Rigorous Analogies Between Quantum Systems and Classical Waves

Using The Quantum Hall Effect for Light as a Lens

Max Lein Advanced Institute of Materials Research, Tohoku University 2017.01.11@Tokyo Tech

《口》 《聞》 《臣》 《臣》 三臣

200

Idea Realizing Quantum Effects with Classical Waves

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

Today Focus on Quantum Hall Effect for Light

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quantum-Wave Analogies: Electromagnetism

The Quantum Hall Effect: the Prototypical System

$B \neq 0 \implies$ time-reversal symmetry broken

 $\sigma^{x\,y}_{\rm bulk}(t)\approx \frac{e^2}{h}\,{\rm Ch}_{\rm bulk}=\frac{e^2}{h}\,{\rm Ch}_{\rm edge}\approx \sigma^{x\,y}_{\rm edge}(t)$

transverse conductivity = Chern #

$$\mathsf{Ch}_{\mathsf{bulk}/\mathsf{edge}} = \frac{1}{2\pi} \int_{\mathcal{B}} \mathrm{d}k \, \Omega_{\mathsf{bulk}/\mathsf{edge}}(k) \in \mathbb{Z}$$

- Edge modes in spectral gaps
- Signed # edge channels = $Ch(P_{Fermi})$
- Edge modes unidirectional
- Robust against disorder

Two Nobel Prizes

1985 for experiment: von Klitzing 2016 for theory: Thouless

The Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ... b $\begin{pmatrix} \overline{\varepsilon} & 0 \\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix}$ symmetry breaking С Ε, Negative 0 Positive

●●● 画 → 画 ● → 画 ● → 画 ● → ● ●

States & Dynamics

Observables

Input from Physics

The Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009) а Scatterer of Antenna B /= 0.65a variable length / CES wavequide Antenna A -40 Metal wall l = 1.15s-40 Frequency (GHz)

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Haldane's Argument: "Derivation by Analogy"

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{(dynamical equation)} \\ \begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \text{(constraint equation)} \end{pmatrix} \xrightarrow{\lambda \ll 1} \begin{cases} \dot{r} = +\nabla_k \varpi + \lambda \, \dot{k} \times \Omega \\ \dot{k} = -\nabla_r \varpi \\ \text{(ray optics equations)} \end{cases}$$

Setting

- ϖ dispersion relation, Ω Berry curvature
- Perturbation parameter $\lambda \ll 1$
- Slowly varying *electric permittivity* $\varepsilon = \varepsilon(\lambda)$ and *magnetic permeability* $\mu = \mu(\lambda)$ are 3×3 -matrix-valued
- ε and μ : periodic to "leading order"

Observables

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Goal of Today's Talk

The *Quantum Hall Effect for Light* as a Lens for Other Quantum-Wave Analogies

How and to what extent can Haldane's argument be made rigorous?

- Find out how semiclassical techniques can be applied to Maxwell's equations.
- 2 Identify similarities and differences between quantum and classical systems.

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Key: Physics Is Not Just a Bunch of Equations ...

... but also how to interpret them, and provides additional information on typical circumstances.

Fundamental Constituents of Physical Theories

- States
- ② Dynamical equation
- ③ Observables

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Schrödinger Formalism for EM: States and Dynamics

2 Observables in Electromagnetism

Input from Physics

1 The Schrödinger Formalism for EM: States and Dynamics

2 Observables in Electromagnetism

3 Input from Physics

・ロト・西ト・ヨト・ヨト・日下

Recap: States and Dynamics in Quantum Mechanics

States and Dynamics

A selfadjoint Hamilton operator, e. g.

$$\begin{split} H &= \frac{1}{2m} \big(-\mathrm{i} \nabla - A \big)^2 + V \\ H &= m \, \beta + \big(-\mathrm{i} \nabla - A \big) \cdot \alpha + V \end{split}$$

