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Quantum Mechanics for Spin Systems & the Uncertainty Principle

Homework Problems

1. The Pauli matrices
Consider the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ3 =

(
1 0
0 −1

)
.

(i) Prove σj σk = δjk idC2 + i
3∑
l=1

ϵjkl σl where ϵjkl is the epsilon tensor.

(ii) Prove that any 2 × 2 matrix can be written as the linear combination of the identity and the
three Pauli matrices with coefficients h0 and h = (h1, h2, h3),

MatC(2) ∋ A = (ajk)1≤j,k≤2 = h0 idC2 +

3∑
j=1

hj σj =: h0 idC2 + h · σ. (1)

Hint: Use that MatC(2) is finite-dimensional.
(iii) Now assume that the coefficients h0, . . . , h3 in equation (1) are real. Show that then the re-

sulting matrixH = h0 idC2 + h · σ is hermitian. Compute the eigenvalues E±(h0, h) ofH in
terms of the coefficients h0 and h.

(iv) Use (i) to prove that for real h0, . . . , h3

P±(h0, h) =
1

2

(
idC2 ±

h · σ
|h|

)
, h ̸= 0 ∈ R3, |h| :=

√
h21 + h22 + h23,

are the projections onto the eigenspaces for the two eigenvalues E±(h0, h) ofH .
(v) Compute the trace ofH .

Note: In physics especially, one frequently writes h · σ for
3∑
j=1

hj σj where h = (h1, h2, h3).
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Solution:

(i) This follows from direct computation: for j = k we obtain

σ21 = σ22 = σ23 = idC2

while for j < k

σ1 σ2 =

(
0 1
1 0

) (
0 −i
+i 0

)
=

(
+i 0
0 −i

)
= iσ3

σ1 σ3 =

(
0 1
1 0

) (
1 0
0 −1

)
=

(
0 −1
1 0

)
= −iσ2

σ2 σ3 =

(
0 −i
+i 0

) (
1 0
0 −1

)
=

(
0 +i
+i 0

)
= iσ1

In other words, we have shown (i) for j < k.
To show (i) in the remaining cases, we use that the σj = σ∗j are hermitian matrices, and hence
for j < k we obtain

σk σj =
(
σj σk

)∗
=

(
δjk idC2 + i

3∑
l=1

ϵjkl σl

)∗

= δjk idC2 − i
3∑
l=1

ϵjkl σl = δjk idC2 + i
3∑
l=1

ϵkjl σl.

This proves (i).
(ii) The vector space of 2× 2matrices is four-dimensional, dimMatC(2) = 4, and seeing as the 4

vectors
{
idC2 , σ1, σ2, σ3

}
are linearly independent, they form a basis of MatC(2).

(iii) In case h0, . . . , h3 are real,

H∗ =
(
h0 idC2 + h · σ

)∗
= h0 idC2 + h · σ

= h0 idC2 + h · σ = H

is hermitian and we can compute both eigenvalues: the characteristic polynomial ofH is

χ(λ) = det
(
λ idC2 −H

)
= det

(
λ− h0 − h3 h1 − ih2
h1 + ih2 λ− h0 + h3

)
=
(
(λ− h0)− h3

) (
(λ− h0) + h3

)
−
(
h1 − ih2

)(
h1 + ih2

)
= (λ− h0)

2 −
(
h21 + h22 + h23

)
= (λ− h0)

2 − |h|2,

and hence, the eigenvalues are E±(h0, h) = h0 ± |h|.
(iv) The product

H P± =
(
h0 idC2 + h · σ

)
P± = h0 P± +

1

2

(
h · σ ± (h · σ)2

|h|

)
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involves the square of h · σ which can be computed with the help of (i):

(
h · σ

)2
=

3∑
j,k=1

hj hk σj σk

=

3∑
j=1

h2j idC2 +
∑

j,k,l=1,2,3
j ̸=k

hj hk i ϵjkl σl

= |h|2 idC2 + i
3∑
l=1

( ∑
j,k=1,2,3
j ̸=k

hj hk i ϵjkl
)
σl = |h|2 idC2

Hence, we can factor out E± and obtain (iv):

H P± = h0 P± +
1

2

(
h · σ ± |h|2 idC2

|h|

)

= h0 P± ± |h| 1
2

(
idC2 ±

h · σ
|h|

)
=
(
h0 ± |h|

)
P± = E± P±

(v) The trace is just the sum over the diagonal elements of the matrices, and clearly, the Pauli
matrices are all traceless. Hence, we compute

trH = tr
(
h0 idC2 + h · σ

)
= h0 tr idC2 +

3∑
j=1

hj trσj = 2h0.
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2. Functional calculus for 2× 2 matrices
Let f be a piecewise continuous function andH = H∗ a hermitian 2× 2matrix. Then define

f(H) :=
∑
j=±

f(E±)P± (2)

where E± are the eigenvalues ofH and P± the two projections from problem 1.
(i) Compute f(H) defined as in equation (2) forH = h · σ, h ̸= 0, and

f(x) =

{
1 x ≥ 0

0 x < 0
.

