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Goal of Today’s Talk

(2) 5(0)- (52

(dynamical equation) {7’" =4V, Q4+ 0(N)

©EYE-O L

——
(ray optics equations)
(constraint equation)

Setting
o Perturbation parameter A <« 1
o Slowly varying electric permittivity e = £(\) and magnetic
permeability . = p(\) are 3 x 3-matrix-valued
o ¢ and p: periodic to “leading order”
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Goal of Today’s Talk

e 0\ 0 (E\ [~V xH
0 pn) ot \H) — \+V xE

(dynamical equation)

V- e 0 E\
V-)\0o u) \H)
(constraint equation)

Goal

0
0

)

)

Akl .
255 Qk=-v,0+00)

(ray optics equations)

{+ = 1V, Q+ 0

Given a particular initial state (E, H ), find dispersion relation

Q(r, k) and O(\) terms.



‘ Larger Context

@ Schrédinger Formalism for Classical Waves
(3 Example: Electromagnetism

(@ Ray Optics Limit

@ Challenges & Open Problems

«O>» «Fr «E» <

i
v
it

ae



Larger Context Schrodinger Formalism Electromagnetism Ray Optics Limit Challenges & Open Problems

Similar physics, similar mathematics?

Classical electromagnetism

o o e _— , Characteristics
e _ —V x (3
(51) 5t () = (%) = () @ First order in time
V-eE\ _ (p
(qu) = (0> @ Product structure of
_ operators

Transverse acoustic waves @ Waves take values in RN

O (p) — 0 =V po P

ge(0) = (”’BIV””SZ 0 ) 9 Other examples
M Plasmons, magnetoplasmons,

el van Alvén waves, etc.

i (%) = os Hk) (£5,)
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Similar physics, similar mathematics?

Classical electromagnetism
Characteristics

(5.) o (W)= (0 - 6) @ First order in time
(v ) = (5)
Transverse acoustic waves
&)= (o 5) ()
Magnons

12 (£ = o5 HE) (£5)
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Similar physics, similar mathematics?

Classical electromagnetism

S0\ o e ok ; Characteristics
Gn) & @)= G — @)
(355) = (S) @ Product structure of
operators

Transverse acoustic waves
% (€> = (*pEIOV“/'U? 7V0/)U> (C)
Magnons

12 (£5) = o5 HE) (£5)
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Similar physics, similar mathematics?

Classical electromagnetism
(60 &G = (5% = ()
(v.m) = (8)
Transverse acoustic waves
& () = Carvme 5) ()
Magnons

6] B(k) _ B(k)
15t (ﬁ*rﬁ k)) =03 H(k) (BT(—kJ>

Characteristics

@ Waves take values in R
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Similar physics, similar mathematics?

Classical electromagnetism

o o e _— , Characteristics
e _ —V x (3
(51) 5t () = (%) = () @ First order in time
V-eE\ _ (p
(qu) = (0> @ Product structure of
_ operators

Transverse acoustic waves @ Waves take values in RN

O (p) — 0 =V po P

ge(0) = (”’BIV””SZ 0 ) 9 Other examples
M Plasmons, magnetoplasmons,

el van Alvén waves, etc.

i (%) = os Hk) (£5,)
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Examples of Quantum-Wave Analogies

o Periodic media <— crystalline solids (periodic operators,
Bloch-Floquet theory)

o Random media «— random Schrédinger operators

o “Topological Insulators” for classical waves
(due to Haldane, 2016 Nobel Prize in Physics!)
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Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...

EOCI - i

symmetry breaking

e

[

E
Negative 0 Positive



Larger Context Schrédinger Formalism Electromagnetism Ray Optics Limit

Quantum Hall Effect for Light

Challenges & Open Problems

... and realized experimentally by Joannopoulos et al (2009)

a
Scatterer of Antenna B\
variable length /. .