- 2 A Hilbert space \mathcal{H} and states are represented by its elements, e. g. $L^2(\mathbb{R}^d, \mathbb{C}^n)$ with $\langle \phi, \psi \rangle = \int_{\mathbb{R}^d} \mathrm{d}x \, \phi(x) \cdot \psi(x)$.
- Optimize a straight of the sector of the

$$\mathrm{i}\,\partial_t\psi(t)=H\psi(t),\qquad\qquad\psi(0)=\phi$$

・ロト・日本・モート ヨー つくぐ

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ク Q (~

Recap: States and Dynamics in Quantum Mechanics

States and Dynamics

- A selfadjoint Hamilton operator
- ② A Hilbert space \mathcal{H} and states are represented by its elements.
- The Schrödinger equation

Properties

• $H = H^*$

•
$$\psi(t) = \mathbf{e}^{-\mathbf{i}tH}\phi$$

• $\left\|\psi(t)\right\|^2 = \|\phi\|^2$ (conservation of propability)

Maxwell's Equations for Non-Gyrotropic Dielectrics

Johnson & Joannopoulos (2004)

Assumption (Material weights)

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix}^{-1}$$

$$W = \overline{W} \text{ real}$$
(non-gyrotropic)

2
$$W^* = W$$
 (lossless)

3 $0 < c \mathbb{1} \le W \le C \mathbb{1}$ (excludes metamaterials)

Maxwell's Equations for Non-Gyrotropic Dielectrics

Johnson & Joannopoulos (2004)

Maxwell equations Dynamical equations

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$$

Absence of sources

$$\begin{pmatrix} \mathsf{div} & 0 \\ 0 & \mathsf{div} \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

Schrödinger Formalism of Electromagnetism

$$\begin{cases} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \xrightarrow{\partial} \left(\mathbf{E} \\ \mathbf{H} \right) = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{dynamical Maxwell equations} \end{cases} \iff \begin{cases} \mathbf{i} \ \partial_t \Psi = M \Psi \\ \text{"Schrödinger-type equation"} \end{cases} \\ \Psi(t) = \left(\mathbf{E}(t), \mathbf{H}(t) \right) \in \mathcal{H} = \left\{ \Psi \in L^2_W(\mathbb{R}^3, \mathbb{C}^6) \mid \Psi \text{ transversal} \right\} \\ M = \underbrace{\left(\varepsilon & 0 \\ 0 & \mu \right)^{-1}}_{=W} \underbrace{\left(\begin{array}{c} 0 \\ -(-\mathbf{i}\nabla)^{\times} \\ =D \end{array} \right)}_{=D} = M^* w \\ =D \end{cases} \\ \text{Maxwell equations} \\ \Leftrightarrow \end{cases} \qquad \Rightarrow \qquad \begin{array}{c} \text{Adaptation of techniques} \\ \text{from quantum mechanics} \end{cases}$$

Maxwell operator $M = M^{*_W}$

to electromagnetism

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

・ロト (雪) (日) (日) (日) (日)

Schrödinger Formalism for Classical Waves

States and Dynamics

(1) *"Hamilton" operator* M = W D where

- $W = W^*$, $0 < c \, \mathbb{1} \le W \le C \, \mathbb{1}$ (positive, bounded, bounded inverse)
- $D = D^*$ (potentially unbounded)

② Complex (!) weighted Hilbert space $\mathcal{H} \subseteq L^2_W(\mathbb{R}^d, \mathbb{C}^n)$ where

$$\left\langle \Phi,\Psi\right\rangle_W=\left\langle \Phi,W^{-1}\Psi\right\rangle=\int_{\mathbb{R}^d}\mathrm{d}x\,\Phi(x)\cdot W^{-1}\Psi(x)$$

