"Semiclassical" Ray Optics in Photonic Crystals

in collarboration with Giuseppe De Nittis

Max Lein

Advanced Institute of Materials Research, Tohoku University 2016.10.07@Pontificia Universidad Católica de Chile

《曰》 《聞》 《臣》 《臣》 三臣

900

Larger Context

Idea Realizing Quantum Effects with Classical Waves

▲ロト ▲ □ ト ▲ 亘 ト ▲ 亘 ト ● ○ ○ ○ ○ ○

Goal of Today's Talk

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{(dynamical equation)} \\ \begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \text{(constraint equation)} \end{pmatrix} \xrightarrow{\lambda \ll 1} \begin{cases} \dot{r} = +\nabla_k \Omega + \mathcal{O}(\lambda) \\ \dot{k} = -\nabla_r \Omega + \mathcal{O}(\lambda) \\ \text{(ray optics equations)} \end{cases}$$

Setting

- Perturbation parameter $\lambda \ll 1$
- Slowly varying *electric permittivity* $\varepsilon = \varepsilon(\lambda)$ and *magnetic permeability* $\mu = \mu(\lambda)$ are 3×3 -matrix-valued
- ε and μ : periodic to "leading order"

Challenges & Open Problems

Goal of Today's Talk

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{(dynamical equation)} \\ \begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} \lambda \ll 1 \\ \vdots \end{pmatrix} \qquad \begin{cases} \dot{r} = +\nabla_k \Omega + \mathcal{O}(\lambda) \\ \dot{k} = -\nabla_r \Omega + \mathcal{O}(\lambda) \\ \text{(ray optics equations)} \end{cases}$$

Goal

Given a particular initial state $({\bf E}_0,{\bf H}_0),$ find dispersion relation $\Omega(r,k)$ and $\mathcal{O}(\lambda)$ terms.

・ロト ・ 同ト ・ ヨト ・ ヨト

P

Sac

- 2 Schrödinger Formalism for Classical Waves
- 3 Example: Electromagnetism
- 4 Ray Optics Limit
- 5 Challenges & Open Problems

Classical electromagnetism

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} - \begin{pmatrix} j \\ 0 \end{pmatrix} \\ \begin{pmatrix} \nabla \cdot \varepsilon \mathbf{E} \\ \nabla \cdot \mu \mathbf{H} \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix}$$

Transverse acoustic waves

$$\frac{\partial}{\partial t} \begin{pmatrix} \boldsymbol{\rho} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & -\nabla \, \boldsymbol{\rho}_0 \\ -\boldsymbol{\rho}_0^{-1} \, \nabla \, \boldsymbol{\gamma} \boldsymbol{v}_{\mathrm{s}}^2 & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\rho} \\ \mathbf{v} \end{pmatrix}$$

Magnons

$$\mathrm{i}_{\frac{\partial}{\partial t} \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)} = \sigma_{3} H(k) \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)$$

Characteristics

- First order in time
- Product structure of operators
- 3 Waves take values in \mathbb{R}^N

Other examples

Plasmons, magnetoplasmons, van Alvén waves, etc.

・ロト・日本・日本・日本・日本・日本

Classical electromagnetism

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} - \begin{pmatrix} j \\ 0 \end{pmatrix} \\ \begin{pmatrix} \nabla \cdot \varepsilon \mathbf{E} \\ \nabla \cdot \mu \mathbf{H} \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix}$$

Transverse acoustic waves

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & -\nabla \rho_0 \\ -\rho_0^{-1} \nabla \gamma v_s^2 & 0 \end{pmatrix} \begin{pmatrix} \rho \\ \mathbf{v} \end{pmatrix}$$

Magnons

$$\mathrm{i}_{\frac{\partial}{\partial t} \binom{\beta(k)}{\beta^{\dagger}(-k)}} = \sigma_3 H(k) \binom{\beta(k)}{\beta^{\dagger}(-k)}$$

Characteristics

- First order in time
- Product structure of operators
- 3 Waves take values in \mathbb{R}^N

Other examples Plasmons, magnetoplasmons, van Alvén waves, etc.

<ロト < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classical electromagnetism

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} - \begin{pmatrix} j \\ 0 \end{pmatrix} \\ \begin{pmatrix} \nabla \cdot \varepsilon \mathbf{E} \\ \nabla \cdot \mu \mathbf{H} \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix}$$

Transverse acoustic waves

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & -\nabla \rho_0 \\ -\rho_0^{-1} \nabla \gamma v_s^2 & 0 \end{pmatrix} \begin{pmatrix} \rho \\ \mathbf{v} \end{pmatrix}$$

Magnons

$$\mathrm{i}_{\frac{\partial}{\partial t} \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)} = \sigma_3 H(k) \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)$$

Characteristics

- First order in time
- Product structure of operators
- 3 Waves take values in \mathbb{R}^N

Other examples Plasmons, magnetoplasmons, van Alvén waves, etc.

・ロト・日本・日本・日本・日本・日本

Classical electromagnetism

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} - \begin{pmatrix} j \\ 0 \end{pmatrix} \\ \begin{pmatrix} \nabla \cdot \varepsilon \mathbf{E} \\ \nabla \cdot \mu \mathbf{H} \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix}$$

Transverse acoustic waves

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & -\nabla \rho_0 \\ -\rho_0^{-1} \nabla \gamma v_s^2 & 0 \end{pmatrix} \begin{pmatrix} \rho \\ \mathbf{v} \end{pmatrix}$$

Magnons

$$\mathrm{i}_{\frac{\partial}{\partial t} \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)} = \sigma_3 H(k) \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)$$

Characteristics

- ① First order in *time*
- Product structure of operators
- 3 Waves take values in \mathbb{R}^N

Other examples Plasmons, magnetoplasmons, van Alvén waves, etc.

・ロット語 マルヨット 出し ろくの

Classical electromagnetism

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} - \begin{pmatrix} j \\ 0 \end{pmatrix} \\ \begin{pmatrix} \nabla \cdot \varepsilon \mathbf{E} \\ \nabla \cdot \mu \mathbf{H} \end{pmatrix} = \begin{pmatrix} \rho \\ 0 \end{pmatrix}$$

Transverse acoustic waves

$$\frac{\partial}{\partial t} \begin{pmatrix} \boldsymbol{\rho} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & -\nabla \, \boldsymbol{\rho}_0 \\ -\boldsymbol{\rho}_0^{-1} \, \nabla \, \boldsymbol{\gamma} \boldsymbol{v}_{\mathrm{s}}^2 & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\rho} \\ \mathbf{v} \end{pmatrix}$$

Magnons

$$\mathrm{i}_{\frac{\partial}{\partial t} \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)} = \sigma_{3} H(k) \left(\beta^{(k)}_{\beta^{\dagger}(-k)}\right)$$

Characteristics

- First order in time
- Product structure of operators
- 3 Waves take values in \mathbb{R}^N

Other examples

Plasmons, magnetoplasmons, van Alvén waves, etc.

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples of Quantum-Wave Analogies

- Periodic media \leftrightarrow crystalline solids (periodic operators, Bloch-Floquet theory)
- Random media \leftrightarrow random Schrödinger operators
- "Topological Insulators" for classical waves (due to Haldane, 2016 Nobel Prize in Physics!)

Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...

$$\begin{pmatrix} \overline{\varepsilon} & 0\\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0\\ 0 & \mu \end{pmatrix}$$
symmetry breaking

 Larger Context

Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Topological Insulators for Other Waves: Experiments

Mechanical

Süsstrunk & Huber (2015)

Acoustic

Xiao, Ma et al (2015)

Periodic Waveguide Arrays

Rechtsman, Szameit et al (2013)

Larger Context

Ray Optics Limit

Challenges & Open Problems

Despite Experiments ...

... **first-principle derivations** are scarce, be it rigorous or non-rigorous!

 \rightsquigarrow Open field with lots of interesting problems!

▲ロト ▲ 園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Making Quantum Analogies Rigorous

Develop and explore the Schrödinger formalism for certain classical wave equations

- Allows for adaptation of techniques from quantum mechanics to other wave equations
- Also differences, e. g. classical waves $\mathbb R\text{-valued}$

Today: Derivation of ray optics equations via semiclassical techniques

・ロト・四ト・ヨー ・ 日 ・ うくの

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ク Q (~

Making Quantum Analogies Rigorous

Develop and explore the Schrödinger formalism for certain classical wave equations

- Allows for adaptation of techniques from quantum mechanics to other wave equations
- Also differences, e. g. classical waves $\mathbb R\text{-valued}$

Today: Derivation of ray optics equations via semiclassical techniques

Schrödinger Formalism for Classical Waves

3 Example: Electromagnetism

4 Ray Optics Limit

5 Challenges & Open Problems

▲ロト ▲ □ ト ▲ 亘 ト ▲ 亘 ト ● ○ ○ ○ ○ ○

Recap: Schrödinger Equation on \mathbb{R}^d

Fundamental Constituents

1 Hamilton/Schrödinger operator *H*, typical examples are

$$\begin{split} H &= \frac{1}{2m} \big(-\mathrm{i} \nabla - A \big)^2 + V \\ H &= m \,\beta + \big(-\mathrm{i} \nabla - A \big) \cdot \alpha + V \end{split}$$

2 Hilbert space $L^2(\mathbb{R}^d, \mathbb{C}^n)$ where $\langle \phi, \psi \rangle = \int_{\mathbb{R}^d} \mathrm{d}x \, \phi(x) \cdot \psi(x)$

Oynamics given by Schrödinger equation

$$\mathrm{i}\partial_t\psi(t)=H\psi(t),\qquad\qquad\psi(0)=\phi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ◆○

Recap: Schrödinger Equation on \mathbb{R}^d

Fundamental Constituents

- Hamilton/Schrödinger operator H
- ② Hilbert space
- 3 Schrödinger equation

Properties

• $H = H^*$

•
$$\psi(t) = \mathbf{e}^{-\mathbf{i}tH}\phi$$

• $\|\psi(t)\|^2 = \|\phi\|^2$ (conservation of propability)

Schrödinger Formalism for Classical Waves

Fundamental Constituents

(1) "Hamilton" operator M = W D where
• $W = W^*$, $0 < c \text{ id } \le W \le C \text{ id}$ (positive, bounded, bounded inverse)
• $D = D^*$ (potentially unbounded)

② Complex (!) Hilbert space $\mathfrak{H} \subseteq L^2_W(\mathbb{R}^d, \mathbb{C}^n)$ where

$$\left\langle \phi,\psi\right\rangle _{W}=\left\langle \phi,W^{-1}\psi\right\rangle =\int_{\mathbb{R}^{d}}\mathrm{d}x\,\phi(x)\cdot W^{-1}\psi(x)$$

Oynamics given by Schrödinger equation

$$\mathrm{i}\partial_t\psi(t)=M\psi(t),\qquad\qquad\psi(0)=\phi$$

④ Even particle-hole symmetry K, i. e. K antiunitary, $K^2 = +id$ and KMK = -M

▲ロト ▲ 園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Schrödinger Formalism for Classical Waves

Fundamental Constituents

① *"Hamilton" operator* M = W D where • $W = W^*$, $0 < c \text{ id } \leq W \leq C \text{ id}$ (positive, bounded, bounded inverse)

• $D = D^*$ (potentially unbounded)

② Complex (!) weighted Hilbert space $\mathfrak{H} \subseteq L^2_W(\mathbb{R}^d, \mathbb{C}^n)$ where

$$\left\langle \phi,\psi\right\rangle _{W}=\left\langle \phi,W^{-1}\psi\right\rangle =\int_{\mathbb{R}^{d}}\mathrm{d}x\,\phi(x)\cdot W^{-1}\psi(x)$$

Oynamics given by Schrödinger equation

$$\mathrm{i}\partial_t\psi(t)=M\psi(t),\qquad\qquad\psi(0)=\phi$$

④ Even particle-hole symmetry K, i. e. K antiunitary, $K^2 = +id$ and KMK = -M

▲ロト ▲ 園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Schrödinger Formalism for Classical Waves

Fundamental Constituents

- **(1)** *"Hamilton" operator* M = W D with **product structure**
- ② Complex (!) weighted Hilbert space $\mathfrak{H} \subseteq L^2_W(\mathbb{R}^d, \mathbb{C}^n)$
- Oynamics given by Schrödinger equation
- ④ Even particle-hole symmetry K

Properties

- $M^{*_W} = M$
- $\bullet \ \psi(t) = \mathrm{e}^{-\mathrm{i} t\,M}\phi$
- $\left\|\psi(t)\right\|_{W}^{2} = \left\|\phi\right\|_{W}^{2}$ (conserved quantity, e.g. energy)
- $\operatorname{Re}_{K} \operatorname{e}^{-\operatorname{i} t M} = \operatorname{e}^{-\operatorname{i} t M} \operatorname{Re}_{K}$ where $\operatorname{Re}_{K} = \frac{1}{2} (\operatorname{id} + K)$ (existence of real solutions)

Quantum-Wave Analogies

	Wave Equation	Quantum Mechanics
Hilbert space	weighted L^2	L^2
Wave function	\mathbb{R} -valued	$\mathbb{C} ext{-valued}$
Generator dynamics	Maxwell-type operator $M = W D = M^*$	Hamiltonian $H = \hat{p}^2 + V = H^*$
Necessary symmetry	+PH	none
Conserved quantity $\left\ \Psi\right\ ^2$	e. g. field energy	probability

2) Schrödinger Formalism for Classical Waves

3 Example: Electromagnetism

4 Ray Optics Limit

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Aim of this Section

Make a first-principles derivation of the Schrödinger formalism for electromagnetic waves, i. e. identify

- **1** "Hamilton" operator M = W D
- ② Hilbert space
- ③ Schrödinger equation
- ④ Even particle-hole symmetry

Maxwell's Equations for Non-Gyrotropic Dielectrics

Johnson & Joannopoulos (2004)

Assumption (Material weights)

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix}$$

1
$$W = \overline{W}$$
 real
(non-gyrotropic)

2
$$W^* = W$$
 (lossless)

- 3 $0 < c \mathbf{1} \le W \le C \mathbf{1}$ (excludes metamaterials)
- W frequency-independent (no dispersion)

Maxwell's Equations for Non-Gyrotropic Dielectrics

Johnson & Joannopoulos (2004)

