Classification of Differential Equations
 \& Solution to the Exponential Equation

Homework Problems

1. Classification of differential equation (7 points)

Classify the following differential equations: are they ODEs ore PDEs, linear homogeneous, linearinhomogeneous or non-linear?
(i) $\mathrm{i} \partial_{t} u=-\partial_{x}^{2} u+V u$ (V is a real-valued function)
(ii) $\partial_{t}\left(u^{2}\right)=u$
(iii) $\partial_{t} u=\partial_{x}^{2} u-V u+f(t)$ (V and $f(t)$ are real-valued functions)
(iv) $\mathbf{i} \partial_{t} u=-\partial_{x}^{2} u+|u|^{2} u$
(v) $\partial_{x} u=0$ where u is a function of x and t
(vi) $\partial_{t} u+u \partial_{x} u+\partial_{x}^{3} u=0$
(vii) $\partial_{t} u+\partial_{x}\left(u^{2}\right)=0$

Solution:

(i) PDE, linear-homogeneous (Schrödinger equation) [1]
(ii) ODE, non-linear [1]
(iii) PDE, linear-inhomogeneous (heat equation with source) [1]
(iv) PDE, non-linear (non-linear Schrödinger equation) [1]
(v) ODE, linear-homogeneous (conservation law) [1]
(vi) PDE, non-linear (Korteveg-de Vries equation) [1]
(vii) PDE, non-linear (Hamilton-Jacobi-type equation) [1]

2. The matrix-valued exponential equation (15 points)

Let H be a $n \times n$ matrix with complex entries and define the matrix exponential

$$
\mathrm{e}^{t H}:=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} H^{k}
$$

(We set $H^{0}:=\mathrm{id}_{\mathbb{C}^{n}}$ to the $n \times n$ identity matrix.) In (i)-(iii), show that $x(t)=\mathrm{e}^{t H} x_{0}$ solves

$$
\begin{equation*}
\dot{x}(t)=H x(t), \quad x(0)=x_{0} \in \mathbb{C}^{n} \tag{1}
\end{equation*}
$$

(i) Show that $\mathrm{e}^{t_{1} H} \mathrm{e}^{t_{2} H}=\mathrm{e}^{\left(t_{1}+t_{2}\right) H}$ holds for all $t_{1}, t_{2} \in \mathbb{R}$.
(ii) Prove that $\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{e}^{t H}=H \mathrm{e}^{t H}$ using the definition of the derivative as a limit. (You may interchange limits and infinite sums without proof.)
(iii) Show that $\Phi_{t}:=\mathrm{e}^{t H}$ is the flow associated to the ODE (1).

Solution:

(i) Using

$$
\begin{equation*}
\left(t_{1}+t_{2}\right)^{m}=\sum_{k=0}^{m}\binom{m}{k} t_{1}^{k} t_{2}^{m-k} \tag{1}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\mathrm{e}^{t_{1} H} \mathrm{e}^{t_{2} H} & \stackrel{[1]}{=}\left(\sum_{k=0}^{\infty} \frac{t_{1}^{k}}{k!} H^{k}\right)\left(\sum_{j=0}^{\infty} \frac{t_{2}^{j}}{j!} H^{j}\right) \stackrel{[1]}{=} \sum_{m=0}^{\infty} \sum_{j+k=m} \frac{1}{k!} \frac{1}{j!} t_{1}^{k} t_{2}^{j} H^{k+j} \\
& =\sum_{m=0}^{\infty}(\sum_{k=0}^{m} \underbrace{\frac{1}{k!(m-k)!}}_{=\frac{1}{m!}\binom{m}{k}} t_{1}^{k} t_{2}^{m-k}) H^{m} \stackrel{[1]}{=} \sum_{m=0}^{\infty} \frac{1}{m!}\left(\sum_{k=0}^{m}\binom{m}{k} t_{1}^{k} t_{2}^{m-k}\right) H^{m} \\
& \stackrel{[1]}{=} \sum_{m=0}^{\infty} \frac{1}{m!}\left(t_{1}+t_{2}\right)^{m} H^{m} \stackrel{[1]}{=} \mathrm{e}^{\left(t_{1}+t_{2}\right) H} .
\end{aligned}
$$