Oynamics given by Schrödinger equation

$$\mathrm{i}\,\partial_t\Psi(t)=M\Psi(t),\qquad\qquad\Psi(0)=\Phi$$

④ Real-valuedness of physical solutions

Schrödinger Formalism for Classical Waves

States and Dynamics

- **(1)** *"Hamilton"* operator M = W D with **product structure**
- **2** Complex (!) weighted *Hilbert space* $\mathcal{H} \subseteq L^2_W(\mathbb{R}^d, \mathbb{C}^n)$
- Oynamics given by Schrödinger equation
- ④ Real-valuedness of physical solutions

Properties

- $\bullet \ M^{*_W} = M$
- $\bullet \ \Psi(t) = {\rm e}^{-{\rm i} t\,M} \Phi$
- $\left\|\Psi(t)\right\|_{W}^{2} = \left\|\Phi\right\|_{W}^{2}$ (conserved quantity, here field energy)
- Re $e^{-itM} = e^{-itM}$ Re where Re $= \frac{1}{2}(\mathbb{1} + C)$ (existence of real solutions)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Doubling of Degrees of Freedom

One of the tenets of electromagnetism:

E and **H** are **real** vector fields.

$\implies \operatorname{Replacing} L^2_{W,\perp}(\mathbb{R}^3, \mathbb{R}^6) \rightsquigarrow L^2_{W,\perp}(\mathbb{R}^3, \mathbb{C}^6)$ doubles the degrees of freedom!

On the other hand, if we want to apply the **theory of selfadjoint** operators we need to work with **complex** Hilbert spaces!

Restriction to Complex Fields with $\omega > 0$

$$\begin{split} C \, M \, C &= -M \implies C \, \mathrm{e}^{-\mathrm{i}t \, M} = \mathrm{e}^{-\mathrm{i}t \, M} \, C \text{ implies} \\ & \mathrm{e}^{-\mathrm{i}t \, M} \left(\mathbf{E}_0, \mathbf{H}_0 \right) = \mathrm{e}^{-\mathrm{i}t \, M} \left(\mathrm{Re} \, \Psi_{\pm} \right) = \mathrm{Re} \left(\mathrm{e}^{-\mathrm{i}t \, M} \Psi_{\pm} \right) \\ \text{where } \mathrm{Re} \, = \, \frac{1}{2} \big(\mathbbm{1} + C \big) \text{ is the real part operator and} \\ & \Psi_+ = \, \mathbbm{1}_{\{\omega > 0\}} (M) \left(\mathbf{E}_0, \mathbf{H}_0 \right) = P_+ \big(\mathbf{E}_0, \mathbf{H}_0 \big) \\ & \Psi_- = \, \mathbbm{1}_{\{\omega < 0\}} (M) \left(\mathbf{E}_0, \mathbf{H}_0 \right) = P_- \big(\mathbf{E}_0, \mathbf{H}_0 \big) = C \Psi_+ \end{split}$$

are the positive and negative frequency contributions

Restriction to Complex Fields with $\omega > 0$

$$C M C = -M \implies C e^{-itM} = e^{-itM} C$$
 implies

$$\mathbf{e}^{-\mathbf{i}tM}\left(\mathbf{E}_{0},\mathbf{H}_{0}\right)=\mathbf{e}^{-\mathbf{i}tM}\left(\operatorname{Re}\Psi_{\pm}\right)=\operatorname{Re}\left(\mathbf{e}^{-\mathbf{i}tM}\Psi_{\pm}\right)$$

$$\operatorname{Re} = P_+^{-1} \implies \operatorname{Study} M_+ := M|_{\operatorname{ran} P_+}$$

$$\begin{array}{c} \textbf{Real transversal states} \\ (\textbf{E},\textbf{H}) = \textbf{Re}\,\Psi_+ \\ \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \, \frac{\partial}{\partial t} \begin{pmatrix} \textbf{E} \\ \textbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla\times\textbf{H} \\ +\nabla\times\textbf{E} \end{pmatrix} \\ \end{array} \right\} \hspace{0.1cm} \longleftrightarrow \hspace{0.1cm} \begin{cases} \textbf{Complex states with } \omega > 0 \\ \Psi_+ = P_+(\textbf{E},\textbf{H}) \\ \textbf{i}\,\partial_t\Psi_+ = M_+\Psi_+ \end{cases}$$