Maxwell equations Dynamical equations

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$$

Absence of sources

$$\begin{pmatrix} \mathsf{div} & 0 \\ 0 & \mathsf{div} \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = 0$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Schrödinger Formalism of Electromagnetism

$$\begin{cases} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \xrightarrow{\partial} (\mathbf{E} \\ \mathbf{H}) = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{dynamical Maxwell equations} \end{cases} \iff \begin{cases} \mathbf{i} \partial_t \Psi = M \Psi \\ \text{"Schrödinger-type equation"} \end{cases} \\ \Psi(t) = (\mathbf{E}(t), \mathbf{H}(t)) \in \mathfrak{H} = \left\{ \Psi \in L^2_W(\mathbb{R}^3, \mathbb{C}^6) \mid \Psi \text{ transversal} \right\} \\ M = \underbrace{\left(\varepsilon & 0 \\ 0 & \mu \right)^{-1}}_{=W^{-1}} \underbrace{\left(\begin{array}{c} 0 & +(-\mathbf{i}\nabla)^{\times} \\ -(-\mathbf{i}\nabla)^{\times} & 0 \end{array} \right)}_{=\operatorname{Rot}} = M^* \\ \\ \text{Maxwell equations} \\ \Leftrightarrow \\ \text{Maxwell operator } M = M^* \end{cases} \implies \begin{array}{c} \text{Adaptation of techniques} \\ \text{from quantum mechanics} \\ \text{to electromagnetism} \end{cases}$$

Fundamental Symmetries of Non-Gyrotropic Materials

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix} \\ \text{dynamical Maxwell equations} \end{pmatrix} \iff \begin{cases} \mathrm{i} \partial_t \Psi = M \Psi \\ \text{"Schrödinger-type equation"} \end{cases}$$

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} = \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

3 Symmetries

 $\begin{array}{ll} \textbf{0} & C: (\textbf{E},\textbf{H}) \mapsto (\overline{\textbf{E}},\overline{\textbf{H}}) & \text{with } C M C = -M \ (\textbf{+PH}) \\ \textbf{2} & J: (\textbf{E},\textbf{H}) \mapsto (\textbf{E},-\textbf{H}) & \text{with } J M J = -M \ (\chi) \\ \textbf{3} & T = J C: (\textbf{E},\textbf{H}) \mapsto (\overline{\textbf{E}},-\overline{\textbf{H}}) & \text{with } T M T = +M \ (\textbf{+TR}) \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Restriction to Real Fields

$$\begin{split} C\,M\,C &= -M \text{ implies} \\ & \mathrm{e}^{-\mathrm{i}t\,M}\left(\mathbf{E}_0,\mathbf{H}_0\right) = \mathrm{e}^{-\mathrm{i}t\,M}\,\mathrm{Re}\,\Psi_\pm = \mathrm{Re}\,\,\mathrm{e}^{-\mathrm{i}t\,M}\Psi_\pm \\ \text{where } \mathrm{Re}\, &= \frac{1}{2}\big(\mathrm{id}+C\big) \text{ is the real part operator and} \\ & \Psi_+ &= 1_{\{\omega>0\}}(M)\left(\mathbf{E}_0,\mathbf{H}_0\right) = P_+(\mathbf{E}_0,\mathbf{H}_0) \\ & \Psi_- &= 1_{\{\omega<0\}}(M)\left(\mathbf{E}_0,\mathbf{H}_0\right) = P_-(\mathbf{E}_0,\mathbf{H}_0) = C\Psi_+ \end{split}$$

the positive and negative frequency contributions

Restriction to Real Fields

$$\begin{split} C\,M\,C &= -M \text{ implies} \\ & \mathrm{e}^{-\mathrm{i}t\,M}\left(\mathbf{E}_0,\mathbf{H}_0\right) = \mathrm{e}^{-\mathrm{i}t\,M}\,\mathrm{Re}\,\Psi_\pm = \mathrm{Re}\,\,\mathrm{e}^{-\mathrm{i}t\,M}\Psi_\pm \\ \text{where } \mathrm{Re}\, &= \frac{1}{2}\big(\mathrm{id}+C\big) \text{ is the real part operator and} \\ & \Psi_+ &= \mathbf{1}_{\{\omega>0\}}(M)\left(\mathbf{E}_0,\mathbf{H}_0\right) = P_+(\mathbf{E}_0,\mathbf{H}_0) \\ & \Psi_- &= \mathbf{1}_{\{\omega<0\}}(M)\left(\mathbf{E}_0,\mathbf{H}_0\right) = P_-(\mathbf{E}_0,\mathbf{H}_0) = C\Psi_+ \end{split}$$

the positive and negative frequency contributions

What About Gyrotropic Media?

What if

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} \neq \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

is complex?

- **(1)** Use non-gyrotropic equations $\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$ \rightsquigarrow often implicitly use in literature, but Im $(\mathbf{E}(t), \mathbf{H}(t)) \neq 0$
- 2 Use $(\mathbf{E}, \mathbf{H}) = \frac{1}{2}(\Psi_+ + \Psi_-)$ and let positive/negative frequency contributions evolve separately via $M = M_+ \oplus M_-$

・ロト (雪) (日) (日) (日) (日)

What About Gyrotropic Media?

What if

$$W(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix} \neq \begin{pmatrix} \overline{\varepsilon(x)} & 0 \\ 0 & \overline{\mu(x)} \end{pmatrix} = \overline{W(x)}$$

is complex?

- **1** Use non-gyrotropic equations $\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} -\nabla \times \mathbf{H} \\ +\nabla \times \mathbf{E} \end{pmatrix}$ \rightsquigarrow often implicitly use in literature, but Im $(\mathbf{E}(t), \mathbf{H}(t)) \neq 0 \not \in$
- 2 Use $(\mathbf{E}, \mathbf{H}) = \frac{1}{2}(\Psi_+ + \Psi_-)$ and let positive/negative frequency contributions evolve separately via $M = M_+ \oplus M_-$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

The Schrödinger Formalism for Gyrotropic Media

 $\Psi_{-}(t) = C \Psi_{+}(t)$ can be enforced by choosing $W_{-} = \overline{W_{+}}$, i. e.

$$M_{\pm} = -C \, M_{\mp} \, C = W_{\pm} \operatorname{Rot} \big|_{\pm \omega > 0}$$

Relation between M_\pm implies relation between evolution groups:

$$C \operatorname{e}^{-\operatorname{i} M_{\pm}} = \operatorname{e}^{-\operatorname{i} t M_{\mp}} C$$

The Schrödinger Formalism for Gyrotropic Media

Maxwell equations equivalent to

$$\mathrm{i}\partial_t\Psi(t)=M\Psi(t),\qquad \quad \Psi(0)=\Phi\in\mathfrak{H},$$

on the Hilbert space

$$\mathfrak{H} := \operatorname{ran} P_+ \oplus \operatorname{ran} P_- \subset L^2_{W_+}(\mathbb{R}^3, \mathbb{C}^6) \oplus L^2_W \ (\mathbb{R}^3, \mathbb{C}^6)$$

with Maxwell operator

$$\begin{split} M &:= M_+ \oplus M_- \\ \mathcal{D}(M) &:= \left(P_+ \mathcal{D}(\mathsf{Rot})\right) \oplus \left(P_- \mathcal{D}(\mathsf{Rot})\right) \end{split}$$

- ロト - (日) - (1)
"Indestructible" Symmetry

$$\left. \begin{array}{l} C \, M_+ \, C = -M_- \\ M = M_+ \oplus M_- \end{array} \right\} \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} K \, M \, K = -M \\ \end{array}$$

has an even particle-hole-type symmetry

$$K:=\sigma_1\otimes C,\quad (\Psi_+,\Psi_-)\mapsto \big(\overline{\Psi_-},\overline{\Psi_+}\big).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ 釣へ⊙

