrel{?!}{\in} \mathbb{Z}
$$

Shindou, Matsumoto et al (2013)
\leadsto So far not observed experimentally.

The Problem of Defining Chern Numbers for Spin Systems

	QM \& EM	Spin Waves
Space	Hilbert space	Krein space
Inner Product	scalar product $\langle\phi, \psi\rangle$	indeterminate inner product $\langle\phi, \psi\rangle_{\sigma_{3}}=\left\langle\phi, \sigma_{3} \psi\right\rangle$
Dynamical Equation	$\mathrm{i} \partial_{t} \psi(t)=H \psi(t)$	$\mathrm{i} \partial_{t} \psi(t)=\sigma_{3} H \psi(t)$
Hamiltonian	selfadjoint	Krein-selfadjoint

The Problem of Defining Chern Numbers for Spin Systems

	QM \& EM	Spin Waves
Space	Hilbert space with $\langle\phi, \psi\rangle$	Krein space with $\langle\phi, \psi\rangle_{\sigma_{3}}=\left\langle\phi, \sigma_{3} \psi\right\rangle$
Berry "Connection"	$\mathcal{A}=\mathrm{i}\left\langle\varphi_{n}, \nabla_{k} \varphi_{n}\right\rangle$	$\mathcal{A}=\mathrm{i}\left\langle\varphi_{n}, \nabla_{k} \varphi_{n}\right\rangle_{\sigma_{3}}$
Berry "Curvature"	$\Omega=\partial_{k_{1}} \mathcal{A}_{2}-\partial_{k_{2}} \mathcal{A}_{1}$	$\Omega=\partial_{k_{1}} \mathcal{A}_{2}-\partial_{k_{2}} \mathcal{A}_{1}$
"Chern Number"	$\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \in \mathbb{Z}$	$\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \in \mathbb{Z}$?

The Problem of Defining Chern Numbers for Spin Systems

	QM \& EM	Spin Waves
Space	Hilbert space with $\langle\phi, \psi\rangle$	Krein space with $\langle\phi, \psi\rangle_{\sigma_{3}}=\left\langle\phi, \sigma_{3} \psi\right\rangle$
Berry "Connection"	$\mathcal{A}=\mathrm{i}\left\langle\varphi_{n}, \nabla_{k} \varphi_{n}\right\rangle$	$\mathcal{A}=\mathrm{i}\left\langle\varphi_{n}, \nabla_{k} \varphi_{n}\right\rangle_{\sigma_{3}}$
Berry "Curvature"	$\Omega=\partial_{k_{1}} \mathcal{A}_{2}-\partial_{k_{2}} \mathcal{A}_{1}$	$\Omega=\partial_{k_{1}} \mathcal{A}_{2}-\partial_{k_{2}} \mathcal{A}_{1}$
"Chern Number"	$\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \in \mathbb{Z}$	$\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \in \mathbb{Z}$?

Interlude The Schrödinger Formalism of Electromagnetism in Media

Quantum-Wave Analogies: Electromagnetism

Schrödinger Formalism of Electromagnetism

$$
\begin{gathered}
\Psi(t)=(\mathbf{E}(t), \mathbf{H}(t)) \in \mathcal{H}=\left\{\Psi \in L_{W}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right) \mid \Psi \text { transversal }\right\} \\
M=\underbrace{\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)^{-1}}_{=W^{-1}} \underbrace{\left(\begin{array}{cc}
0 & +(-\mathrm{i} \nabla)^{\times} \\
-(-\mathrm{i} \nabla)^{\times} & 0
\end{array}\right)}_{=D}=M^{*_{W}}
\end{gathered}
$$

Schrödinger Formalism for Classical Waves

States and Dynamics

(1) "Hamilton" operator $M=W D$ where

- $W=W^{*}, 0<c \mathbb{1} \leq W \leq C \mathbb{1}$ (positive, bounded, bounded inverse)
- $D=D^{*}$ (potentially unbounded)
(2) Complex (!) weighted Hilbert space $\mathcal{H} \subseteq L_{W}^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{n}\right)$ where

$$
\langle\Phi, \Psi\rangle_{W}=\langle\Phi, W \Psi\rangle=\int_{\mathbb{R}^{d}} \mathrm{~d} x \Phi(x) \cdot W(x) \Psi(x)
$$