(ii) We use the definition of the derivative as a limit:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{t H} \stackrel{[1]}{=} \lim _{\delta \rightarrow 0} \frac{1}{\delta}\left(\mathrm{e}^{(t+\delta) H}-\mathrm{e}^{t H}\right) \stackrel{[1]}{=} \lim _{\delta \rightarrow 0} \frac{1}{\delta}\left(\mathrm{e}^{\delta H}-\mathrm{id}_{\mathbb{C}^{n}}\right) \mathrm{e}^{t H} \\
&=\lim _{\delta \rightarrow 0}\left(\sum_{k=1}^{\infty} \frac{\delta^{k-1}}{k!} H^{k}\right) \mathrm{e}^{t H} \stackrel{[1]}{=}\left(H+\lim _{\delta \rightarrow 0} \sum_{k=2}^{\infty} \frac{\delta^{k-1}}{k!} H^{k}\right) \mathrm{e}^{t H} \\
& \stackrel{[1]}{=}\left(H+\sum_{k=2}^{\infty} \lim _{\delta \rightarrow 0} \frac{\delta^{k-1}}{k!} H^{k}\right) \mathrm{e}^{t H} \stackrel{[1]}{=} H \mathrm{e}^{t H} .
\end{aligned}
$$

(iii) First of all, by (ii) we know $x(t)=\mathrm{e}^{t H} x_{0}$ solves (1) with initial condition $x(0)=x_{0}$. [1] Now we need to verify the three group properties flows possess:
(1) $\Phi_{0}=\mathrm{e}^{0 H}=\sum_{k=0}^{\infty} \frac{0^{k}}{k!} H^{k}=\mathrm{id}_{\mathbb{C}^{n}}[1]$
(2) $\Phi_{t_{1}} \circ \Phi_{t_{2}}=\mathrm{e}^{t_{1} H} \mathrm{e}^{t_{2} H} \stackrel{(i i)}{=} \mathrm{e}^{\left(t_{1}+t_{2}\right) H}=\Phi_{t_{1}+t_{2}}[1]$
(3) $\Phi_{t} \circ \Phi_{-t} \stackrel{(2)}{=} \Phi_{t-t} \stackrel{(1)}{=} \mathrm{id}_{\mathbb{C}^{n}}[1]$

3. Dynamics of a classical spin (14 points)

Consider the equation

$$
\left(\begin{array}{c}
\dot{n}_{1} \\
\dot{n}_{2} \\
\dot{n}_{3}
\end{array}\right)=\left(\begin{array}{c}
\omega \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right), \quad n(0)=n^{(0)} \in \mathbb{R}^{3}
$$

where $a \times b$ is the usual crossed product of vectors in \mathbb{R}^{3} and $\omega \in \mathbb{R}$.
(i) Compute the flow.
(ii) Find the solution $n(t)$ for the particular initial condition $n^{(0)}=(1,0,0)$ without explicitly computing the matrix exponential. (Hint: Work smart, not hard.)
(iii) Show $\|n(t)\|=\left\|n^{(0)}\right\|$, i. e. verify that the length of the spin vector $\|n\|:=\sqrt{n \cdot n}=$ $\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}$ is conserved.

Solution:

(i) The cross product can also be expressed as a matrix:

$$
\left(\begin{array}{c}
\omega \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-\omega n_{3} \\
+\omega n_{2}
\end{array}\right) \stackrel{[1]}{=}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\omega \\
0 & +\omega & 0
\end{array}\right)\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=: H n
$$

We can explicitly diagonalize the matrix

$$
H=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\omega \\
0 & +\omega & 0
\end{array}\right) \stackrel{[3]}{=}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\mathrm{i} / \sqrt{2} & \mathrm{i} / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & +\mathrm{i} \omega & 0 \\
0 & 0 & -\mathrm{i} \omega
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\mathrm{i} / \sqrt{2} & \mathrm{i} / \sqrt{2}
\end{array}\right)^{*}
$$

and thus, the matrix exponential is

$$
\begin{aligned}
\mathrm{e}^{t H} & \stackrel{[1]}{=}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\mathrm{i} / \sqrt{2} & \mathrm{i} / \sqrt{2}
\end{array}\right) \exp \left(t\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & +\mathrm{i} \omega & 0 \\
0 & 0 & -\mathrm{i} \omega
\end{array}\right)\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\mathrm{i} / \sqrt{2} & \mathrm{i} / \sqrt{2}
\end{array}\right) \\
& \stackrel{[1]}{=}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\mathrm{i} / \sqrt{2} & \mathrm{i} / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
\mathrm{e}^{0} & 0 & 0 \\
0 & \mathrm{e}^{+\mathrm{i} \omega t} & 0 \\
0 & 0 & \mathrm{e}^{-\mathrm{i} \omega t}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & \mathrm{i} / \sqrt{2} \\
0 & 1 / \sqrt{2} & -\mathrm{i} / \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\mathrm{i} / \sqrt{2} & \mathrm{i} / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\mathrm{e}^{\mathrm{i} \omega t}}{\sqrt{2}} & \frac{\mathrm{i} \mathrm{e}^{+\mathrm{i} \omega t}}{\sqrt{2}} \\
0 & \frac{\mathrm{e}^{-\mathrm{i} \omega t}}{\sqrt{2}} & -\frac{\mathrm{i} \mathrm{e}^{-\mathrm{i} \omega t}}{\sqrt{2}}
\end{array}\right) \\
& \stackrel{[1]}{=}\left(\begin{array}{ccc}
1 & \frac{1}{2}\left(\mathrm{e}^{+\mathrm{i} \omega t}+\mathrm{e}^{-\mathrm{i} \omega t}\right) & -\frac{1}{\mathrm{i} 2}\left(\mathrm{e}^{\mathrm{i} \mathrm{i} \omega t}-\mathrm{e}^{-\mathrm{i} \omega t}\right) \\
0 & \frac{1}{\mathrm{i} 2}\left(\mathrm{e}^{+\mathrm{i} \omega t}-\mathrm{e}^{-\mathrm{i} \omega t}\right) & \frac{1}{2}\left(\mathrm{e}^{+\mathrm{i} \omega t}+\mathrm{e}^{-\mathrm{i} \omega t}\right)
\end{array}\right) \stackrel{[1]}{=}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\omega t) & -\sin (\omega t) \\
0 & \sin (\omega t) & \cos (\omega t)
\end{array}\right) .
\end{aligned}
$$