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Fundamental Constituents

Complexified Maxwell Equations

- **1** *"Hamilton" operator* $M = \left(W_{+} \operatorname{Rot} |_{\operatorname{ran} P_{+}}\right) \oplus \left(W_{-} \operatorname{Rot} |_{\operatorname{ran} P_{+}}\right)$
- 2 Hilbert space $\mathfrak{H} = \operatorname{ran} P_+ \oplus \operatorname{ran} P_- \subset L^2_{W_+}(\mathbb{R}^d, \mathbb{C}^6) \oplus L^2_{W_-}(\mathbb{R}^d, \mathbb{C}^6)$
- Oynamics given by Schrödinger equation

 $\mathrm{i}\partial_t\psi(t)=M\psi(t),\qquad\qquad\psi(0)=\left(P_+(\mathbf{E},\mathbf{H})\,,\,P_-(\mathbf{E},\mathbf{H})\right)$

④ Even particle-hole symmetry: "Complex conjugation" $K = \sigma_1 \otimes C$

Reduction to Complex Fields with $\omega > 0$

Physically only real states relevant

$$\mathfrak{H}_{\mathbb{R}} := \left\{ \left(\Psi_+, \overline{\Psi_+} \right) \; \left| \; \; \Psi_+ \in \operatorname{ran} P_+ \right\} \subset \operatorname{ran} P_+ \oplus \operatorname{ran} P_- \right.$$

KMK = -M implies

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right)=\mathrm{Re}\,\left(\mathrm{e}^{-\mathrm{i}t\,M_{+}}\Psi_{+}\right)\simeq\mathrm{e}^{-\mathrm{i}t\,M}\,\mathrm{Re}_{K}\left(\Psi_{+},0\right)$$

where $\mathrm{Re}_K = \frac{1}{2}(\mathrm{id} + K)$ is the real part operator

 $\begin{array}{l} \text{Real transversal states} \\ (\mathbf{E},\mathbf{H}) = \operatorname{Re} \Psi_+ \end{array} \end{array} \hspace{0.2cm} \longleftrightarrow \hspace{0.2cm} \left\{ \begin{array}{l} \text{Complex states with } \omega > 0 \\ \Psi_+ = P_+(\mathbf{E},\mathbf{H}) \end{array} \right. \end{array}$

 $\operatorname{Re} = P_+^{-1} \Longrightarrow$ Study symmetries of M_+ (regular, $\pm \operatorname{TR}$)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = 三 のへぐ

Reduction to Complex Fields with $\omega > 0$

Physically only real states relevant

$$\mathfrak{H}_{\mathbb{R}} := \left\{ \left(\Psi_+, \overline{\Psi_+} \right) \; \left| \; \; \Psi_+ \in \operatorname{ran} P_+ \right\} \subset \operatorname{ran} P_+ \oplus \operatorname{ran} P_- \right.$$

KMK = -M implies

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right)=\mathrm{Re}\,\left(\mathrm{e}^{-\mathrm{i}t\,M_+}\Psi_+\right)\simeq\mathrm{e}^{-\mathrm{i}t\,M}\,\mathrm{Re}_K\left(\Psi_+,0\right)$$

where $\operatorname{Re}_K = \frac{1}{2}(\operatorname{id} + K)$ is the real part operator

 $\begin{array}{l} \text{Real transversal states} \\ (\mathbf{E},\mathbf{H}) = \operatorname{Re} \Psi_+ \end{array} \right\} \hspace{0.2cm} \longleftrightarrow \hspace{0.2cm} \left\{ \begin{array}{c} \text{Complex states with } \omega > 0 \\ \Psi_+ = P_+(\mathbf{E},\mathbf{H}) \end{array} \right. \end{array}$

 $\operatorname{Re} = P_+^{-1} \Longrightarrow$ Study symmetries of M_+ (regular, $\pm \operatorname{TR}$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Reduction to Complex Fields with $\omega > 0$

Physically only real states relevant

$$\mathfrak{H}_{\mathbb{R}} := \left\{ \left(\Psi_+, \overline{\Psi_+} \right) \; \left| \; \; \Psi_+ \in \operatorname{ran} P_+ \right\} \subset \operatorname{ran} P_+ \oplus \operatorname{ran} P_- \right.$$

KMK = -M implies

$$\left(\mathbf{E}(t),\mathbf{H}(t)\right)=\mathrm{Re}\,\left(\mathrm{e}^{-\mathrm{i}t\,M_{+}}\Psi_{+}\right)\simeq\mathrm{e}^{-\mathrm{i}t\,M}\,\mathrm{Re}_{K}\left(\Psi_{+},0\right)$$

where $\operatorname{Re}_K = \frac{1}{2}(\operatorname{id} + K)$ is the real part operator

 $\begin{array}{ll} \text{Real transversal states} \\ (\mathbf{E},\mathbf{H}) = \operatorname{Re} \Psi_+ \end{array} \right\} \hspace{0.2cm} \longleftrightarrow \hspace{0.2cm} \left\{ \begin{array}{l} \text{Complex states with } \omega > 0 \\ \Psi_+ = P_+(\mathbf{E},\mathbf{H}) \end{array} \right. \end{array}$

 $\operatorname{Re} = P_+^{-1} \Longrightarrow$ Study symmetries of M_+ (regular, $\pm \operatorname{TR}$)

Fundamental Constituents

Reduced Description

- 1 "Hamilton" operator $M_+ = W_+ \operatorname{Rot} |_{\operatorname{ran} P_+}$
- 2 Hilbert space $\mathfrak{H}_+ = \operatorname{ran} P_+ \subset L^2_{W_+}(\mathbb{R}^3, \mathbb{C}^6)$
- Oynamics given by Schrödinger equation

$$\mathrm{i}\partial_t\Psi_+(t)=M_+\Psi_+(t),\qquad\qquad\Psi_+(0)=P_+(\mathbf{E},\mathbf{H})$$

④ Even particle-hole symmetry: Implicit in construction

$$\big(\mathbf{E}(t),\mathbf{H}(t)\big)=\mathrm{Re}\,\Psi_+(t)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 Larger Context

2 Schrödinger Formalism for Classical Waves

3 Example: Electromagnetism

▲ロト ▲ □ ト ▲ 亘 ト ▲ 亘 ト ● ○ ○ ○ ○ ○

Larger Context

Ray Optics Limit

Challenges & Open Problems

Back to the ray optics limit ...

<□▶ < □▶ < □▶ < □▶ < □▶ = □ のへ⊙

Challenges & Open Problems

To Do List

We need to

- clarify the precise setting,
- 2 prove the existence of physical states,
- 3 define the class of observables under consideration,
- and then state the ray optics limit.