(ii) Show that f(H) for f(x) = e−itx (defined via (2)) coincides with the matrix exponential, i. e.

f(H) = e−ith0
(
cos
(
|h| t

)
− i

|h|
sin
(
|h| t

)
h · σ

)
= e−itH =

∞∑
n=0

(−it)n
n!

Hn. (3)

Hint: Use e−it(h0+h·σ) = e−ith0 e−ith·σ.
(iii) Assuming h0, h1, h2, h3 are real, compute ψ(t) for the initial condition ψ(0) = ψ0 ∈ C2:

(a) d
dtψ(t) =

(
h2 σ2 + h3 σ3

)
ψ(t)

(b) i ddtψ(t) = h2 σ2ψ(t)

(c) −i ddtψ(t) =
(
h0 idC2 + h3 σ3

)
ψ(t)

Solution:

(i) f(H) = f(|h|)P+ + f(− |h|)P− = P+

(ii) For h = 0,H is a scalarmultiple of the identitymatrix and equation (3) holds. So let us assume
h ̸= 0. Then we first compute the left-hand side:

e−itx(H) = e−it(h0+|h|) P+ + e−it(h0−|h|) P−

=
1

2

(
e−it(h0+|h|) + e−it(h0−|h|)

)
idC2 +

1

2

(
e−it(h0+|h|) − e−it(h0−|h|)

) h · σ
|h|

= e−ith0
(
cos
(
|h| t

)
− i

|h|
sin
(
|h| t

)
h · σ

)
To obtain the right-hand side, we note(

h · σ
)2

=
∑

j,k=1,2,3

hj hk σj σk =
∑

j=1,2,3

h2j σ
2
j +

∑
j,k=1,2,3
j ̸=k

hj hk σj σk

=
∑

j=1,2,3

h2j idC2 +
∑
l=1,2,3

∑
j,k=1,2,3
j ̸=k

hj hk ϵjkl σl = h2,

and thus we identify a pattern in
(
h · σ

)n:(
h · σ

)2n
= |h|2n idC2(

h · σ
)2n+1

=
(
h · σ

)2n
h · σ = |h|2n h · σ
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This means that we can compute the matrix exponential after splitting the sum into even and
odd terms:

e−itH = e−ith0 e−ith·σ = e−ith0
∞∑
n=0

(−it)n
n!

(
h · σ

)n
= e−ith0

∞∑
n=0

(−it)2n
(2n)!

(
h · σ

)2n
+ e−ith0

∞∑
n=0

(−it)2n+1

(2n+ 1)!

(
h · σ

)2n+1

= e−ith0
∞∑
n=0

(−1)n
(|h| t)2n

(2n)!
idC2 −

i
|h|

e−ith0
∞∑
n=0

(−1)n
(|h| t)2n+1

(2n+ 1)!
h · σ

= e−ith0
(
cos
(
|h| t

)
idC2 −

i
|h|

sin
(
|h| t

)
h · σ

)
Thus, left- and right-hand side agree.

(iii) (a)

ψ(t) = etHψ0 = et|h| P+(0, 0, h2, h3) + e−t|h| P−(0, 0, h2, h3)

=
1

2

(
e+t|h| + e−t|h|

)
ψ0 +

1

2

e+t|h| − e−t|h|
|h|

(
h2 σ2 + h3 σ3

)
ψ0

= cosh
(
t |h|

)
ψ0 + sinh

(
t |h|

) (
h2 σ2 + h3 σ3

)
ψ0

(b) ψ(t) = e−itHψ0 = cos
(
t|h2|

)
ψ0 − i h2

|h2|
sin
(
t|h2|

)
σ2ψ0

(c) ψ(t) = e+itHψ0 = e+ith0 cos
(
t|h2|

)
ψ0 + i e+ith0 h3

|h3|
sin
(
t|h3|

)
σ3ψ0
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3. Uncertainty of Gauß functions
Compute the right-hand side of Heisenberg’s uncertainty principle

σψ(x̂)σψ(−iℏ∂x)

in one dimension for
(i) ψλ(x) = 4

√
λ
πe

−λ
2
x2 , λ > 0, and

(ii) φλ(x) = 4

√
λ
πe+ixξ0 e−λ

2
(x−x0)2 , λ > 0, x0, ξ0 ∈ R.