CES waveguide

Transmission (dB)

n
2.0 a5 a0 a5
Frequency (GHz)
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Topological Insulators for Other Waves: Experiments

Challenges & Open Problems

Mechanical

Acoustic

”Ezf - )

(3
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Despite Experiments ...

... first-principle derivations are scarce, be it rigorous or
non-rigorous!

~» Open field with lots of interesting problems!
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Making Quantum Analogies Rigorous

Develop and explore the Schrodinger formalism for certain
classical wave equations

o Allows for adaptation of techniques from quantum mechanics
to other wave equations

o Also differences, e. g. classical waves R-valued
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Making Quantum Analogies Rigorous

Develop and explore the Schrodinger formalism for certain
classical wave equations

o Allows for adaptation of techniques from quantum mechanics
to other wave equations

o Also differences, e. g. classical waves R-valued

Today: Derivation of ray optics equations
via semiclassical techniques
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Recap: Schrédinger Equation on R?

Fundamental Constituents
@ Hamilton/Schrédinger operator H, typical examples are

H= 1 (-iv—A4)+V
H=mpB+ (-iV—A4) - a+V
@ Hilbert space L2(R%,C™) where (¢, ) = [ dzo(x) - ¥(z)

Ra
@ Dynamics given by Schrédinger equation

i0,0(t) = Hy(t), ¥(0) =¢
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Recap: Schrédinger Equation on R?

Fundamental Constituents

@ Hamilton/Schrédinger operator H
@ Hilbert space

@ Schrodinger equation

Properties
o H=H*
o Y(t) =e g
° ||¢(75)||2 = ||| (conservation of propability)
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Schroédinger Formalism for Classical Waves

Fundamental Constituents
@ “Hamilton” operator M = W D where
o W=W*0<cid<W<<Cid
(positive, bounded, bounded inverse)
o D = D* (potentially unbounded)

@ Complex (1) Hilbert space $H C L%V([Rd, C™) where

(6,0),, = (6, W) = [ ded(a) W ld(z)

R4

@ Dynamics given by Schrédinger equation

i0,0(t) = Mi(t), P(0) = ¢

@ Even particle-hole symmetry K, i. e.
K antiunitary, K2 = +idand K M K = —M
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Schroédinger Formalism for Classical Waves

Fundamental Constituents
@ “Hamilton” operator M = W D where
o W=W*"0<cid<W<<Cid
(positive, bounded, bounded inverse)
o D = D* (potentially unbounded)

@ Complex (!) weighted Hilbert space $ C L%,(R%, C™) where

(6,0),, = (6, W) = [ ded(a) W ld(z)

R4

@ Dynamics given by Schrédinger equation

i0,0(t) = Mi(t), P(0) = ¢

@ Even particle-hole symmetry K, i. e.
K antiunitary, K2 = +idand K M K = —M
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Schroédinger Formalism for Classical Waves

Fundamental Constituents
@ “Hamilton” operator M = W D with product structure
@ Complex (!) weighted Hilbert space $ C L%,(R%,C™)
@ Dynamics given by Schrédinger equation
@ Even particle-hole symmetry K

Properties
o M*w =M
o P(t) =e Mo

° ||1/1(t)||iv = | ¢|%, (conserved quantity, e. g. energy)

0 Reye ™M — e MRe, whereRey = 1(id + K)
(existence of real solutions)
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Schrédinger Formalism

Electromagnetism

Ray Optics Limit

Quantum-Wave Analogies

Wave Equation

Quantum Mechanics

Hilbert space weighted L? L?

Wave function R-valued C-valued
Generator Maxwell-type operator Hamiltonian
dynamics M=WD=M* H=p*+V=H*
Necessary +PH none
symmetry
Conserved -

quantity H\IIHQ e. g.field energy probability

Challenges & Open Problems
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Aim of this Section

Make a first-principles derivation of the Schrodinger
formalism for electromagnetic waves, i. e. identify

@ “Hamilton” operator M = W D
@ Hilbert space

@ Schrodinger equation

@ Even particle-hole symmetry
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Maxwell’'s Equations for Non-Gyrotropic Dielectrics

Assumption (Material weights)

Wiz = (E((T) u(orc))

@ W =W real
(non-gyrotropic)
@ W* =W (lossless)

@D o<c1I<W<<C1
(excludes metamaterials)

[
\ ‘ﬂ%!’