▲ロト ▲ 園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

・ロト (雪) (日) (日) (日) (日)

Fundamental Constituents

Reduced Description

- **(1)** *"Hamilton" operator* $M_+ = WD|_{\operatorname{ran} P_+}$
- Hilbert space $\mathcal{H}_+ = \operatorname{ran} P_+ \subset L^2_W(\mathbb{R}^3, \mathbb{C}^6)$ 2
- Dynamics given by Schrödinger equation 3

 $\mathbf{i}\,\partial_{\mathbf{f}}\Psi_{+}(t) = M_{+}\Psi_{+}(t),$ $\Psi_{+}(0) = P_{+}(\mathbf{E}, \mathbf{H}) \in \operatorname{ran} P_{+}$

④ Real-valuedness of physical solutions:

$$\big(\mathbf{E}(t),\mathbf{H}(t)\big)=\mathrm{Re}\,\Psi_+(t)$$

Fundamental Constituents

Reduced Description

- **(1)** "Hamilton" operator $M_+ = WD\Big|_{\operatorname{ran} P_+}$
- $(2) \quad \textit{Hilbert space } \mathcal{H}_+ = \mathrm{ran} \, P_+ \subset L^2_W(\mathbb{R}^3, \mathbb{C}^6)$
- Oynamics given by Schrödinger equation

$$\mathrm{i}\,\partial_t\Psi_+(t)=M_+\Psi_+(t),\qquad\qquad\Psi_+(0)=P_+(\mathbf{E},\mathbf{H})\in\mathrm{ran}\,P_+$$

Real-valuedness of physical solutions:

$$\big(\mathbf{E}(t),\mathbf{H}(t)\big)=\mathrm{Re}\,\Psi_+(t)$$

Note

This also applies to **gyrotropic** materials where $W \neq \overline{W}$.

・ロト・西ト・ヨト・ヨー シック

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Which Symmetries Are Broken in QHE for Light?

Non-Gyrotropic Materials

$$W = \overline{W}$$

1 Relevant Symmetry of Complexified Equation $T: (\psi^E, \psi^H) \mapsto (\overline{\psi^E}, -\overline{\psi^H})$ with $TM_+T = +M_+$ (+TR) reverses arrow of time: $T e^{-itM_+} = e^{-i(-t)M_+}T$

 \Longrightarrow Needs to be broken to have unidirectional edge modes!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Which Symmetries Are Broken in QHE for Light?

Gyrotropic Materials

 $W \neq \overline{W}$

1 Relevant Symmetry of Complexified Equation $T: (\psi^E, \psi^H) \mapsto (\overline{\psi^E}, -\overline{\psi^H})$ with $TM_+T = +M_+$ (+TR) reverses arrow of time: $Te^{-itM_+} = e^{-i(-t)M_+}T$

 \implies Needs to be broken to have unidirectional edge modes!

Ray Optics in Topological Photonic Crystals

Vague physical question \rightsquigarrow Concrete mathematical problem

- Reformulate Maxwell's equations in Schrödinger form
- Adapt your semiclassical technique of choice, e. g.
 - wave packet methods à la Niu (implemented by Onoda, Murakami & Nagaosa for photonic crystals (2006)) or
 - by establishing an Egorov-type theorem (cf. e. g. Panati, Spohn & Teufel (2002) or Teufel & Stiepan (2011))
- \implies Theorem relating Maxwell's equations to ray optics equations
- But what is the **physical content of** the resulting **Theorem**?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ray Optics in Topological Photonic Crystals