Assumptions on the Periodic Weights

Johnson & Joannopoulos (2004)

Assumption (Periodic weights)

$$W_{+,0}(x) = \begin{pmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{pmatrix}$$

1
$$W_{+,0}^* = W_{+,0}$$
 (lossless)

- 2 $0 < c \mathbf{1} \le W_{+,0} \le C \mathbf{1}$ (excludes metamaterials)
- W_{+,0} frequency-independent (no dispersion)

④ $W_{+,0}$ periodic

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

・ロト ・ 同ト ・ ヨト ・ ヨト

= nac

Macroscopic and Microscopic Degrees of Freedom

x [lattice constants]

Macroscopic and Microscopic Degrees of Freedom

 $\mathfrak{H}_0 \cong L^2(\mathcal{B}) \otimes L^2_{W_{+,0}}(\mathcal{W}) = \mathfrak{H}_{\mathsf{macro}} \otimes \mathfrak{H}_{\mathsf{micro}}$ \rightsquigarrow study macroscopic dynamics given a fixed microscopic state

Macroscopic and Microscopic Degrees of Freedom

$$\begin{split} \mathfrak{H}_0 &\cong L^2(\mathcal{B}) \otimes L^2_{W_{+,0}}(\mathcal{W}) = \mathfrak{H}_{\mathsf{macro}} \otimes \mathfrak{H}_{\mathsf{micro}} \\ \rightsquigarrow \text{ study macroscopic dynamics given a fixed microscopic state} \end{split}$$

Macroscopic and Microscopic Degrees of Freedom

→ study macroscopic dynamics given a fixed microscopic state via space-adiabatic perturbation theory [PST (2002)]

Perturbations of Material Weights

Assumption (Slow modulations of material weights)

$$\begin{split} W_{+,\lambda}(x) &= \begin{pmatrix} \varepsilon_{\lambda}(x) & 0\\ 0 & \mu_{\lambda}(x) \end{pmatrix} = S(\lambda x)^2 W_{+,0}(x) \\ &= \begin{pmatrix} \tau_{\varepsilon}^{-2}(\lambda x) & 0\\ 0 & \tau_{\mu}^{-2}(\lambda x) \end{pmatrix} \begin{pmatrix} \varepsilon(x) & 0\\ 0 & \mu(x) \end{pmatrix} \end{split}$$

where $\tau_{\varepsilon},\tau_{\mu}\in \mathcal{C}^{\infty}_{\rm b}(\mathbb{R}^3,\mathbb{R}),\tau_{\varepsilon},\tau_{\mu}\geq c>0$

Slowly Modulated Maxwell Operator

Maxwell operator

- $M_{\lambda} := W_{+,\lambda} \operatorname{Rot} |_{\omega > 0}$
- $\mathfrak{H}_{\lambda} = J_{\lambda} \oplus G$ where

$$J_{\lambda} = \operatorname{ran} \mathbf{1}_{\{\omega > 0\}}(M_{\lambda}) = \operatorname{ran} P_{+,\lambda}$$

is the subspace of transversal fields and

 $G=\operatorname{ran}\nabla\oplus\nabla$

is the subspace of longitudinal modes

$$\bullet \ \mathcal{D} := (J_\lambda \cap H^1) \oplus G$$

 \rightsquigarrow Hilbert space depends on λ !

Slowly Modulated Maxwell Operator

Maxwell operator

- $M_{\lambda} := W_{+,\lambda} \operatorname{Rot} |_{\omega \geq 0}$
- $\mathfrak{H}_{\lambda} = J_{\lambda} \oplus G$ where

$$J_{\lambda} = \operatorname{ran} \mathbf{1}_{\{\omega > 0\}}(M_{\lambda}) = \operatorname{ran} P_{+,\lambda}$$

is the subspace of transversal fields and

 $G=\operatorname{ran}\nabla\oplus\nabla$

is the subspace of longitudinal modes

• $\mathcal{D} := (J_{\lambda} \cap H^1) \oplus G$

 \rightsquigarrow Hilbert space depends on λ !

Challenges & Open Problems

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Effective Dynamics

Goal

Approximate $e^{-it M_{\lambda}}$ for **physical** states from a **narrow range of frequencies**, i. e. states which are

- 0 located in $J_{\lambda}= \mathrm{ran}\, 1_{\{\omega>0\}}(M_{\lambda})$ (subspace of transversal states) and
- ② associated to specific frequency bands of M_0

Challenges & Open Problems

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Effective Dynamics

Goal

Approximate $e^{-it M_{\lambda}}$ for **physical** states from a **narrow range of frequencies**, i. e. states which are

- 0 located in $J_{\lambda}= \mathrm{ran}\, 1_{\{\omega>0\}}(M_{\lambda})$ (subspace of transversal states) and
- 2) associated to specific frequency bands of $M_{
 m 0}$

Challenges & Open Problems

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Effective Dynamics

Goal

Approximate $e^{-it M_{\lambda}}$ for **physical** states from a **narrow range of frequencies**, i. e. states which are

0 located in $J_{\lambda}= \mathrm{ran}\, 1_{\{\omega>0\}}(M_{\lambda})$ (subspace of transversal states) and

② associated to specific frequency bands of M_0

Effective Dynamics

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Challenges & Open Problems

◆ロト ◆母 ト ◆ ヨ ト ◆ ヨ ・ ク Q ()

Effective Dynamics

Goal

Approximate $e^{-it M_{\lambda}}$ for **physical** states from a **narrow range of frequencies**, i. e. states which are

0 located in $J_{\lambda}= \mathrm{ran}\, 1_{\{\omega>0\}}(M_{\lambda})$ (subspace of transversal states) and

② associated to specific frequency bands of M_0

Larger Context

Ray Optics Limit

Challenges & Open Problems

Effective Semiclassical Dynamics

Simplest case: semiclassical dynamics aka ray optics

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Effective Semiclassical Dynamics

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

Effective Semiclassical Dynamics

Setup

- ω isolated, non-degenerate
- $\omega(k) \neq 0$ for all $k \in \mathbb{R}^3 \rightsquigarrow$ excludes ground state bands!
- Bloch function $k \mapsto \varphi(k)$
- Symbol of projection $(r,k)\mapsto \pi_0(r,k):=S^{-1}(r)\,|\varphi(k)\rangle\langle\varphi(k)|\,S(r) \text{ smooth }$
- Chern number associated to $k \mapsto |\varphi(k)\rangle\langle\varphi(k)|$ need not be zero! (then $k\mapsto\varphi(k)$ cannot be chosen purely real)

▲ロト ▲ □ ト ▲ 亘 ト ▲ 亘 ト ● ○ ○ ○ ○ ○

Effective Semiclassical Dynamics

Setup

- ω isolated, non-degenerate
- $\omega(k) \neq 0$ for all $k \in \mathbb{R}^3 \rightsquigarrow$ excludes ground state bands!
- Bloch function $k\mapsto \varphi(k)$
- Symbol of projection $(r,k)\mapsto \pi_0(r,k):=S^{-1}(r)\,|\varphi(k)\rangle\langle\varphi(k)|\,S(r) \text{ smooth }$
- Chern number associated to $k \mapsto |\varphi(k)\rangle\langle\varphi(k)|$ need not be zero! (then $k\mapsto\varphi(k)$ cannot be chosen purely real)

Effective Semiclassical Dynamics

Setup

- ω isolated, non-degenerate
- $\omega(k) \neq 0$ for all $k \in \mathbb{R}^3 \rightsquigarrow$ excludes ground state bands!
- Bloch function $k\mapsto \varphi(k)$
- Symbol of projection $(r,k)\mapsto \pi_0(r,k):=S^{-1}(r)\,|\varphi(k)\rangle\langle\varphi(k)|\,S(r)\text{ smooth }$
- Chern number associated to $k \mapsto |\varphi(k)\rangle\langle\varphi(k)|$ need not be zero! (then $k\mapsto\varphi(k)$ cannot be chosen purely real)

Effective Semiclassical Dynamics

Setup

- ω isolated, non-degenerate
- $\omega(k)
 eq 0$ for all $k \in \mathbb{R}^3 \rightsquigarrow$ excludes ground state bands!
- Bloch function $k\mapsto \varphi(k)$
- Symbol of projection $(r,k)\mapsto \pi_0(r,k):=S^{-1}(r)\,|\varphi(k)\rangle\langle\varphi(k)|\,S(r) \text{ smooth }$
- Chern number associated to $k\mapsto |\varphi(k)\rangle\langle\varphi(k)|$ need not be zero! (then $k\mapsto\varphi(k)$ cannot be chosen purely real)

Existence of Physical States

Theorem (De Nittis-L. 2012)

For any isolated family of bands there exists an orthogonal projection

$$\Pi_{\lambda} = \sum_{n=0}^{\infty} \lambda^n \operatorname{Op}_{\lambda}(\pi_n) + \mathcal{O}_{\|\cdot\|}(\lambda^{\infty})$$

associated to an isolated family of bands so that up to $\mathcal{O}(\lambda^{\infty})$

- 1) states in its range are transversal,
- 2 it is a ΨDO ,
- 3 the higher-order terms are computable (by recursion), and
- its range is invariant under the dynamics,
 i. e. [M_λ, Π_λ] = O_{||·||}(λ[∞]).

