Quantum Mechanics
 (APM 421 H)

Quantum Mechanics for Spin Systems \& the Uncertainty Principle

Homework Problems

1. The Pauli matrices

Consider the three Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
+\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(i) Prove $\sigma_{j} \sigma_{k}=\delta_{j k} \mathrm{id}_{\mathbb{C}^{2}}+\mathrm{i} \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l}$ where $\epsilon_{j k l}$ is the epsilon tensor.
(ii) Prove that any 2×2 matrix can be written as the linear combination of the identity and the three Pauli matrices with coefficients h_{0} and $h=\left(h_{1}, h_{2}, h_{3}\right)$,

$$
\begin{equation*}
\operatorname{Mat}_{\mathbb{C}}(2) \ni A=\left(a_{j k}\right)_{1 \leq j, k \leq 2}=h_{0} \operatorname{id}_{\mathbb{C}^{2}}+\sum_{j=1}^{3} h_{j} \sigma_{j}=: h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma \tag{1}
\end{equation*}
$$

Hint: Use that Mat $_{\mathbb{C}}(2)$ is finite-dimensional.
(iii) Now assume that the coefficients h_{0}, \ldots, h_{3} in equation (1) are real. Show that then the resulting matrix $H=h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma$ is hermitian. Compute the eigenvalues $E_{ \pm}\left(h_{0}, h\right)$ of H in terms of the coefficients h_{0} and h.
(iv) Use (i) to prove that for real h_{0}, \ldots, h_{3}

$$
P_{ \pm}\left(h_{0}, h\right)=\frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}} \pm \frac{h \cdot \sigma}{|h|}\right), \quad h \neq 0 \in \mathbb{R}^{3},|h|:=\sqrt{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}}
$$

are the projections onto the eigenspaces for the two eigenvalues $E_{ \pm}\left(h_{0}, h\right)$ of H.
(v) Compute the trace of H.

Note: In physics especially, one frequently writes $h \cdot \sigma$ for $\sum_{j=1}^{3} h_{j} \sigma_{j}$ where $h=\left(h_{1}, h_{2}, h_{3}\right)$.

2. Functional calculus for 2×2 matrices

Let f be a piecewise continuous function and $H=H^{*}$ a hermitian 2×2 matrix. Then define

$$
\begin{equation*}
f(H):=\sum_{j= \pm} f\left(E_{ \pm}\right) P_{ \pm} \tag{2}
\end{equation*}
$$

where $E_{ \pm}$are the eigenvalues of H and $P_{ \pm}$the two projections from problem 1.
(i) Compute $f(H)$ defined as in equation (2) for $H=h \cdot \sigma, h \neq 0$, and

$$
f(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

(ii) Show that $f(H)$ for $f(x)=\mathrm{e}^{-\mathrm{i} t x}$ (defined via (2)) coincides with the matrix exponential, i. e.

$$
\begin{equation*}
f(H)=\mathrm{e}^{-\mathrm{i} t h_{0}}\left(\cos (|h| t)-\frac{\mathrm{i}}{|h|} \sin (|h| t) h \cdot \sigma\right)=\mathrm{e}^{-\mathrm{i} t H}=\sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{n}}{n!} H^{n} \tag{3}
\end{equation*}
$$

Hint: Use $\mathrm{e}^{-\mathrm{i} t\left(h_{0}+h \cdot \sigma\right)}=\mathrm{e}^{-\mathrm{i} t h_{0}} \mathrm{e}^{-\mathrm{i} t h \cdot \sigma}$.
(iii) Assuming $h_{0}, h_{1}, h_{2}, h_{3}$ are real, compute $\psi(t)$ for the initial condition $\psi(0)=\psi_{0} \in \mathbb{C}^{2}$:
(a) $\frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\left(h_{2} \sigma_{2}+h_{3} \sigma_{3}\right) \psi(t)$
(b) $\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=h_{2} \sigma_{2} \psi(t)$
(c) $-\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\left(h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h_{3} \sigma_{3}\right) \psi(t)$

3. Uncertainty of Gauß functions

Compute the right-hand side of Heisenberg's uncertainty principle

$$
\sigma_{\psi}(\hat{x}) \sigma_{\psi}\left(-\mathbf{i} \hbar \partial_{x}\right)
$$

in one dimension for
(i) $\psi_{\lambda}(x)=\sqrt[4]{\frac{\lambda}{\pi}} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}, \lambda>0$, and
(ii) $\varphi_{\lambda}(x)=\sqrt[4]{\frac{\lambda}{\pi}} \mathrm{e}^{+\mathrm{i} x \xi_{0}} \mathrm{e}^{-\frac{\lambda}{2}\left(x-x_{0}\right)^{2}}, \lambda>0, x_{0}, \xi_{0} \in \mathbb{R}$.

Here, the standard deviation

$$
\sigma_{\psi}(H):=\sqrt{\mathbb{E}_{\psi}\left(\left(H-\mathbb{E}_{\psi}(H)\right)^{2}\right)}
$$

for a selfadjoint operator $H=H^{*}$ with respect to $\psi,\|\psi\|=1$, is defined as in the lecture notes via the expectation value

$$
\mathbb{E}_{\psi}(H):=\langle\psi, H \psi\rangle
$$

4. The framework of physical theories (optional)

Identify (1) states, (2) observables and (3) dynamical equations for the following physical theories:
(i) Classical mechanics on \mathbb{R}^{d}
(ii) Classical electromagnetism

Hand in home work on: Friday, 19 September 2014, before class