Vague physical question v> Concrete mathematical problem

- Reformulate Maxwell's equations in Schrödinger form
- Adapt your **semiclassical technique** of choice, e. g.
 - wave packet methods à la Niu (implemented by Onoda, Murakami & Nagaosa for photonic crystals (2006)) or
 - by establishing an Egorov-type theorem (cf. e. g. Panati, Spohn & Teufel (2002) or Teufel & Stiepan (2011))
- \implies Theorem relating Maxwell's equations to ray optics equations

But what is the **physical content of** the resulting **Theorem**?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ray Optics in Topological Photonic Crystals

Vague physical question v> Concrete mathematical problem

- Reformulate Maxwell's equations in Schrödinger form
- Adapt your **semiclassical technique** of choice, e. g.
 - wave packet methods à la Niu (implemented by Onoda, Murakami & Nagaosa for photonic crystals (2006)) or
 - by establishing an Egorov-type theorem (cf. e. g. Panati, Spohn & Teufel (2002) or Teufel & Stiepan (2011))
- \Longrightarrow Theorem relating Maxwell's equations to ray optics equations

But what is the **physical content of** the resulting **Theorem**?

The Schrödinger Formalism for EM: States and Dynamics

2 Observables in Electromagnetism

Semiclassics via an Egorov Theorem

- Relies on pseudodifferential techniques
- "Quantization" Op : f → F associates operator F on a Hilbert space to a suitable function f on phase space

Theorem (Prototypical form)

$$\left\langle \psi(t)\,,\, \mathsf{Op}(f)\,\psi(t)\right\rangle = \left\langle \psi(0)\,,\, \mathsf{Op}\big(f\circ\Phi_t\big)\,\psi(0)\right\rangle + \mathcal{O}(\varepsilon^2)$$

for bounded times where

- ε is the semiclassical parameter,
- $\psi(t)$ the solution to the Schrödinger equation and
- Φ_t the flow associated to the semiclassical equations of motion.

Semiclassics via an Egorov Theorem

Theorem (Prototypical form)

$$\left\langle \psi(t)\,,\, \mathsf{Op}(f)\,\psi(t)\right\rangle = \left\langle \psi(0)\,,\, \mathsf{Op}(f\circ\Phi_t)\,\psi(0)\right\rangle + \mathcal{O}(\varepsilon^2)$$

Upshot

- Quantifies difference of two expectation values.
- Needs a quantum observable.

Observables

Observables in QM and EM

Quantum Mechanics

- Selfadjoint operators on H
- Wave $\psi(t, x)$ **not** an observable
- Typical examples: position $Q = \hat{x}$, momentum $P = -i\varepsilon \nabla$

Electromagnetism

- Functionals of the fields
- $E_j(t,x)$ and $H_j(t,x)$ are observable!
- Not all of them can be written as "quantum expectation values"

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

 \implies Egorov Theorem gives ray optics limit only for a certain class of **quadratic** electromagnetic observables!

Quadratic EM Observables Covered by Egorov Theorem

$$\begin{split} \mathcal{F}(\mathbf{E},\mathbf{H}) &= \mathrm{Re}\,\left\langle P_+(\mathbf{E},\mathbf{H})\,,\,\mathrm{Op}(f)\,\,P_+(\mathbf{E},\mathbf{H})\right\rangle_W \\ &= \mathrm{Re}\,\,\int_{\mathbb{R}^3} \mathrm{d}x\,\big(P_+(\mathbf{E},\mathbf{H})\big)(x)\cdot\Big(W^{-1}\,\mathrm{Op}(f)\,P_+(\mathbf{E},\mathbf{H})\Big)(x) \end{split}$$

- Covers local averages of *field energy*, the *Poynting vector* and components of the *Maxwell stress tensor*.
- Quadratic functionals which evaluate fields at a point are not covered!