Relevant Observables

Important difference between quantum mechanics and electromagnetism:

- Quantum mechanical observables A = A* are selfadjoint operators.
- Electromagnetic observables are functionals of the fields, $(\mathbf{E}, \mathbf{H}) \mapsto \mathcal{F}(\mathbf{E}, \mathbf{H}) \in \mathbb{C}$

We will only consider quadratic observables of the form

$$\mathcal{F}(\mathbf{E},\mathbf{H}) = \left\langle (\mathbf{E},\mathbf{H}), F\left(\mathbf{E},\mathbf{H}\right) \right\rangle_{\mathfrak{H}_{+,\lambda} \oplus \mathfrak{H}_{-,\lambda}}, \quad F = F^* = \begin{pmatrix} F_{++} & F_{+-} \\ F_{-+} & F_{--} \end{pmatrix}$$

Relevant Observables

We will only consider quadratic observables of the form

$$\mathcal{F}(\mathbf{E},\mathbf{H}) = \left\langle (\mathbf{E},\mathbf{H}), F\left(\mathbf{E},\mathbf{H}\right) \right\rangle_{\mathfrak{H}_{+,\lambda} \oplus \mathfrak{H}_{-,\lambda}}, \quad F = F^* = \begin{pmatrix} F_{++} & F_{+-} \\ F_{-+} & F_{--} \end{pmatrix}$$

Compatibility conditions

$$\begin{split} \mathcal{F}\big((\sigma_3\otimes\mathbf{1})(\mathbf{E},\mathbf{H})\big) &= \mathcal{F}(\mathbf{E},\mathbf{H}) \quad (\text{no interaction}\pm\text{frequencies})\\ \mathcal{F}\big(K(\mathbf{E},\mathbf{H})\big) &= \overline{\mathcal{F}(\mathbf{E},\mathbf{H})} \quad (\text{reality condition}) \end{split}$$

・ロト・日本・モート ヨー つくぐ

Relevant Observables

We will only consider quadratic observables of the form

$$\mathcal{F}(\mathbf{E},\mathbf{H}) = \left\langle (\mathbf{E},\mathbf{H}), F\left(\mathbf{E},\mathbf{H}\right) \right\rangle_{\mathfrak{H}_{+,\lambda} \oplus \mathfrak{H}_{-,\lambda}}, \quad F = F^* = \begin{pmatrix} F_{++} & F_{+-} \\ F_{-+} & F_{--} \end{pmatrix}$$

Compatibility conditions

$$\begin{split} \big[(\sigma_3\otimes \mathbf{1}),F\big] &= 0 \implies F_{+-} = 0 = F_{-+} \\ [K,F] &= 0 \implies F_{--} = CF_{++}C \end{split}$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ

Relevant Observables

We will only consider quadratic observables of the form

$$\begin{split} \mathcal{F}(\mathbf{E},\mathbf{H}) &= \left\langle (\mathbf{E},\mathbf{H}),F\left(\mathbf{E},\mathbf{H}\right)\right\rangle_{\mathfrak{H}_{+,\lambda}\oplus\mathfrak{H}_{-,\lambda}} \\ &= 2\operatorname{Re}\,\left\langle P_{+,\lambda}(\mathbf{E},\mathbf{H}),\,F_{++}\,P_{+,\lambda}(\mathbf{E},\mathbf{H})\right\rangle_{\mathfrak{H}_{\lambda}} \end{split}$$

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Definition of Relevant Class of Observables

Definition (Quadratic observables) Suppose the electromagnetic observable

$$\begin{split} \mathcal{F}[(\mathbf{E},\mathbf{H})] &:= \mathbb{E}_{f}[(\mathbf{E},\mathbf{H})] \\ &:= 2 \operatorname{Re} \, \left\langle P_{+,\lambda}(\mathbf{E},\mathbf{H}) \,, \operatorname{Op}_{\lambda}(f) \, P_{+,\lambda}(\mathbf{E},\mathbf{H}) \right\rangle_{\mathfrak{H}} \end{split}$$

is defined in terms of a Ψ DO associated to a selfadjoint-operator-valued function $f = f^*$.

- $\label{eq:call} \textcircled{0} \mbox{ We call \mathcal{F} scalar if $f \equiv f \otimes \operatorname{id}_{L^2_{W_{+,0}}(\mathcal{W})}$ and $f \in \mathcal{C}^\infty_{\operatorname{b}}(\mathbb{R}^6,\mathbb{C})$ are periodic in k.}$
- 2 We call \mathcal{F} non-scalar if $f \in \mathcal{C}^{\infty}_{\mathbf{b}}(\mathbb{R}^{6}, \mathcal{B}(L^{2}_{W_{+,0}}(\mathcal{W})))$ is an operator-valued function satisfying an equivariance condition.

Definition of Relevant Class of Observables

Definition (Quadratic observables)

$$\begin{split} \mathcal{F}[(\mathbf{E},\mathbf{H})] &:= \mathbb{E}_{f}[(\mathbf{E},\mathbf{H})] \\ &:= 2 \operatorname{Re} \, \left\langle P_{+,\lambda}(\mathbf{E},\mathbf{H}), \operatorname{Op}_{\lambda}(f) P_{+,\lambda}(\mathbf{E},\mathbf{H}) \right\rangle_{\mathfrak{H}} \end{split}$$

Examples of quadratic observables

Local averages of

- the energy density,
- the Poynting vector, and
- components of the Maxwell stress tensor

Challenges & Open Problems

The Ray Optics Limit

Dispersion relation

$$\Omega(r,k) = \tau_\varepsilon \, \tau_\mu \, \omega - \lambda \, \tau_\varepsilon \, \tau_\mu \, \mathcal{P} \cdot \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu}$$

where

$$\mathcal{P}(k):=\mathrm{Im}\,\int_{\mathbb{T}^3}\mathrm{d} y\,\overline{\varphi^E(k,y)}\times\varphi^H(k,y).$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ りへぐ
Ray Optics Limit

Challenges & Open Problems

The Ray Optics Limit

Dispersion relation

$$\Omega(r,k) = \tau_\varepsilon \, \tau_\mu \, \omega - \lambda \, \tau_\varepsilon \, \tau_\mu \, \mathcal{P} \cdot \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu}$$

Equations of motion

$$\begin{pmatrix} \dot{r} \\ \dot{k} \end{pmatrix} = \begin{pmatrix} -\lambda \Xi & +\mathrm{id} \\ -\mathrm{id} & 0 \end{pmatrix} \begin{pmatrix} \nabla_r \Omega \\ \nabla_k \Omega \end{pmatrix},$$
 Berry curvature tensor $\Xi := \left(\nabla_k \times \mathrm{i} \langle \varphi, \nabla_k \varphi \rangle_{L^2_{W_{+,0}}(\mathcal{W})} \right)^{\times}$