(3) Dynamics given by Schrödinger equation

$$
\mathfrak{i} \partial_{t} \Psi(t)=M \Psi(t), \quad \Psi(0)=\Phi
$$

(4) Real-valuedness of physical solutions

Schrödinger Formalism for Classical Waves

States and Dynamics

(1) "Hamilton" operator $M=W D$ with product structure
(2) Complex (!) weighted Hilbert space $\mathcal{H} \subseteq L_{W}^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{n}\right)$
(3) Dynamics given by Schrödinger equation
(4) Real-valuedness of physical solutions

Properties

- $M^{*}{ }_{W}=M$
- $\Psi(t)=\mathrm{e}^{-\mathrm{i} t M} \Phi$
- $\|\Psi(t)\|_{W}^{2}=\|\Phi\|_{W}^{2}$ (conserved quantity, here field energy)
- $\operatorname{Re} \mathrm{e}^{-i t M}=\mathrm{e}^{-i t M} \operatorname{Re}$ where $\operatorname{Re}=\frac{1}{2}(\mathbb{1}+C)$ (existence of real solutions)

Doubling of Degrees of Freedom

One of the tenets of electromagnetism:
\mathbf{E} and \mathbf{H} are real vector fields.
\Longrightarrow Replacing $L_{W, \perp}^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{6}\right) \leadsto L_{W, \perp}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$ doubles the degrees of freedom!

On the other hand, if we want to apply the theory of selfadjoint operators we need to work with complex Hilbert spaces!

Restriction to Complex Fields with $\omega>0$

$$
\begin{aligned}
C M C & =-M \Longrightarrow C \mathrm{e}^{-\mathrm{it} M}=\mathrm{e}^{-\mathrm{it} M} C \text { implies } \\
& \mathrm{e}^{-i t M}\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right)=\mathrm{e}^{-i t M}\left(\operatorname{Re} \Psi_{ \pm}\right)=\operatorname{Re}\left(\mathrm{e}^{-i t M} \Psi_{ \pm}\right)
\end{aligned}
$$

where $\operatorname{Re}=\frac{1}{2}(\mathbb{1}+C)$ is the real part operator and

$$
\begin{aligned}
& \Psi_{+}=1_{\{\omega>0\}}(M)\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right)=P_{+}\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right) \\
& \Psi_{-}=1_{\{\omega<0\}}(M)\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right)=P_{-}\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right)=C \Psi_{+}
\end{aligned}
$$

are the positive and negative frequency contributions

Restriction to Complex Fields with $\omega>0$

$C M C=-M \Longrightarrow C \mathrm{e}^{-\mathrm{i} t M}=\mathrm{e}^{-\mathrm{i} t M} C$ implies

$$
\mathrm{e}^{-i t M}\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right)=\mathrm{e}^{-\mathrm{i} t M}\left(\operatorname{Re} \Psi_{ \pm}\right)=\operatorname{Re}\left(\mathrm{e}^{-i t M} \Psi_{ \pm}\right)
$$

$\operatorname{Re}=P_{+}^{-1} \Longrightarrow$ Study $M_{+}:=\left.M\right|_{\text {ran } P_{+}}$
Real transversal states

$$
(\mathbf{E}, \mathbf{H})=\operatorname{Re} \Psi_{+}
$$

$\left\{\begin{array}{c}\text { Complex states with } \omega>0 \\ \Psi_{+}=P_{+}(\mathbf{E}, \mathbf{H}) \\ i \partial_{t} \Psi_{+}=M_{+} \Psi_{+}\end{array}\right.$

