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(APM 421 H) (2014.09.12)
Quantum Mechanics for Spin Systems & the Uncertainty Principle

Homework Problems

1. The Pauli matrices

Consider the three Pauli matrices

(01 (0 —i (1 0
91=1\1 o) 2=\ o) 73=\o -1/

3
(i) Prove ooy = ;1 idez +1i Z €ji1 01 Where €1 is the epsilon tensor.
=1
(ii) Prove that any 2 x 2 matrix can be written as the linear combination of the identity and the
three Pauli matrices with coefficients hg and h = (hy, he, h3),

3
Mat(c(Q) SA= (ajk)lgj’kgg = hg idc2 + Z hj o =: ho id(c2 + h-o. (1)
j=1
Hint: Use that Matc(2) is finite-dimensional.
(iii) Now assume that the coefficients hq, ..., hg in equation (1) are real. Show that then the re-

sulting matrix H = hgidc2 + h - o is hermitian. Compute the eigenvalues E1 (hg, h) of H in
terms of the coefficients hg and h.

(iv) Use (i) to prove that for real hy, . .., h3

1 .
2<id<czih|h|a>, h#0€R?, [h] = \/h3 + h3 + B3,

are the projections onto the eigenspaces for the two eigenvalues E (ho, h) of H.

Py(ho,h) =

(v) Compute the trace of H.
3
Note: In physics especially, one frequently writes - o for Z h; o where h = (hy, ha, h3).
j=1



Solution:

(i) This follows from direct computation: for j = k we obtain

while for j < k

In other words, we have shown (i) for j < k.

To show (i) in the remaining cases, we use that the o; = o; are hermitian matrices, and hence
for j < k we obtain

3 *
* . .
O 05 = (O'j O'k) = <5jk1d(c2 +1 Zejkl O'l>
=1

3 3
= jkid(ﬁ—izfjklal: jk:id(C2+iZ€kle'l-
=1 =1
This proves (i).

(ii) The vector space of 2 x 2 matrices is four-dimensional, dim Mat¢ (2) = 4, and seeing as the 4
vectors {id(cz ,01,09, 03} are linearly independent, they form a basis of Mat¢(2).

(iii) In case hg, ..., hs are real,

H* = (hoidgz +h-0)" =hgidez +h -0
:hoid(c2+h'0'=H

is hermitian and we can compute both eigenvalues: the characteristic polynomial of H is
hi+iha A —ho+ hg3

= ((/\ - ho) — hg) (()\ — ho) -+ hg) — (h1 - ihg) (h1 + ihQ)
= (A —ho)? = (AT + h3 +h3) = (A — ho)® — |n[*,

X(A) = det(Xides — H) = det <A —ho—hy  hy—ihy >

and hence, the eigenvalues are E1 (hg, h) = ho £ |h|.
(iv) The product

1 h-o)?
HPj:_(hoidc2+h'U)Pi_h0Pi+2<h'0’:|:< |h(|j) >



involves the square of h - o which can be computed with the help of (i):

3
(h-0)2 = Z hj hy oo
k=1

3
:Zh?idCQ + Z h]’ hkiejkl o]
j=1 7,k,0=1,2,3
J#k

3
= |h|2id(C2 +IZ< Z hj hkiejkl> o] = |h|21d(c2

=1 “j k=123
itk

Hence, we can factor out F and obtain (iv):

2 .
HPi:hoPi—i—;(hvj:m'”;’dCQ)

1/. h-o
:hQPj::l:Ul’ 2<1d(c2:l:|h>

= (ho£|h|) P+ = E+ Py

(v) The trace is just the sum over the diagonal elements of the matrices, and clearly, the Pauli
matrices are all traceless. Hence, we compute

trH = tr(hoidcz + h - o)
3
= hotridCQ + Zhjtraj = 2h0.
j=1



2. Functional calculus for 2 x 2 matrices

Let f be a piecewise continuous function and H = H* a hermitian 2 x 2 matrix. Then define

f(H):=> f(Bs) Py (2)

J==

where E are the eigenvalues of H and Py the two projections from problem 1.
(i) Compute f(H) defined as in equation (2) for H = h - 0, h # 0, and

1 >0
f(x):{o r<0’

(ii) Show that f(H) for f(z) = e~ (defined via (2)) coincides with the matrix exponential, i. e.

f(H) = e itho <cos(h| t) — |]11| sin(|h[t) h - O'> = e itH — i (_;?n H". (3)

n=0
Hint: Use e it(hothao) — g—itho g—ith-o
(iii) Assuming hg, h1, ha, h3 are real, compute v (t) for the initial condition 1(0) = v € C%
@ £v(t) = (hoos + hyo3)y(t)
(b) i§(t) = hao2t(t)
(c) —igw(t) = (hoidcz + hsos)p(t)

Solution:

(i) f(H) = f(|h]) P+ + f(—|h]) P- = P,
(ii) For h = 0, H is a scalar multiple of the identity matrix and equation (3) holds. So let us assume
h # 0. Then we first compute the left-hand side:

efitw(H) — efit(ho+‘h|) P+ + efit(h07|h|) P

_ L (mitthotInl) o g—ittho—InD) 1 L —it(ho+In) _ g—it(ho—ln)) P - @
—5(9 +e >1d(c2+§(e e )W