Ray Optics in Adiabatically Perturbed Photonic Crystals

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{(dynamical equation)} \\ \begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \text{(constraint equation)} \end{pmatrix} \xrightarrow{\lambda \ll 1} \begin{cases} \dot{r} = +\nabla_k \varpi + \mathcal{O}(\lambda) \\ \dot{k} = -\nabla_r \varpi + \mathcal{O}(\lambda) \\ \text{(ray optics equations)} \end{cases}$$

Setting

- Perturbation parameter $\lambda \ll 1$
- Slowly varying *electric permittivity* $\varepsilon = \varepsilon(\lambda)$ and *magnetic permeability* $\mu = \mu(\lambda)$ are 3×3 -matrix-valued
- ε and μ : periodic to "leading order"

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Ray Optics in Adiabatically Perturbed Photonic Crystals

Theorem (De Nittis & L. (2016))

$$\mathcal{F}\big(\mathbf{E}(t),\mathbf{H}(t)\big) = \operatorname{Re}\, \Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\operatorname{Op}\big(f_{\mathsf{ro}}\circ\Phi_t\big)\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W + \mathcal{O}(\lambda^2)$$

- $\lambda \ll 1$ perturbation parameter
- $(\mathbf{E}(t), \mathbf{H}(t))$ solution to Maxwell's equations
- Φ_t ray optics flow
- $f \rightsquigarrow f_{\rm ro}$ modified ray optics observable

End of Story? Not yet!

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

1) The Schrödinger Formalism for EM: States and Dynamics

2 Observables in Electromagnetism

Input from Physics

<ロト < 母 ト < 主 ト < 主 ト うへで

Semiclassical Argument for Quantum Hall Effect

Apply in-plane constant electric field to drive current

$$H = \left(-\mathsf{i} \nabla - A(\varepsilon x)\right)^2 + V_{\mathsf{per}}(x) - \mathbf{E} \cdot \varepsilon x$$

Egorov theorem yields

$$\begin{split} \mathrm{i}\,\partial_t\Psi = H\Psi & \longrightarrow & \begin{cases} \dot{r} = \,+\,\nabla_kH_{\mathrm{sc}} + \varepsilon\,\dot{k}\times\Omega \\ \dot{k} = \mathrm{E} + \mathcal{O}(\varepsilon) \end{cases} \end{split}$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Semiclassical Argument for Quantum Hall Effect

Apply in-plane constant electric field to drive current

$$H = \left(-\mathsf{i} \nabla - A(\varepsilon x)\right)^2 + V_{\mathsf{per}}(x) - \mathbf{E} \cdot \varepsilon x$$

Egorov theorem yields

$$\begin{split} \mathrm{i}\,\partial_t\Psi = H\Psi & \longrightarrow & \begin{cases} \dot{r} = \,+\,\nabla_k H_{\mathrm{sc}} + \varepsilon\,\mathbf{E}\times\Omega + \mathcal{O}(\varepsilon^2) \\ \dot{k} = \mathbf{E} + \mathcal{O}(\varepsilon) \end{cases} \end{split}$$

Semiclassical Argument for Quantum Hall Effect

• All bands up to Fermi energy completely filled.

- H_{sc} is k-periodic
- Ch vector composed of Chern numbers
- Conductivity coefficients = Chern numbers

$$\begin{split} \langle J \rangle &= \left\langle \frac{\mathrm{i}}{\varepsilon} [H, \varepsilon x] \right\rangle \\ &= \frac{1}{\varepsilon} \int_{\mathcal{B}} \mathrm{d}k \ \dot{r}(t) + \mathcal{O}(\varepsilon) = \frac{1}{\varepsilon} \int_{\mathcal{B}} \mathrm{d}k \left(\nabla_k H_{\mathrm{sc}} + \varepsilon \ \mathbf{E} \times \Omega \right) + \mathcal{O}(\varepsilon) \end{split}$$