Fundamental Constituents

Reduced Description

(1) "Hamilton" operator $M_{+}=\left.W^{-1} D\right|_{\text {ran } P_{+}}$
(2) Hilbert space $\mathcal{H}_{+}=\operatorname{ran} P_{+} \subset L_{W}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$
(3) Dynamics given by Schrödinger equation

$$
\mathbf{i} \partial_{t} \Psi_{+}(t)=M_{+} \Psi_{+}(t), \quad \Psi_{+}(0)=P_{+}(\mathbf{E}, \mathbf{H}) \in \operatorname{ran} P_{+}
$$

(4) Real-valuedness of physical solutions:

$$
(\mathbf{E}(t), \mathbf{H}(t))=\operatorname{Re} \Psi_{+}(t)
$$

Note
also applies to gyrotropic materials where $W \neq \bar{W}$

Fundamental Constituents

Reduced Description

(1) "Hamilton" operator $M_{+}=\left.W^{-1} D\right|_{\text {ran } P_{+}}$
(2) Hilbert space $\mathcal{H}_{+}=\operatorname{ran} P_{+} \subset L_{W}^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right)$
(3) Dynamics given by Schrödinger equation

$$
\mathrm{i} \partial_{t} \Psi_{+}(t)=M_{+} \Psi_{+}(t), \quad \Psi_{+}(0)=P_{+}(\mathbf{E}, \mathbf{H}) \in \operatorname{ran} P_{+}
$$

(4) Real-valuedness of physical solutions:

$$
(\mathbf{E}(t), \mathbf{H}(t))=\operatorname{Re} \Psi_{+}(t)
$$

Note
This also applies to gyrotropic materials where $W \neq \bar{W}$.

Back to
 Magnons

Fundamental Constituents

Reduced Description

(1) "Hamilton" operator $M_{+}=\left.\sigma_{3} H\right|_{\omega>0}$
(2) Hilbert space $\mathcal{H}_{+}=\operatorname{ran} P_{+}$
(3) Dynamics given by Schrödinger equation

$$
\mathfrak{i} \partial_{t} \Psi_{+}(t)=M_{+} \Psi_{+}(t), \quad \Psi_{+}(0)=P_{+} \mathbf{S} \in \operatorname{ran} P_{+}
$$

(4) Real-valuedness of physical solutions:

$$
\mathbf{S}(t)=\operatorname{Re} \Psi_{+}(t)
$$

Crucial Difference Between EM and Spin Waves

Classical Electromagnetism

$$
W=\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & \mu
\end{array}\right)>0
$$

$$
M=\sigma_{3} H \text { is not selfadjoint (hermitian) }
$$

Definition of $P_{+}=1_{(0, \infty)}\left(\sigma_{3} H\right)$ (restriction to $\left.\omega>0\right)$?

Fortuitous Coincidence: Transf. to Selfadj. Operator

In this specific case: $M=\sigma_{3} H$ can be diagonalized via a
Krein-unitary
Definition (Krein unitary)
$U: \mathcal{H} \longrightarrow \mathcal{H}$ invertible with

$$
\langle U \phi, U \psi\rangle_{\sigma_{3}}=\left\langle U \phi, \sigma_{3} U \psi\right\rangle=\langle\phi, \psi\rangle_{\sigma_{3}} .
$$

Equivalently: $U^{\sharp}=\sigma_{3} U^{*} \sigma_{3}=U^{-1}$

Fortuitous Coincidence: Transf. to Selfadj. Operator

In this specific case: $M=\sigma_{3} H$ can be diagonalized via a Krein-unitary

$$
U(k) M(k) U(k)^{-1}=\sigma_{3}\left(\begin{array}{cc}
h(k) & 0 \\
0 & h(-k)
\end{array}\right)=\left(\begin{array}{cc}
h(k) & 0 \\
0 & -h(-k)
\end{array}\right)
$$

where $h(k)>0$
Define projection onto $\omega>0$ states via

$$
P_{+}(k)=U(k)^{-1}\left(\begin{array}{ll}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) U(k) .
$$

Fortuitous Coincidence: Transf. to Selfadj. Operator

Define projection onto $\omega>0$ states via

$$
P_{+}(k)=U(k)^{-1}\left(\begin{array}{ll}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) U(k) .
$$

Claim
On ran $P_{+}(k)$ the weighted inner product is a scalar product.