In other words, the spin rotates around the x_{1}-axis with frequency ω.
(ii) Seeing as

$$
H\left(\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
\omega \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0
$$

we can immediately deduce

$$
n(t)=\mathrm{e}^{t H} n^{(0)} \stackrel{[1]}{=} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} H^{k} n^{(0)}=\frac{t^{0}}{0!} n^{(0)}+0=n^{(0)} \stackrel{[1]}{=}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Hence, n_{1} is a conserved quantity.
(iii) $\mathrm{e}^{t H}$ is a rotation matrix, and thus the length of the vector is conserved. We can also compute this explicitly. First, we derive the square of the length:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|n(t)\|^{2} \stackrel{[1]}{=} \dot{n}(t) \cdot n(t)+n(t) \cdot \dot{n}(t)
$$

Now we plug in the definition of $\dot{n}(t)$, set $e_{1}=(1,0,0)$ and use that the vector $a \times b$ is orthogonal to both, a and b,

$$
n(t) \cdot \dot{n}(t)=n(t) \cdot\left(e_{1} \times n(t)\right) \stackrel{[1]}{=} 0
$$

Thus, $\frac{\mathrm{d}}{\mathrm{d} t}\|n(t)\|^{2}=0$ and the length of the vector is conserved. [1]

4. Existence of solutions within domains (4 points)

Determine for which $\lambda \in \mathbb{C}$ the second-order ODE

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} u=\lambda u \tag{2}
\end{equation*}
$$

has solutions depending on conditions on the function u :
(i) $u \in \mathcal{C}(\mathbb{R})$ where $\mathcal{C}(\mathbb{R})$ is the space of continuous functions on \mathbb{R}
(ii) $u \in \mathcal{C}(\mathbb{R})$ is bounded
(iii) $u \in \mathcal{C}_{\infty}(\mathbb{R})$ where $\mathcal{C}_{\infty}(\mathbb{R})$ are the continuous functions which approach 0 as $x \rightarrow \pm \infty$
(iv) $u \in \mathcal{C}([0,1])$ and $u(0)=0=u(1)$

Solution:

The solutions to (2) are of the form $\mathrm{e}^{\omega x}$ with $\lambda=\omega^{2} \neq 0$,

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \mathrm{e}^{\omega x}=\omega^{2} \mathrm{e}^{\omega x}
$$

Clearly, the exponential function $x \mapsto \mathrm{e}^{\omega x}$ is continuous.
For $\lambda=0$, in addition to $u(x)=1=\mathrm{e}^{0 x}$, there is the solution $u(x)=x$.
(i) The equation has solutions for all $\lambda \in \mathbb{C}$. [1]
(ii) $\mathrm{e}^{\omega x}$ is bounded if and only if $\omega \in \mathrm{i} \mathbb{R}$ is purely imaginary. But then $\lambda=\mathrm{i}^{2}|\omega|^{2}=-|\omega|^{2}$ is always real and negative. [1]
(iii) If in addition we assume that u approaches 0 as $x \rightarrow \pm \infty$, then only the zero function $x \mapsto 0$ is a valid solution. In other words, the equation has only the trivial solution $u=0$. [1]
(iv) Since continuous functions u on the interval $[0,1]$ with $u(0)=u(1)$ can also be thought of as periodic functions on \mathbb{R}, we deduce from (ii) that only $\omega=\mathrm{i} \pi n, n \in \mathbb{Z}$, are admissible ("half a wavelength" needs to fit into the interval). Thus, we obtain $\lambda=-\pi^{2} n^{2}$. [1]