・ロト・日本・モート ヨー つくぐ

The Ray Optics Limit

Dispersion relation

$$\Omega(r,k) = \tau_\varepsilon \, \tau_\mu \, \omega - \lambda \, \tau_\varepsilon \, \tau_\mu \, \mathcal{P} \cdot \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu}$$

Equations of motion

$$\begin{pmatrix} \dot{r} \\ \dot{k} \end{pmatrix} = \begin{pmatrix} -\lambda \, \Xi & +\mathrm{id} \\ -\mathrm{id} & 0 \end{pmatrix} \begin{pmatrix} \nabla_r \Omega \\ \nabla_k \Omega \end{pmatrix},$$

Theorem (Ray Optics for Scalar Quadratic Observables)

$$\mathcal{F}\big(\mathbf{E}(t),\mathbf{H}(t)\big) = \mathbb{E}_{f \circ \Phi_t^{\lambda}}[(\mathbf{E},\mathbf{H})] + \mathcal{O}(\lambda^2)$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

The Ray Optics Limit

Dispersion relation

$$\Omega(r,k) = \tau_\varepsilon \, \tau_\mu \, \omega - \lambda \, \tau_\varepsilon \, \tau_\mu \, \mathcal{P} \cdot \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu}$$

Equations of motion

$$\begin{pmatrix} \dot{r} \\ \dot{k} \end{pmatrix} = \begin{pmatrix} 0 & +\mathrm{id} \\ -\mathrm{id} & 0 \end{pmatrix} \begin{pmatrix} \nabla_r \Omega \\ \nabla_k \Omega \end{pmatrix},$$

Theorem (Ray Optics for Non-Scalar Quadratic Observables)

$$\mathcal{F}\big(\mathbf{E}(t),\mathbf{H}(t)\big) = \mathbb{E}_{\mathbf{f}_{\mathsf{ro}}\circ\Phi_{t}^{\lambda}}[(\mathbf{E},\mathbf{H})] + \mathcal{O}(\lambda^{2})$$

where $f_{\rm ro}=\pi_\lambda \sharp f \sharp \pi_\lambda + \mathcal{O}(\lambda^2)$

<ロト < 目 > < 目 > < 目 > < 目 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• First mathematically rigorous result

- Previously unknown $\mathcal{O}(\lambda)$ terms
 - $\mathcal{O}(\lambda)$ Term from symbol (change in field energy)
 - Rammal-Wilkinson-type term
 - Additional Berry curvature terms (geometric)
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
- Proof based on Egorov-type theorem due to Teufel & Stiepan

・ロット 御マ キョット ボット しょうくろう

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
 - $\mathcal{O}(\lambda)$ Term from symbol (change in field energy)
 - Rammal-Wilkinson-type term
 - Additional Berry curvature terms (geometric)
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
- Proof based on Egorov-type theorem due to Teufel & Stiepan

・ロト・西ト・ヨト・西ト・日 シック

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Semiclassics: Interpretation of Main Result

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
 - $\mathcal{O}(\lambda)$ Term from symbol (change in field energy)
 - Rammal-Wilkinson-type term
 - Additional Berry curvature terms (geometric)
- Assumption $\omega_*(k)
 eq 0 \ \forall k \in \mathbb{R}^3$ excludes ground state bands
- Proof based on Egorov-type theorem due to Teufel & Stiepan

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
 - $\mathcal{O}(\lambda)$ Term from symbol (change in field energy)
 - Rammal-Wilkinson-type term
 - Additional Berry curvature terms (geometric)
- Assumption $\omega_*(k)
 eq 0 \ \forall k \in \mathbb{R}^3$ excludes ground state bands
- Proof based on Egorov-type theorem due to Teufel & Stiepan

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ◆○

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
 - $\mathcal{O}(\lambda)$ Term from symbol (change in field energy)
 - Rammal-Wilkinson-type term
 - Additional Berry curvature terms (geometric)
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
- Proof based on Egorov-type theorem due to Teufel & Stiepan

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
 - States with $\omega_{\mathsf{qs}}(k)pprox 0$ at kpprox 0: wave length \gg lattice spacing
 - Do not see periodicity of photonic crystal
 - »Universal« behavior \rightsquigarrow free waves with modified v_{light}
 - ⇒ Multiscale ansatz breaks down!
- Proof based on Egorov-type theorem due to Teufel & Stiepan

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
 - States with $\omega_{
 m qs}(k)pprox 0$ at kpprox 0: wave length \gg lattice spacing
 - Do not see periodicity of photonic crystal
 - »Universal« behavior \rightsquigarrow free waves with modified v_{light}
 - ⇒ Multiscale ansatz breaks down!
- Proof based on Egorov-type theorem due to Teufel & Stiepan

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
 - States with $\omega_{
 m qs}(k)pprox 0$ at kpprox 0: wave length \gg lattice spacing
 - Do not see periodicity of photonic crystal
 - »Universal« behavior \rightsquigarrow free waves with modified v_{light}
 - ⇒ Multiscale ansatz breaks down!
- Proof based on Egorov-type theorem due to Teufel & Stiepan

- ロト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ ()

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Semiclassics: Interpretation of Main Result

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
 - States with $\omega_{
 m qs}(k)pprox 0$ at kpprox 0: wave length \gg lattice spacing
 - Do not see periodicity of photonic crystal
 - »Universal« behavior \rightsquigarrow free waves with modified v_{light}
 - ⇒ Multiscale ansatz breaks down!
- Proof based on Egorov-type theorem due to Teufel & Stiepan

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Semiclassics: Interpretation of Main Result

- First mathematically rigorous result
- Previously unknown $\mathcal{O}(\lambda)$ terms
- Assumption $\omega_*(k) \neq 0 \; \forall k \in \mathbb{R}^3$ excludes ground state bands
- Proof based on Egorov-type theorem due to Teufel & Stiepan

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)

- »Derivation by analogy« (\dot{k} equation since derived by Esposito and Gerace)
- $\bullet\,$ Necessity of slow variation recognized, but small parameter $\lambda\,$ not used
- Equations of motion:

$$\begin{split} \dot{r} &= + \nabla_k (\tau_\varepsilon \, \tau_\mu \, \omega_*) - \lambda \Xi \dot{k} \\ \dot{k} &= - \nabla_r (\tau_\varepsilon \, \tau_\mu \, \omega_*) \end{split}$$

 \rightsquigarrow EOM are missing $\mathcal{O}(\lambda)$ terms, only leading-order correct.