Semiclassical Argument for Quantum Hall Effect

- All bands up to Fermi energy completely filled.
- $H_{\rm sc}$ is k-periodic
- Ch vector composed of Chern numbers
- Conductivity coefficients = Chern numbers

$$\begin{split} \langle J \rangle &= \left< \frac{\mathrm{i}}{\varepsilon} [H, \varepsilon x] \right> \\ &= \frac{1}{\varepsilon} \int_{\mathcal{B}} \mathrm{d}k \ \dot{r}(t) + \mathcal{O}(\varepsilon) = \frac{1}{\varepsilon} \int_{\mathcal{B}} \mathrm{d}k \left(\nabla_k H_{\mathrm{sc}} + \varepsilon \, \mathbf{E} \times \Omega \right) + \mathcal{O}(\varepsilon) \end{split}$$

Semiclassical Argument for Quantum Hall Effect

- All bands up to Fermi energy completely filled.
- $H_{\rm sc}$ is k-periodic
- Ch vector composed of Chern numbers
- Conductivity coefficients = Chern numbers

$$\begin{split} \langle J \rangle &= \left< \frac{\mathrm{i}}{\varepsilon} [H, \varepsilon x] \right> \\ &= \frac{1}{\varepsilon} \int_{\mathcal{B}} \mathrm{d}k \ \dot{r}(t) + \mathcal{O}(\varepsilon) = \mathbf{E} \times \int_{\mathcal{B}} \mathrm{d}k \ \Omega + \mathcal{O}(\varepsilon) \end{split}$$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Semiclassical Argument for Quantum Hall Effect

- All bands up to Fermi energy completely filled.
- $H_{\rm sc}$ is k-periodic
- Ch vector composed of Chern numbers
- Conductivity coefficients = Chern numbers

$$\begin{split} \langle J \rangle &= \left< \frac{\mathrm{i}}{\varepsilon} [H, \varepsilon x] \right> \\ &= \frac{1}{\varepsilon} \int_{\mathcal{B}} \mathrm{d}k \ \dot{r}(t) + \mathcal{O}(\varepsilon) = \mathbf{E} \times \mathbf{Ch} + \mathcal{O}(\varepsilon) \end{split}$$

$$\begin{split} \mathcal{P}_{\mathsf{avg}}\big(\mathbf{E}(t),\mathbf{H}(t)\big) &= \mathsf{Re}\,\int_{\mathbb{R}^3} \mathsf{d}x\,\chi_{\mathsf{avg}}(x)\,\left(\Psi^E_+(t,x)\times\overline{\Psi^H_+}(t,x)\right) = \\ &= 2\,\mathsf{Re}\,\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\chi_{\mathsf{avg}}\,\frac{\mathrm{i}}{\lambda}[M_+,\lambda x]\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W \\ &= 2\,\mathsf{Re}\,\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\mathsf{Op}\big(f_{\mathsf{ro}}\circ\Phi_t\big)\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W + \mathcal{O}(\lambda^2) \end{split}$$

Good News

- Local average of Poynting vector is a quadratic observable
- $\mathcal{P}_{\rm avg}$ can be expressed as "quantum expectation value" of the current operator
- Invoke Egorov theorm of De Nittis & L.

$$\begin{split} \mathcal{P}_{\mathsf{avg}}\big(\mathbf{E}(t),\mathbf{H}(t)\big) &= \mathsf{Re}\,\int_{\mathbb{R}^3} \mathsf{d}x\,\chi_{\mathsf{avg}}(x)\,\left(\Psi^E_+(t,x)\times\overline{\Psi^H_+}(t,x)\right) = \\ &= 2\,\mathsf{Re}\,\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\chi_{\mathsf{avg}}\,\frac{\mathrm{i}}{\lambda}[M_+,\lambda x]\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W \\ &= 2\,\mathsf{Re}\,\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\mathsf{Op}\big(f_{\mathsf{ro}}\circ\Phi_t\big)\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W + \mathcal{O}(\lambda^2) \end{split}$$

Good News

- Local average of Poynting vector is a quadratic observable
- $\mathcal{P}_{\rm avg}$ can be expressed as "quantum expectation value" of the current operator
- Invoke Egorov theorm of De Nittis & L.