— e itho (cos(!h! t) — ﬁ sin(|h|t) k- a>
To obtain the right-hand side, we note

(h‘(f)gz Z hjhgojop = Z h?a?—l— Z hjhy oo,

J,k=1,2,3 Jj=1,2,3 J:k=1,2,3
Jj#k
2. 2
= E hj ide2 + E E hj hy €51 00 = h*,
j=1,2,3 1=1,2,3 j,k=1,2,3
Jj#k

and thus we identify a patternin (h - o)":

(h-0)*" = |h)*" idc
(h-0)" = (h-0)"h-c=n*" h-o



This means that we can compute the matrix exponential after splitting the sum into even and
odd terms:

o0 .
e—itH _ g—itho g=ith-o _ o—itho Z (=" (h-o)"

= n!

o0 i1\2n o0 i1\2n+1

_ithg N~ )T o im0 (E) 20l
€ ;0 nyr (o) te 7;) @)
_ithg N qyn (R i ithy N (Ia] )2+
e D e = e 2 S0 g T
= e itho ( cos(|h|t id(cz—L sin(|h|t)h-o
||
Thus, left- and right-hand side agree.
(iii) (a)

U(t) = ey = " P (0,0, ho, hs) + 71" P_(0,0, h, h3)

1 3 1 ettlhl — o—tlhl

= i(e“‘h‘ +e t‘hl) Yo + PR (ha 02 + hg 03) o

= COSh(t |h‘) Yo + Sil’lh(t |h|) (hg o9+ hs 0'3)77[}0

(b) () = e " apy = cos(t|hal) 1o — i |Zz sin(t|ha|) o2t

) . : h
(©) ¥(t) = ey = et cos(t|hy|) 1o + ietitho |h73\ sin(t|ha]) o3t
3



3. Uncertainty of GauR functions

Compute the right-hand side of Heisenberg’s uncertainty principle
oy (2) o (—ihdy )
in one dimension for

(i) Ya(z) = {‘/; -57° A\ >0, and

(i) pa(z) = f/ge“xff) e 2(7770)° \ > 0,20, € R.

Here, the standard deviation

o) = B (1~ Eut)?)

for a selfadjoint operator H = H* with respect to 1, ||¢|| = 1, is defined as in the lecture notes via
the expectation value

Ey(H) := (¢, HY).

Solution:

(i) Firstof all, since ¢)(—z) = 1)(x) the expectation value

Ey, (2 /dx[:pe ra?

necessarily vanishes. Similarly,
By, (—ihdy) = —ih (9, Outhr) = —ih (Fipx, FOxthy)
= h(Wiys, Edryn) =0
is also 0, because the Fourier transform of a Gaulian is also a GauRian.

That means we can compute the first standard deviation by partial integration:

Ty (8)? = By, <(:i" —Ey, (53))2> Ey, (& \/>/ A 22 e

_1/d et _ [ L /dezz_l
UV M W 2>\\f )

To compute the other standard deviation, we note that since the Fourier transform of a Gauian
is a GauRian with inverse width,

(Fa) (&) = 4

3>

x2)(§) = e nt = P1/xs
we can relate o, (—ih0;) to oy, (Z),

Oy (—1h0y)? = —R2 (1hy, 02\ ) = —h* (Fapy, FOby)

. K2
= +h* (Fipyyy, 91, ) = T
Hence, 1), minimizes the uncertainty relation,
. 1 RN h_ h
Ty (8) oy (= 1h6$):ﬁ 72525



(ii) We will reuse the results from (i) as much as possible: the mean of ) is zg:

B () = [ doa e un (o~ an)| = [ do ot a0 [in o)
= ao[[¢a(@)]’

:xo

Hence, the standard deviation of ) coincides with that of ,:

0r ()7 = Epy (& — 20)?) = / dr (2 — )2 [ 5 (& — ) ’
R

1
_ /Rdm2 @) = o

Since the Fourier transform intertwines taking derivatives with multiplying by monomials
and maps Gaullians on Gauflians of inverse width,

(Foa)(€) = (Fet™ 0 hy (-« — 20)) (&) = (Fa(+ — 30)) (€ — &) = e 4% Y1\ (§ — o),
we obtain the same integral (up to 72) where ) is replaced by A~1,

. B2\
O'cp)‘(—lhax)2 = 7

Hence, also shifted Gaulians have minimal uncertainty,

TN (i‘) O-SOA(*ihax) =52

o | St

2



4. The framework of physical theories (optional)
Identify (1) states, (2) observables and (3) dynamical equations for the following physical theories:
(i) Classical mechanics on R?

(ii) Classical electromagnetism

Solution:

(i) (1) States: Probability measures on phase space R??
(2) Observables: Smooth functions on phase space R??

(3) Dynamical equations: Given a hamiltonian (energy function) i, we can either propose Hamil-

ton’s equations of motion,
g\ _ (+Vph
p) -V4h ’
d

SRR UNIO) 70) = 1.

where {f,g} =V, f - V49 — V4 f - Vpg is the Poisson bracket

(ii) (1) States: Electromagnetic fields (E, B), i. e. vector fields on R? which satisfy the two source
Maxwell equation:

or equivalently

V-E=p

V-B=0
where p is a charge density

(2) Observables: Functionals F(E,B) € R on the fields

(3) Dynamical equations: the dynamical Maxwell equations

OE=4+VAB—j
OB =—V AE

where j is the current density