・ロト・西ト・ヨト・西ト・日 シック

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)

- »Derivation by analogy« (\dot{k} equation since derived by Esposito and Gerace)
- $\bullet\,$ Necessity of slow variation recognized, but small parameter $\lambda\,$ not used
- Equations of motion:

$$\begin{split} \dot{r} &= + \nabla_k (\tau_\varepsilon \, \tau_\mu \, \omega_*) - \lambda \Xi \dot{k} \\ \dot{k} &= - \nabla_r (\tau_\varepsilon \, \tau_\mu \, \omega_*) \end{split}$$

 \rightsquigarrow EOM are missing $\mathcal{O}(\lambda)$ terms, only leading-order correct

▲ロト ▲ □ ト ▲ 亘 ト ▲ 亘 ト ● ○ ○ ○ ○ ○

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト

I nar

Semiclassics: Comparison to Notable Previous Results

Haldane & Raghu, Phys. Rev. A 78, 033834 (2008)

- »Derivation by analogy« (\dot{k} equation since derived by Esposito and Gerace)
- $\bullet\,$ Necessity of slow variation recognized, but small parameter $\lambda\,$ not used
- Equations of motion:

$$\begin{split} \dot{r} &= + \nabla_k (\tau_\varepsilon \, \tau_\mu \, \omega_*) - \lambda \Xi \dot{k} \\ \dot{k} &= - \nabla_r (\tau_\varepsilon \, \tau_\mu \, \omega_*) \end{split}$$

 \rightsquigarrow EOM are missing $\mathcal{O}(\lambda)$ terms, only leading-order correct

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

- Use Sundaram–Niu variational technique + second quantization
- Semiclassical states $\Psi(r,k,z)$ parametrized by $(r,k)\in T^*\mathbb{R}^3$, $z\in S^2\rightsquigarrow$ find extremals of functional

$$L = \left\langle \Psi(r,k,z) \Big| \mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} - M_\lambda^{\mathcal{Z}} \Big| \Psi(r,k,z) \right\rangle$$

• Equations of motion:

$$\begin{split} \dot{r} &= +\nabla_k (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \text{other terms} \\ \dot{k} &= -\nabla_r (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \text{other terms} \\ \dot{z} \rangle &= \text{additional equation of motion} \end{split}$$

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

- Use Sundaram–Niu variational technique + second quantization
- Semiclassical states $\Psi(r,k,z)$ parametrized by $(r,k)\in T^*\mathbb{R}^3$, $z\in S^2\rightsquigarrow$ find extremals of functional

$$L = \left\langle \Psi(r,k,z) \Big| \mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} - M_\lambda^{\mathcal{Z}} \Big| \Psi(r,k,z) \right\rangle$$

• Equations of motion:

$$\begin{split} \dot{r} &= +\nabla_k(\tau_{\varepsilon}\,\tau_{\mu}\,\omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \text{other terms} \\ \dot{k} &= -\nabla_r(\tau_{\varepsilon}\,\tau_{\mu}\,\omega_*) + \text{other terms} \\ \dot{z} \rangle &= \text{additional equation of motion} \end{split}$$

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

- Use Sundaram–Niu variational technique + second quantization
- Semiclassical states $\Psi(r,k,z)$ parametrized by $(r,k)\in T^*\mathbb{R}^3$, $z\in S^2\rightsquigarrow$ find extremals of functional

$$L = \left\langle \Psi(r,k,z) \Big| \mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} - M_\lambda^{\mathcal{Z}} \Big| \Psi(r,k,z) \right\rangle$$

• Equations of motion:

$$\begin{split} \dot{r} &= + \nabla_k (\tau_\varepsilon \, \tau_\mu \, \omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \text{other terms} \\ \dot{k} &= - \nabla_r (\tau_\varepsilon \, \tau_\mu \, \omega_*) + \text{other terms} \\ \dot{|z|} &= \text{additional equation of motion} \end{split}$$

▲ロト▲御ト▲恵ト▲恵ト 直 めんぐ

- ロ ト 4 同 ト 4 回 ト 4 回 ト

I nar

Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)Equations of motion:

$$\begin{split} \dot{r} &= + \nabla_k (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \text{other terms} \\ \dot{k} &= - \nabla_r (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \text{other terms} \\ \dot{z} \rangle &= \text{additional equation of motion} \end{split}$$

ullet Involve »polarization« degree of freedom |z
angle

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)Equations of motion:

$$\begin{split} \dot{r} &= +\nabla_k (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \text{other terms} \\ \dot{k} &= -\nabla_r (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \text{other terms} \\ \dot{|z|} &= \text{additional equation of motion} \end{split}$$

• Involve »polarization« degree of freedom $|z\rangle$

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)

• Equations of motion:

$$\begin{split} \dot{r} &= + \nabla_k (\tau \, \omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \\ &- \nabla_k \Big(\tau \, \omega_* \, \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu} \cdot \langle z | \frac{1}{2} (\widetilde{\mathcal{A}}^E - \widetilde{\mathcal{A}}^H) | z \rangle \Big) + \\ &+ \mathrm{i} \langle z | [(\tau \, \omega_* \, \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu}) \cdot \frac{1}{2} (\widetilde{\mathcal{A}}^E - \widetilde{\mathcal{A}}^H) \ , \ \frac{1}{2} (\widetilde{\mathcal{A}}^E + \widetilde{\mathcal{A}}^H)] | z \rangle \\ \dot{k} &= - \nabla_r (\tau \, \omega_*) - \nabla_r \Big(\tau \, \omega_* \, \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu} \cdot \langle z | \frac{1}{2} (\widetilde{\mathcal{A}}^E - \widetilde{\mathcal{A}}^H) | z \rangle \Big) \\ | \dot{z} \rangle &= \mathrm{i} \Big(- \dot{k} \cdot \frac{1}{2} (\widetilde{\mathcal{A}}^E + \widetilde{\mathcal{A}}^H) + \tau \, \omega_* \, \nabla_r \ln \frac{\tau_\varepsilon}{\tau_\mu} \cdot \frac{1}{2} (\widetilde{\mathcal{A}}^E - \widetilde{\mathcal{A}}^H) \Big) | z \rangle \end{split}$$

Involve »polarization« degree of freedom $|z\rangle$

- ロ ト 4 同 ト 4 回 ト 4 回 ト

E nar

Semiclassics: Comparison to Notable Previous Results

Onoda, Murakami, Nagaosa, Phys. Rev. E 76, 066610 (2006)Equations of motion:

$$\begin{split} \dot{r} &= +\nabla_k (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \dot{k} \wedge \langle z | \widetilde{\Xi} | z \rangle + \text{other terms} \\ \dot{k} &= -\nabla_r (\tau_{\varepsilon} \, \tau_{\mu} \, \omega_*) + \text{other terms} \\ \dot{z} \rangle &= \text{additional equation of motion} \end{split}$$

• Result is not readily comparable to ours

Ray Optics Limit

(5) Challenges & Open Problems

・ロト ・ 同ト ・ ヨト ・ ヨト 1 Dac

Quantum Analogies Investigated in the Past

- Schrödinger formalism of Maxwell equations
 Physics: *in vacuo* → Dirac, Wigner, ... (1920s)
 Mathematics: *non-gyrotropic* → Birman & Solomyak (1987)
- Random Maxwell & acoustic operators Figotin & Klein (1997)
- Derivation of non-linear Schrödinger equation from non-linear Maxwell equations
 Babin & Figotin (early 2000s)
- Adiabatic perturbation theory for photonic crystals De Nittis & L. (2014)
- Ray optics in photonics ↔ semiclassics in quantum mechanics De Nittis & L. (2015) for photonic crystals
- Classification of Photonic Topological Insulators De Nittis & L. (2014 & 2016)

Open Problems

For operators of product form

M = W D

- Scattering theory → technical conditions on W and D?
- What if W ≯ 0 (e. g. in metals or for magnons)
 → Theory of Krein spaces
- Non-linear topological insulators (e. g. in photonic or magnonic crystals)
 - → Existence of topological solitons?
- Dispersion
- Spectral problems

e. g. M periodic Maxwell operator, $W \in L^\infty$

 $\Longrightarrow \sigma(M) \backslash \{0\} = \sigma_{\rm ac}(M) \backslash \{0\}$

・ロト・(理ト・モト・モー・)への

Larger Context

Challenges & Open Problems

Thank you for your attention!

▲ロト ▲ 園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで