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Classification of Differential Equations
& Solution to the Exponential Equation

Homework Problems

1. Classification of differential equation (7 points)
Classify the following differential equations: are they ODEs ore PDEs, linear homogeneous, linear-
inhomogeneous or non-linear?
(i) i∂tu = −∂2

xu+ V u (V is a real-valued function)
(ii) ∂t

(
u2
)
= u

(iii) ∂tu = ∂2
xu− V u+ f(t) (V and f(t) are real-valued functions)

(iv) i∂tu = −∂2
xu+ |u|2 u

(v) ∂xu = 0 where u is a function of x and t

(vi) ∂tu+ u ∂xu+ ∂3
xu = 0

(vii) ∂tu+ ∂x
(
u2
)
= 0

Solution:

(i) PDE, linear-homogeneous (Schrödinger equation) [1]
(ii) ODE, non-linear [1]
(iii) PDE, linear-inhomogeneous (heat equation with source) [1]
(iv) PDE, non-linear (non-linear Schrödinger equation) [1]
(v) ODE, linear-homogeneous (conservation law) [1]
(vi) PDE, non-linear (Korteveg–de Vries equation) [1]
(vii) PDE, non-linear (Hamilton-Jacobi-type equation) [1]
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2. The matrix-valued exponential equation (15 points)
LetH be a n× nmatrix with complex entries and define the matrix exponential

etH :=

∞∑
k=0

tk

k!
Hk.

(We setH0 := idCn to the n× n identity matrix.) In (i)–(iii), show that x(t) = etHx0 solves

ẋ(t) = Hx(t), x(0) = x0 ∈ Cn. (1)

(i) Show that et1H et2H = e(t1+t2)H holds for all t1, t2 ∈ R.
(ii) Prove that d

dte
tH = H etH using the definition of the derivative as a limit. (You may inter-

change limits and infinite sums without proof.)
(iii) Show that Φt := etH is the flow associated to the ODE (1).

Solution:

(i) Using

(t1 + t2)
m =

m∑
k=0

(
m

k

)
tk1 t

m−k
2 [1]

we obtain

et1H et2H [1]
=

( ∞∑
k=0

tk1
k!
Hk

)( ∞∑
j=0

tj2
j!
Hj

)
[1]
=

∞∑
m=0

∑
j+k=m

1

k!

1

j!
tk1 t

j
2H

k+j

=

∞∑
m=0

(
m∑
k=0

1

k!(m− k)!︸ ︷︷ ︸
= 1

m! (
m
k )

tk1 t
m−k
2

)
Hm [1]

=

∞∑
m=0

1

m!

(
m∑
k=0

(
m

k

)
tk1 t

m−k
2

)
Hm

[1]
=

∞∑
m=0

1

m!
(t1 + t2)

mHm [1]
= e(t1+t2)H .

(ii) We use the definition of the derivative as a limit:
d
dte

tH [1]
= lim

δ→0

1

δ

(
e(t+δ)H − etH

)
[1]
= lim

δ→0

1

δ

(
eδH − idCn

)
etH

= lim
δ→0

( ∞∑
k=1

δk−1

k!
Hk

)
etH [1]

=

(
H + lim

δ→0

∞∑
k=2

δk−1

k!
Hk

)
etH

[1]
=

(
H +

∞∑
k=2

lim
δ→0

δk−1

k!
Hk

)
etH [1]

= H etH .

(iii) First of all, by (ii) we know x(t) = etHx0 solves (1) with initial condition x(0) = x0. [1] Now
we need to verify the three group properties flows possess:

(1) Φ0 = e0H =

∞∑
k=0

0k

k!
Hk = idCn [1]

(2) Φt1 ◦ Φt2 = et1H et2H (ii)
= e(t1+t2)H = Φt1+t2 [1]

(3) Φt ◦ Φ−t
(2)
= Φt−t

(1)
= idCn [1]
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3. Dynamics of a classical spin (14 points)
Consider the equationṅ1

ṅ2

ṅ3

 =

ω
0
0

×

n1

n2

n3

 , n(0) = n(0) ∈ R3,

where a× b is the usual crossed product of vectors in R3 and ω ∈ R.
(i) Compute the flow.
(ii) Find the solution n(t) for the particular initial condition n(0) = (1, 0, 0) without explicitly

computing the matrix exponential. (Hint: Work smart, not hard.)
(iii) Show

∥∥n(t)∥∥ =
∥∥n(0)

∥∥, i. e. verify that the length of the spin vector ∥n∥ :=
√
n · n =√

n2
1 + n2

2 + n2
3 is conserved.