Fortuitous Coincidence: Transf. to Selfadj. Operator

Claim

On ran $P_{+}(k)$ the weighted inner product is a scalar product.
Let $\phi(k), \psi(k) \in \operatorname{ran} P_{+}(k)$:

$$
\begin{aligned}
\langle\phi(k), \psi(k)\rangle_{\sigma_{3}} & =\left\langle P_{+}(k) \phi(k), \sigma_{3} \psi(k)\right\rangle \\
& =\left\langle U(k)^{-1}\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) U(k) \phi(k), \sigma_{3} \psi(k)\right\rangle \\
& =\left\langle U(k) \phi(k),\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) \sigma_{3} U(k) \psi(k)\right\rangle \\
& =\left\langle U(k) \phi(k),\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) U(k) \psi(k)\right\rangle \geq 0
\end{aligned}
$$

Strictness ($\neq 0$ for $\phi(k), \psi(k) \neq 0$) follows from $\mathbb{1}=$

Fortuitous Coincidence: Transf. to Selfadj. Operator

Claim

On ran $P_{+}(k)$ the weighted inner product is a scalar product.
Let $\phi(k), \psi(k) \in \operatorname{ran} P_{+}(k)$:

$$
\begin{aligned}
\langle\phi(k), \psi(k)\rangle_{\sigma_{3}} & =\left\langle U(k) \phi(k),\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) \sigma_{3} U(k) \psi(k)\right\rangle \\
& =\left\langle U(k) \phi(k),\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) U(k) \psi(k)\right\rangle \geq 0
\end{aligned}
$$

Strictness $(\neq 0$ for $\phi(k), \psi(k) \neq 0)$ follows from $\mathbb{1}=\left(\begin{array}{ll}\mathbb{1} & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{1}\end{array}\right)$

Fundamental Constituents

Reduced Description Consistent (even though $\sigma_{3} \ngtr 0$)
(1) "Hamilton" operator $M_{+}=\left.\sigma_{3} H\right|_{\omega>0}$
(2) Hilbert space $\mathcal{H}_{+}=\operatorname{ran} P_{+}$
(3) Dynamics given by Schrödinger equation

$$
\mathfrak{i} \partial_{t} \Psi_{+}(t)=M_{+} \Psi_{+}(t), \quad \Psi_{+}(0)=P_{+} \mathbf{S} \in \operatorname{ran} P_{+}
$$

(4) Real-valuedness of physical solutions:

$$
\mathbf{S}(t)=\operatorname{Re} \Psi_{+}(t)
$$

The Problem of Defining Chern Numbers for Spin Systems

	QM \& EM	Spin Waves
Space	Hilbert space with $\langle\phi, \psi\rangle$	Krein space with $\langle\phi, \psi\rangle_{\sigma_{3}}=\left\langle\phi, \sigma_{3} \psi\right\rangle$
Berry "Connection"	$\mathcal{A}=\mathbf{i}\left\langle\varphi_{n}, \nabla_{k} \varphi_{n}\right\rangle$	$\mathcal{A}=\mathbf{i}\left\langle\varphi_{n}, \nabla_{k} \varphi_{n}\right\rangle_{\sigma_{3}}$
Berry "Curvature"	$\Omega=\partial_{k_{1}} \mathcal{A}_{2}-\partial_{k_{2}} \mathcal{A}_{1}$	$\Omega=\partial_{k_{1}} \mathcal{A}_{2}-\partial_{k_{2}} \mathcal{A}_{1}$
"Chern Number"	$\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \in \mathbb{Z}$	$\frac{1}{2 \pi} \int_{\mathcal{B}} \mathrm{d} k \Omega(k) \in \mathbb{Z}$ Yes!

Thank you very much