$$\begin{split} \mathcal{P}_{\mathsf{avg}}\big(\mathbf{E}(t),\mathbf{H}(t)\big) &= \mathsf{Re}\,\int_{\mathbb{R}^3} \mathsf{d}x\,\chi_{\mathsf{avg}}(x)\,\left(\Psi^E_+(t,x)\times\overline{\Psi^H_+}(t,x)\right) = \\ &= 2\,\mathsf{Re}\,\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\chi_{\mathsf{avg}}\,\frac{\mathrm{i}}{\lambda}[M_+,\lambda x]\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W \\ &= 2\,\mathsf{Re}\,\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\mathsf{Op}\big(f_{\mathsf{ro}}\circ\Phi_t\big)\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W + \mathcal{O}(\lambda^2) \end{split}$$

Good News

- Local average of Poynting vector is a quadratic observable
- $\mathcal{P}_{\rm avg}$ can be expressed as "quantum expectation value" of the current operator
- Invoke Egorov theorm of De Nittis & L.

$$\mathcal{P}_{\mathsf{avg}}\big(\mathbf{E}(t),\mathbf{H}(t)\big) = 2\operatorname{\mathsf{Re}}\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\operatorname{\mathsf{Op}}\big(f_{\mathsf{ro}}\circ\Phi_t\big)\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W + \mathcal{O}(\lambda^2)$$

Bad News

- Assumption of completely filled bands in photonics unphysical (there is *no Fermi projection*)
- Linear response theory for QM and EM completely different:
 "M₊ + E · εr" makes no physical sense (use either antennas or perturbations of ε and μ)
- Ray optics equations for f_{ro} = f_{ro,0} + λ f_{ro,1} do not include Berry curvature (mathematics also different)
 → instead Berry geometric terms contained in f_{ro,1}

Attempting to Apply these QM Arguments to EM

$$\mathcal{P}_{\mathsf{avg}}\big(\mathbf{E}(t),\mathbf{H}(t)\big) = 2\operatorname{Re}\Big\langle P_+(\mathbf{E},\mathbf{H})\,,\,\operatorname{Op}\big(f_{\mathsf{ro}}\circ\Phi_t\big)\,P_+(\mathbf{E},\mathbf{H})\Big\rangle_W + \mathcal{O}(\lambda^2)$$

Bad News

 \Rightarrow "Semiclassical" arguments do not explain quantization of conductivity!

Observables

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Conclusion

Quantum Hall Effect for Light

- The "semiclassical" ray optics limit does not furnish an explanation.
- Haldane's heuristic arguments never went as far as claiming that ray optics equations make quantitative predictions.
- A first-principles explanation is still an open problem. (Work in progress.)

Conclusion

Broader Implications

- Arguments generalize to many other classical wave equations (e. g. transverse acoustic waves, spin waves, etc.).
- Quantum-wave analogies are more subtle than just bringing the dynamical equation in Schrödinger form.
- Careful physical interpretation of mathematical results necessary.
- Schrödinger formalism allows us to adapt and apply techniques initially developed for quantum mechanics.
- Plenty of open mathematical and physical problems (e. g. scattering theory, topological classification, bulk-boundary correspondences, Krein-Schrödinger formalism, ...)

Conclusion

Broader Implications

- Arguments generalize to many other classical wave equations (e. g. transverse acoustic waves, spin waves, etc.).
- Quantum-wave analogies are more subtle than just bringing the dynamical equation in Schrödinger form.
- Careful physical interpretation of mathematical results necessary.
- Schrödinger formalism allows us to adapt and apply techniques initially developed for quantum mechanics.
- Plenty of open mathematical and physical problems

 (e. g. scattering theory, topological classification, bulk-boundary correspondences, Krein-Schrödinger formalism, ...)

Thank you very much & Happy (70+ ε)th Birthday, Herbert!

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