Solution:

(i) The cross product can also be expressed as a matrix:ω
0
0

×

n1

n2

n3

 =

 0
−ω n3

+ω n2

 [1]
=

0 0 0
0 0 −ω
0 +ω 0

n1

n2

n3

 =: Hn

We can explicitly diagonalize the matrix

H =

0 0 0
0 0 −ω
0 +ω 0

 [3]
=

1 0 0
0 1/

√
2 1/

√
2

0 −i/
√
2 i/

√
2

 0 0 0
0 +iω 0
0 0 −iω

 1 0 0
0 1/

√
2 1/

√
2

0 −i/
√
2 i/

√
2

∗

and thus, the matrix exponential is

etH [1]
=

1 0 0
0 1/

√
2 1/

√
2

0 −i/
√
2 i/

√
2

 exp

t

0 0 0
0 +iω 0
0 0 −iω

 1 0 0
0 1/

√
2 1/

√
2

0 −i/
√
2 i/

√
2

∗

[1]
=

1 0 0
0 1/

√
2 1/

√
2

0 −i/
√
2 i/

√
2

 e0 0 0
0 e+iωt 0
0 0 e−iωt

 1 0 0
0 1/

√
2 i/

√
2

0 1/
√
2 −i/

√
2


=

1 0 0
0 1/

√
2 1/

√
2

0 −i/
√
2 i/

√
2


1 0 0

0 e+iωt
√
2

i e+iωt
√
2

0 e−iωt
√
2

− i e−iωt
√
2


[1]
=

1 0 0
0 1

2

(
e+iωt + e−iωt) − 1

i2
(
e+iωt − e−iωt)

0 1
i2
(
e+iωt − e−iωt) 1

2

(
e+iωt + e−iωt)

 [1]
=

1 0 0
0 cos(ωt) − sin(ωt)
0 sin(ωt) cos(ωt)

 .

In other words, the spin rotates around the x1-axis with frequency ω.
(ii) Seeing as

H

1
0
0

 =

ω
0
0

×

1
0
0

 = 0, [1]
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we can immediately deduce

n(t) = etHn(0) [1]
=

∞∑
k=0

tk

k!
Hkn(0) =

t0

0!
n(0) + 0 = n(0) [1]

=

1
0
0

 .

Hence, n1 is a conserved quantity.
(iii) etH is a rotation matrix, and thus the length of the vector is conserved. We can also compute

this explicitly. First, we derive the square of the length:

d
dt ∥n(t)∥

2 [1]
= ṅ(t) · n(t) + n(t) · ṅ(t)

Now we plug in the definition of ṅ(t), set e1 = (1, 0, 0) and use that the vector a× b is orthog-
onal to both, a and b,

n(t) · ṅ(t) = n(t) ·
(
e1 × n(t)

) [1]
= 0.

Thus, d
dt ∥n(t)∥

2 = 0 and the length of the vector is conserved. [1]
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4. Existence of solutions within domains (4 points)
Determine for which λ ∈ C the second-order ODE

d2

dx2u = λu (2)

has solutions depending on conditions on the function u:
(i) u ∈ C(R) where C(R) is the space of continuous functions on R
(ii) u ∈ C(R) is bounded
(iii) u ∈ C∞(R) where C∞(R) are the continuous functions which approach 0 as x → ±∞
(iv) u ∈ C([0, 1]) and u(0) = 0 = u(1)

Solution:
The solutions to (2) are of the form eωx with λ = ω2 ̸= 0,

d2

dx2 e
ωx = ω2 eωx.

Clearly, the exponential function x 7→ eωx is continuous.
For λ = 0, in addition to u(x) = 1 = e0x, there is the solution u(x) = x.
(i) The equation has solutions for all λ ∈ C. [1]
(ii) eωx is bounded if and only if ω ∈ iR is purely imaginary. But then λ = i2 |ω|2 = − |ω|2 is

always real and negative. [1]
(iii) If in addition we assume that u approaches 0 as x → ±∞, then only the zero function x 7→ 0

is a valid solution. In other words, the equation has only the trivial solution u = 0. [1]
(iv) Since continuous functions u on the interval [0, 1] with u(0) = u(1) can also be thought of as

periodic functions on R, we deduce from (ii) that only ω = iπn, n ∈ Z, are admissible (“half
a wavelength” needs to fit into the interval). Thus, we obtain λ = −π2 n2. [1]
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