@ W frequency-independent
(no dispersion)

Johnson & Joannopoulos (2004)
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Maxwell’'s Equations for Non-Gyrotropic Dielectrics

Challenges & Open Problems

Maxwell equations
Dynamical equations

(o) o () - ()

div 0 e 0\ (E _0
0 div)\0 u -
Johnson & Joannopoulos (2004)

H

Absence of sources
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Schroédinger Formalism of Electromagnetism

(6m) 2 (5)-G3: } — { 0,0 = MW

dynamical Maxwell equations “Schrédinger-type equation”

U(t) = (E(t),H(t)) € H = {\Il € L%, (R3,C) | \I/transversal}

w=0) (e ") o

=W-1 =Rot
Maxwell equations Adaptation of techniques
= =  from quantum mechanics
Maxwell operator M = M* to electromagnetism
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Fundamental Symmetries of Non-Gyrotropic Materials

dynamical Maxwell equations “Schrédinger-type equation”

(60) = (5)-(G3:%) } — { 0,0 = MV

= ()~ (7 ) -7

3 Symmetries

@ C:(E,H)— (E,H) with C M C = —M (+PH)
@ J:(E,H)~ (E,—H) with JM J=—-M (x)
@ T=JC:(E,H)+ (E,—H) with TMT =+M (+TR)
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Restriction to Real Fields

Larger Context

C M C = —M implies

e "M(E) H)) =e*MRe ¥, =Re e My,
where Re = 1(id + C) is the real part operator and

v, = 1{UJ>0}(M) (EO> Ho) = P+(E0, HO)
U = 1{w<0}(M) (EO7HO> = Pi(onHO) — C\Ij+

the positive and negative frequency contributions
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Restriction to Real Fields

C M C = —M implies
e "M(E) H)) =e*MRe ¥, =Re e My,
where Re = 1(id + C) is the real part operator and

v, = 1{w>0}(M> (Eo.Hy) = P, (Eg, Hp)
o= 1{w<0}(ﬂ"[) (Eo,Ho) = Pf(an Ho) =CV,

the positive and negative frequency contributions
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What About Gyrotropic Media?

What if

is complex?
@ Use non-gyrotropic equations (o “) Bt ( ) ( VXH)

+V xE

~» often implicitly use in literature, but Im (E(¢), H(¢)) # 0 ¢
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What About Gyrotropic Media?

What if

is complex?

@ Use (E,H) = 1 (¥, 4+ U ) and let positive/negative frequency
contributions evolve separately via M = M, & M



Larger Context Schrodinger Formalism Electromagnetism Ray Optics Limit Challenges & Open Problems

The Schrodinger Formalism for Gyrotropic Media

U_(t) = OV, (t) can be enforced by choosing W_ = IV, i.e.
M, =—-CM.C=W,Rot|
Relation between M, implies relation between evolution groups:

C e*iMi — g itMx C
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The Schrodinger Formalism for Gyrotropic Media

Maxwell equations equivalent to
i0,¥(t) = MU(t), V() =2>o € 9,
on the Hilbert space
._ 2 3 6 2 3 (6
fHi:=ranP @ranP_C Ly, (R°,C°%) @ Ly, (R°,C®)
with Maxwell operator

M:=M,_ ®M_
D(M) := (P, D(Rot)) & (P_D(Rot))



Larger Context Schrodinger Formalism Electromagnetism Ray Optics Limit Challenges & Open Problems

“Indestructible” Symmetry

CM,C=-M

M:M+$M} — KMK=-M

has an even particle-hole-type symmetry

Ki=0,0C, (¥, )k (V_,T,).
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Fundamental Constituents

Complexified Maxwell Equations
@ “Hamilton” operator M = <W+ Rot |ran P+> & <W, Rot |ran P,)

@ Hilbert space
$=ranP, ®ranP_C L%, (R%,CO) @ L%, (RY,CY)

+ —

@ Dynamics given by Schrédinger equation

0,0(t) = My(), $(0) = (P,(E.H), P_(E,H))

@ Even particle-hole symmetry: “Complex conjugation”
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Reduction to Complex Fields with w > 0

Physically only real states relevant
Ap = {(\I@,\Ifr) | o, € ranP+} CranP_ &ranP_
K M K = —M implies
(E(t),H(t)) = Re (e7*M: W, ) ~ e MRey (¥,,0)

where Rej, = %(id + K) is the real part operator
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Reduction to Complex Fields with w > 0

Physically only real states relevant
O = {(\I@,‘Ifr) | o, € ranP+} CranP_ &ranP_
K M K = —M implies
(E(t),H(t)) =Re (e "M W )~ e ®MRe, (T, 0)
where Re ;- = 1(id + K) is the real part operator

Real transversal states PR Complex states with w > 0
(E,H) =Re U, U, = P, (E,H)

Re = P! = Study symmetries of M__(regular, +TR)
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Reduction to Complex Fields with w > 0

Physically only real states relevant
Ap = {(\I@,‘Ifr) | o, € ranP+} CranP_ &ranP_
K M K = —M implies
(E(t),H(t)) =Re (e "MW ) ~ e ®MRe, (U, 0)
where Rej, = %(id + K) is the real part operator

Real transversal states Complex states withw > 0
(E,H) =Re VW v, =P, (EH)

Re = P! = Study symmetries of M (regular, +TR)
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Fundamental Constituents

Reduced Description
@ “Hamilton” operator M, = W Rot |

ran P,
@ Hilbertspace ), = ran P, C L3y, (R?,C°)

@ Dynamics given by Schrédinger equation
0, W, (t)=M_V_(t), v_(0) = P.(E,H)
@ Even particle-hole symmetry: Implicit in construction

(E(). H(1)) = Re ¥, (1)
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Back to the ray optics limit ...
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To Do List

We need to
@ clarify the precise setting,
@ prove the existence of physical states,
@ define the class of observables under consideration,
@ and then state the ray optics limit.
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Assumptions on the Periodic Weights

o

“J J Assumption (Periodic weights)
|' _ (elx) 0O
W+,O(x) ( 0 N(x)
o Wi,o - W+,0
@0<c1<W, (<C1

@ W, . frequency-independent

@ W, , periodic

Johnson & Joannopoulos (2004)
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Macroscopic and Microscopic Degrees of Freedom

Challenges & Open Problems

T T T T T T T T T T T T T T T T T T T T T é

() ——
e(x)

z [lattice constants]
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Macroscopic and Microscopic Degrees of Freedom

Challenges & Open Problems

[

‘S’JO g LQ(B) ® L%V+,O (W) == 'ﬁmacro ® S{)micro
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Macroscopic and Microscopic Degrees of Freedom

[

jﬁ0 = L2(3> ® L%V+,0 (W) = ﬁmacro ®*s./-’)micro
~» study macroscopic dynamics given a fixed microscopic state
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Macroscopic and Microscopic Degrees of Freedom

[

~» study macroscopic dynamics given a fixed microscopic state via
space-adiabatic perturbation theory [PST (2002)]
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Perturbations of Material Weights

Assumption (Slow modulations of material weights)

Wea@ = (247, 0) = 5002 W, o(@)

~(70 ) (7 u0)

wheret_,7, € C°(R*R), 7.,7,, > ¢>0
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Slowly Modulated Maxwell Operator

Maxwell operator
Qo M}\ = W+’>\ ROt |w20
0 9y = J, ®G where

Jy=ranly, o (My)=ran P,
is the subspace of transversal fields and
G=ranVoV

is the subspace of longitudinal modes
0 D:=(J,NnHHYD G
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Slowly Modulated Maxwell Operator

Maxwell operator

o 9, =J, &G where
Jy=ranly, o (My)=ran P,
is the subspace of transversal fields and
G=ranVoV

is the subspace of longitudinal modes

~» Hilbert space depends on !
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Effective Dynamics

Goal

Approximate e '*Mx for physical states from a narrow range of
frequencies, i. e. states which are

up to higher-order errors in \.
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Effective Dynamics

Goal

Approximate e '*Mx for physical states from a narrow range of
frequencies, i. e. states which are

@ locatedin Jy =ranly,. (M) (subspace of transversal
states) and

up to higher-order errors in \.
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Effective Dynamics

Goal

Approximate e '*Mx for physical states from a narrow range of
frequencies, i. e. states which are

@ locatedin Jy =ranly,. (M) (subspace of transversal
states) and

@ associated to specific frequency bands of M|,
up to higher-order errors in \.



Larger Context Schrédinger Formalism Electromagnetism Ray Optics Limit

Effective Dynamics

Challenges & Open Problems
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Effective Dynamics

Goal

Approximate e '*Mx for physical states from a narrow range of
frequencies, i. e. states which are

@ locatedin Jy =ranly,. (M) (subspace of transversal
states) and

@ associated to specific frequency bands of M|,
up to higher-order errors in \.
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Effective Semiclassical Dynamics

Simplest case:
semiclassical dynamics
aka ray optics
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Effective Semiclassical Dynamics

Challenges & Open Problems
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Effective Semiclassical Dynamics

Setup
0 w isolated, non-degenerate
o w(k) # 0forallk € R3
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Effective Semiclassical Dynamics

Setup
0 w isolated, non-degenerate
o w(k) # 0forall k € R3 +» excludes ground state bands!
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Effective Semiclassical Dynamics

Setup
0 w isolated, non-degenerate
o w(k) # 0forallk € R3
o Bloch function &k — ¢(k)

o Symbol of projection
(r, k) = mo(r, k) := S (r) [o(k)) (¢ (k)| S(r) smooth
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Effective Semiclassical Dynamics

Setup
0 w isolated, non-degenerate
o w(k) # 0forallk € R3
o Bloch function &k — ¢(k)

o Symbol of projection
(r k) = 7o (r, k) i= S71(r) [o(k)){p(k)| S(r) smooth

o Chern number associated to k£ — |¢(k)){w(k)| need not be
zero! (then k — ¢(k) cannot be chosen purely real)
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Existence of Physical States

Theorem (De Nittis-L. 2012)
For any isolated family of bands there exists an orthogonal projection

Iy = ) Am0p, (1) + Oy (A)
n=0
associated to an isolated family of bands so that up to O(A>°)
@ states in its range are transversal,
@ itisa VDO,
@ the higher-order terms are computable (by recursion), and
@

its range is invariant under the dynamics,
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Relevant Observables

Important difference between quantum mechanics and
electromagnetism:
@ Quantum mechanical observables A = A* are selfadjoint
operators.
o Electromagnetic observables are functionals of the fields,
(E,H) = F(E,H) € C
We will only consider quadratic observables of the form
ey F+)

TEH) =({EH.FEH), op o F=F= (F—+ F_
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Relevant Observables

We will only consider quadratic observables of the form

F(E,H) = <(E,H),F(E,H)>5M®f)ﬂ7 P (z{zi ?)

