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Classification of Differential Equations
& Solution to the Exponential Equation

Homework Problems

1. Classification of differential equation (7 points)

Classify the following differential equations: are they ODEs ore PDEs, linear homogeneous, linear-
inhomogeneous or non-linear?

(i) i0u = —0%u + Vu (V is areal-valued function)
(i) o (uQ) =u
(iii) Opu = 02u — Vu+ f(t) (V and f(t) are real-valued functions)
(iv) i0u = —02u + |ul*u
(v) d,u = 0 where u is a function of x and ¢
(vi) Opu + udpu+ 03u =0
(vii) Oru + O, (uz) =0

Solution:

(i) PDE, linear-homogeneous (Schrédinger equation) [1]
(ii) ODE, non-linear [1]
(iii) PDE, linear-inhomogeneous (heat equation with source) [1]
(iv) PDE, non-linear (non-linear Schrédinger equation) [1]
(v) ODE, linear-homogeneous (conservation law) [1]
(vi) PDE, non-linear (Korteveg-de Vries equation) [1]

(vii) PDE, non-linear (Hamilton-Jacobi-type equation) [1]



2. The matrix-valued exponential equation (15 points)

Let H be an x n matrix with complex entries and define the matrix exponential

(We set H? := idc» to the n x n identity matrix.) In (i)-(iii), show that 2(t) = ez solves

z(t) = Hx(t), z(0) = z9 € C". (1)

(i) Show that et et2H — e(titt2)H holds for all ¢1, t5 € R.

(ii) Prove that %e”{ = H e using the definition of the derivative as a limit. (You may inter-
change limits and infinite sums without proof.)

(iii) Show that ®; := e is the flow associated to the ODE (1).

Solution:
(i) Using
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(i) We use the definition of the derivative as a limit:
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(iii) First of all, by (ii) we know z(t) = ez solves (1) with initial condition z:(0) = z¢. [1] Now
we need to verify the three group properties flows possess:
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(2) By, 0 By, = ettt el2H &) ettt — @, .\ [1]

(1) &y =€ = = idcn [1]

(3) B,00, 2 &, , Yiden [1]



3. Dynamics of a classical spin (14 points)

Consider the equation
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where a x b is the usual crossed product of vectors in R and w € R.

(i) Compute the flow.

(ii) Find the solution n(t) for the particular initial condition n(®) = (1,0,0) without explicitly
computing the matrix exponential. (Hint: Work smart, not hard.)

(iii) show |n(t)|| = Hn(O)H, i. e. verify that the length of the spin vector ||n|| := /n-n =
\/n? + n3 + n3 is conserved.
Solution:

(i) The cross product can also be expressed as a matrix:

w ni 0 0 0 O 0 ni
Ol x|n|=|-wn3|=(0 0 —w no | =: Hn
0 ns +wnsy 0 4w O n3
We can explicitly diagonalize the matrix
0.0 0Y) /1 0 0 0 0 0 1 0 0\"
H=10 0 —w|Z|0 Yz 1vz| |0 +Hw 0 0 vz 12
0 4w 0 0 —i/vz i/va) \o 0 —iw) \0 —i/vz i/va
and thus, the matrix exponential is
0 1 0 0 0 0 0 1 0 0\"
=10 Yz Yvalexp|t |0 +Hw O 0 vz 1v2
0 —i/v3 i/v3 0 0 -—iw 0 —ifva iva
0 1 0 0 e 0 0 1 0 0
=0 vz vz 0 etiwt 0 0 Yvz iz
0 —ifva i/va) \o 0 eiet)] \o 15z —i/yz
1 0 0 o 0
e+iwt ie+iwt
=0 Yvz Yz 0 7 73
i . e—lwt l-e—iwt
0 —i/va i/v2 0 S0 s
e 0 0 gt 0 0
= (0 S(efiwterivt) —L(etiwt —eiwt) | = [0 cos(wt) —sin(wt)
0 o(etiwt —eriwt) (el 4 gmivt) 0 sin(wt) cos(wt)

In other words, the spin rotates around the z-axis with frequency w.

(ii) Seeing as



(iii)

we can immediately deduce

n(t) = e n®
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Hence, n; is a conserved quantity.
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e*'" is a rotation matrix, and thus the length of the vector is conserved. We can also compute
this explicitly. First, we derive the square of the length:

& @12 L i) - n) + n(t) )

Now we plug in the definition of 2(t), set e; = (1,0, 0) and use that the vector a x b is orthog-
onal to both, a and b,

n(t) - a(t) = n(t) - (e x n(t)) 2 0.

Thus, % |[n(t)||* = 0 and the length of the vector is conserved. [1]



4. Existence of solutions within domains (4 points)
Determine for which A € C the second-order ODE
d2

has solutions depending on conditions on the function u:

(i) u € C(R) where C(R) is the space of continuous functions on R

(ii) v € C(R) is bounded
(iii) w € Coo(R) where Co (R) are the continuous functions which approach 0 as © — +oo
(iv) u € C([0,1]) and u(0) = 0 = u(1)

Solution:

The solutions to (2) are of the form e“* with A = w? # 0,

d2

Clearly, the exponential function = — e“? is continuous.
For A = 0, in addition to u(z) = 1 = e°%, there is the solution u(z) = z.
(i) The equation has solutions for all A € C. [1]

(ii) e~ is bounded if and only if w € iR is purely imaginary. But then A = i% [w|* = —|w|? is
always real and negative. [1]

(iii) If in addition we assume that u approaches 0 as x — 400, then only the zero function = — 0
is a valid solution. In other words, the equation has only the trivial solution v = 0. [1]

(iv) Since continuous functions u on the interval [0, 1] with «(0) = u(1) can also be thought of as
periodic functions on R, we deduce from (ii) that only w = iwn, n € Z, are admissible (“half
a wavelength” needs to fit into the interval). Thus, we obtain A = —72n?. [1]