Here, the standard deviation

σψ(H) :=

√
Eψ
((
H − Eψ(H)

)2)
for a selfadjoint operatorH = H∗ with respect to ψ, ∥ψ∥ = 1, is defined as in the lecture notes via
the expectation value

Eψ(H) :=
⟨
ψ,Hψ

⟩
.

Solution:

(i) First of all, since ψ(−x) = ψ(x) the expectation value

Eψλ
(x̂) =

∫
R
dx
√
λ

π
x e−λx2 = 0

necessarily vanishes. Similarly,

Eψλ
(−iℏ∂x) = −iℏ

⟨
ψλ, ∂xψλ

⟩
= −iℏ

⟨
Fψλ,F∂xψλ

⟩
= ℏ

⟨
ψ1/λ, ξ̂ψ1/λ

⟩
= 0

is also 0, because the Fourier transform of a Gaußian is also a Gaußian.
That means we can compute the first standard deviation by partial integration:

σψλ
(x̂)2 = Eψλ

((
x̂− Eψλ

(x̂)
)2)

= Eψλ
(x̂2) =

√
λ

π

∫
R
dxx2 e−λx2

=
1

λ
√
π

∫
R
dxx2 e−x2 =

[
− 1

2λ
√
π
x e−x2

]+∞

−∞
+

1

2λ
√
π

∫
R
dx e−x2 =

1

2λ

To compute the other standarddeviation, wenote that since the Fourier transformof aGaußian
is a Gaußian with inverse width,

(Fψλ)(ξ) =
4

√
λ

π

(
Fe−

λ
2
x2
)
(ξ) =

1
4
√
λπ

e−
1
2λ
ξ2 = ψ1/λ,

we can relate σψλ
(−iℏ∂x) to σψλ

(x̂),

σψλ
(−iℏ∂x)2 = −ℏ2

⟨
ψλ, ∂

2
xψλ

⟩
= −ℏ2

⟨
Fψλ,F∂2xψλ

⟩
= +ℏ2

⟨
Fψ1/λ, ξ̂

2ψ1/λ

⟩
=

ℏ2

2λ−1
.

Hence, ψλ minimizes the uncertainty relation,

σψλ
(x̂) σψλ

(−iℏ∂x) =
1√
2λ

√
ℏ2λ
2

=
ℏ
2
≥ ℏ

2
.
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(ii) We will reuse the results from (i) as much as possible: the mean of φλ is x0:

Eφλ
(x̂) =

∫
R
dxx

∣∣∣e+ixξ0 ψλ(x− x0)
∣∣∣2 = ∫

R
dx (x+ x0)

∣∣ψλ(x)∣∣2
= x0

∥∥ψλ(x)∥∥2 = x0

Hence, the standard deviation of φλ coincides with that of ψλ:

σφλ
(x̂)2 = Eφλ

(
(x̂− x0)

2
)
=

∫
R
dx (x− x0)

2
∣∣∣e+ixξ0 ψλ(x− x0)

∣∣∣2
=

∫
R
dxx2

∣∣ψλ(x)∣∣2 = 1

2λ

Since the Fourier transform intertwines taking derivatives with multiplying by monomials
and maps Gaußians on Gaußians of inverse width,

(Fφλ)(ξ) =
(
Fe+ixξ0 ψλ( · − x0)

)
(ξ) =

(
Fψλ( · − x0)

)
(ξ − ξ0) = e−iξx0 ψ1/λ(ξ − ξ0),

we obtain the same integral (up to ℏ2) where λ is replaced by λ−1,

σφλ
(−iℏ∂x)2 =

ℏ2λ
2
.

Hence, also shifted Gaußians have minimal uncertainty,

σφλ
(x̂) σφλ

(−iℏ∂x) =
ℏ
2
≥ ℏ

2
.
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4. The framework of physical theories (optional)
Identify (1) states, (2) observables and (3) dynamical equations for the following physical theories:
(i) Classical mechanics on Rd

(ii) Classical electromagnetism

Solution:

(i) (1) States: Probability measures on phase space R2d

(2) Observables: Smooth functions on phase space R2d

(3) Dynamical equations: Given ahamiltonian (energy function)h, we can either proposeHamil-
ton’s equations of motion, (

q̇
ṗ

)
=

(
+∇ph
−∇qh

)
,

or equivalently

d
dtf(t) =

{
h, f(t)

}
, f(0) = f,

where {f, g} = ∇pf · ∇qg −∇qf · ∇pg is the Poisson bracket
(ii) (1) States: Electromagnetic fields (E,B), i. e. vector fields on R3 which satisfy the two source

Maxwell equation:

∇ · E = ρ

∇ · B = 0

where ρ is a charge density
(2) Observables: Functionals F(E,B) ∈ R on the fields
(3) Dynamical equations: the dynamical Maxwell equations

∂tE = +∇∧ B− j

∂tB = −∇ ∧ E

where j is the current density
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