Compatibility conditions

?((03 ® 1>(Ev H))
F(K(E H))

F(E,H) (nointeraction + frequencies)
F(E,H) (reality condition)
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Relevant Observables

We will only consider quadratic observables of the form

F(E,H) = <(E’H>’F<E’H>>ﬁ+,x®f§,,x’ F=F*= (§++ ﬁ})

—+ JE—

Compatibility conditions

[(0;®1),F]=0 = F,_=0=F_,
[K,F]=0 = F _=CF_C
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Relevant Observables

We will only consider quadratic observables of the form

?(Ev H) - <<E’ H>’F(E’H)>5)+,A@f3—,k

— 2Re <PM(E, H), F., P, 5(E, |-|)>
N
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Definition of Relevant Class of Observables

Definition (Quadratic observables)
Suppose the electromagnetic observable

‘?[(Ev H)] = [Ef[(EvH)]

.— 2Re <pM(E,H), Opk(f>P+,/\(E,H)>ﬁ

is defined in terms of a ¥DO associated to a
selfadjoint-operator-valued function f = f*.
@ Wecall F scalarif f = f® idL%v+,o(W) and f € C°(R®,C) are
periodicin k.
@ We call F non-scalar if f € Cg° (R, B(L%Vﬁo(W))) isan
operator-valued function satisfying an equivariance condition.



Ray Optics Limit

Definition of Relevant Class of Observables

Definition (Quadratic observables)

F(E,H)] := E;[(E, H)]
:— 2Re <P+7>\(E,H), OpA(f)P+,,\(E,H)>

K2 DY

Examples of quadratic observables
Local averages of
o the energy density,
o the Poynting vector, and
o components of the Maxwell stress tensor
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The Ray Optics Limit

Dispersion relation
Qr k) =7.7,w—=A7.7,P-V,In I

where

P(k) == Im / dy oB (k) x o7 (k,y).
]]'3

Challenges & Open Problems
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The Ray Optics Limit

Dispersion relation

Q(T,k):TETHW—)\TETM?-VT.M:—Z

Equations of motion

(D)= (22 ) (T9),

Berry curvature tensor = := <Vk X i
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The Ray Optics Limit

Dispersion relation
Q(r, k) =TT, w—AT. 7,7V, Inze

Equations of motion
M _ (—AE +id) (V,.Q
k) \ —id 0 Vi)’

Theorem (Ray Optics for Scalar Quadratic Observables)
F(E(t),H(t)) = Efq [(E,H)] + O(N?)
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The Ray Optics Limit

Dispersion relation

Qrk)=1.7,w—AT. 7, PV, InZ

T

Equations of motion
M (0 Hid) (V,.Q
k)~ \=id 0 )\v,Q)’
Theorem (Ray Optics for Non-Scalar Quadratic Observables)

T (E(t),H(t)) = E; .or[(E,H)] + O(X?)

where f., = mffimy + 0</\2)
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Semiclassics: Interpretation of Main Result

o First mathematically rigorous result
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Semiclassics: Interpretation of Main Result

o First mathematically rigorous result
@ Previously unknown @(\) terms

o () Term from symbol (change in field energy)
o Rammal-Wilkinson-type term
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Semiclassics: Interpretation of Main Result

o First mathematically rigorous result
@ Previously unknown @(\) terms

o () Term from symbol (change in field energy)
o Rammal-Wilkinson-type term
o Additional Berry curvature terms (geometric)



Larger Context Schrodinger Formalism Electromagnetism Ray Optics Limit Challenges & Open Problems

Semiclassics: Interpretation of Main Result
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Semiclassics: Interpretation of Main Result

o Assumption w, (k) # 0 Vk € R3 excludes ground state bands
o States with wg, (k) ~ 0 at k ~ 0: wave length > lattice spacing
o Do not see periodicity of photonic crystal
o »Universal« behavior - free waves with modified vy
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Semiclassics: Interpretation of Main Result

o Assumption w, (k) # 0 Vk € R3 excludes ground state bands
States with wg (k) ~ 0 at k ~ 0: wave length > lattice spacing
Do not see periodicity of photonic crystal

»Universal« behavior - free waves with modified gy

= Multiscale ansatz breaks down!

©

© 0 ©
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Semiclassics: Interpretation of Main Result

o First mathematically rigorous result

o Previously unknown O(\) terms

o Assumption w, (k) # 0 Vk € R3 excludes ground state bands
o Proof based on Egorov-type theorem due to Teufel & Stiepan
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Semiclassics: Comparison to Notable Previous Results

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)

o »Derivation by analogy« (k equation since derived by Esposito
and Gerace)

o Necessity of slow variation recognized, but small parameter A
not used



Larger Context Schrodinger Formalism Electromagnetism Ray Optics Limit Challenges & Open Problems

Semiclassics: Comparison to Notable Previous Results

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)

o Equations of motion:

P =+Vi(Te 7, w,) —\Zk

k=-V,(r.7,w,)
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Semiclassics: Comparison to Notable Previous Results

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)

o Equations of motion:

P =+Vi(Te T, w,) — Ak
k= —V (72 Ty w,)

~» EOM are missing O(\) terms, only leading-order correct
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Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

o Use Sundaram-Niu variational technique + second
quantization
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Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

o Use Sundaram-Niu variational technique + second
quantization

o Semiclassical states W(r, k, z) parametrized by (r, k) € T*R3,
z € 52 ~ find extremals of functional

L= <\Il(r, k, z)’i(f—t _ Mf‘\li(r, k, z)>



Ray Optics Limit
Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

o Use Sundaram-Niu variational technique + second
quantization

o Semiclassical states W(r, k, z) parametrized by (r, k) € T*R3,
z € 52 ~ find extremals of functional

L:< (rk‘z)’ —M’Z‘\Ilrk:z)>
o Equations of motion:

P =+Vi(r.T,w,) + kA (2|Z]2) + other terms
k=-V.(r.7,w )+otherterms

|z) = additional equation of motion
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Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)
o Equations of motion:

=4V (r. 7, w L)+ kA z|§|z + other terms
k= —V,(r.7,w,) + other terms

|z) = additional equation of motion
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Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)
o Equations of motion:

=4V (r. 7, w L)+ kA z|§|z + other terms
k= —V,(r.7,w,) + other terms

|z) = additional equation of motion

o Involve »polarization« degree of freedom |z)
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Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)
o Equations of motion:

F=+Vi(rw,) + kA (2
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Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)
o Equations of motion:

i = +V (1.7, w,) + k A (2|E|2) + other terms
k=-V.(r.7,w, ) + other terms

|z) = additional equation of motion

o Result is not readily comparable to ours
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Schrédinger Formalism Electromagnetism Ray Optics Limit Challenges & Open Problems

Quantum Analogies Investigated in the Past

Schrodinger formalism of Maxwell equations

Physics: in vacuo -» Dirac, Wigner, ... (1920s)

Mathematics: non-gyrotropic ~» Birman & Solomyak (1987)
Random Maxwell & acoustic operators

Figotin & Klein (1997)

Derivation of non-linear Schrédinger equation from non-linear
Maxwell equations

Babin & Figotin (early 2000s)

Adiabatic perturbation theory for photonic crystals
De Nittis & L. (2014)

Ray optics in photonics <— semiclassics in quantum mechanics
De Nittis & L. (2015) for photonic crystals

Classification of Photonic Topological Insulators
De Nittis & L. (2014 & 2016)
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Open Problems

For operators of product form

M=WD

o Scattering theory
~» technical conditions on W and D?
o Whatif W # 0 (e. g.in metals or for magnons)
~» Theory of Krein spaces
o Non-linear topological insulators (e. g. in photonic or
magnonic crystals)
~» Existence of topological solitons?
o Dispersion

o Spectral problems
e. g. M periodic Maxwell operator, W € L°

= J(M>\{0} = Uac(M)\{O}
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Thank you for your attention!



	Larger Context
	Schrödinger Formalism for Classical Waves
	Example: Electromagnetism
	Ray Optics Limit
	Challenges & Open Problems

