

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 1 (2014.09.12)

Quantum Mechanics for Spin Systems & the Uncertainty Principle

Homework Problems

1. The Pauli matrices

Consider the three Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -\mathbf{i} \\ +\mathbf{i} & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (i) Prove $\sigma_j \sigma_k = \delta_{jk} \operatorname{id}_{\mathbb{C}^2} + \operatorname{i} \sum_{l=1}^3 \epsilon_{jkl} \sigma_l$ where ϵ_{jkl} is the epsilon tensor.
- (ii) Prove that any 2×2 matrix can be written as the linear combination of the identity and the three Pauli matrices with coefficients h_0 and $h = (h_1, h_2, h_3)$,

$$\operatorname{Mat}_{\mathbb{C}}(2) \ni A = (a_{jk})_{1 \le j,k \le 2} = h_0 \operatorname{id}_{\mathbb{C}^2} + \sum_{j=1}^3 h_j \,\sigma_j =: h_0 \operatorname{id}_{\mathbb{C}^2} + h \cdot \sigma.$$
(1)

Hint: Use that $Mat_{\mathbb{C}}(2)$ is finite-dimensional.

- (iii) Now assume that the coefficients h_0, \ldots, h_3 in equation (1) are real. Show that then the resulting matrix $H = h_0 \operatorname{id}_{\mathbb{C}^2} + h \cdot \sigma$ is hermitian. Compute the eigenvalues $E_{\pm}(h_0, h)$ of H in terms of the coefficients h_0 and h.
- (iv) Use (i) to prove that for real h_0, \ldots, h_3

$$P_{\pm}(h_0,h) = \frac{1}{2} \left(\mathrm{id}_{\mathbb{C}^2} \pm \frac{h \cdot \sigma}{|h|} \right), \qquad h \neq 0 \in \mathbb{R}^3, \ |h| := \sqrt{h_1^2 + h_2^2 + h_3^2},$$

are the projections onto the eigenspaces for the two eigenvalues $E_{\pm}(h_0,h)$ of H.

(v) Compute the trace of *H*.

Note: In physics especially, one frequently writes $h \cdot \sigma$ for $\sum_{j=1}^{3} h_j \sigma_j$ where $h = (h_1, h_2, h_3)$.

2. Functional calculus for 2×2 matrices

Let *f* be a piecewise continuous function and $H = H^*$ a hermitian 2×2 matrix. Then define

$$f(H) := \sum_{j=\pm} f(E_{\pm}) P_{\pm}$$
 (2)

where E_{\pm} are the eigenvalues of H and P_{\pm} the two projections from problem 1.

(i) Compute f(H) defined as in equation (2) for $H = h \cdot \sigma$, $h \neq 0$, and

$$f(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}.$$

(ii) Show that f(H) for $f(x) = e^{-itx}$ (defined via (2)) coincides with the matrix exponential, i. e.

$$f(H) = e^{-ith_0} \left(\cos(|h|t) - \frac{i}{|h|} \sin(|h|t) h \cdot \sigma \right) = e^{-itH} = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} H^n.$$
(3)

Hint: Use $e^{-it(h_0+h\cdot\sigma)} = e^{-ith_0} e^{-ith\cdot\sigma}$.

- (iii) Assuming h_0, h_1, h_2, h_3 are real, compute $\psi(t)$ for the initial condition $\psi(0) = \psi_0 \in \mathbb{C}^2$:
 - (a) $\frac{d}{dt}\psi(t) = (h_2 \sigma_2 + h_3 \sigma_3)\psi(t)$

(b)
$$i \frac{d}{dt} \psi(t) = h_2 \sigma_2 \psi(t)$$

(c) $-\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\psi(t) = (h_0\,\mathrm{i}\mathrm{d}_{\mathbb{C}^2} + h_3\,\sigma_3)\psi(t)$

3. Uncertainty of Gauß functions

Compute the right-hand side of Heisenberg's uncertainty principle

$$\sigma_{\psi}(\hat{x}) \sigma_{\psi}(-i\hbar\partial_x)$$

in one dimension for

(i)
$$\psi_{\lambda}(x) = \sqrt[4]{\frac{\lambda}{\pi}} e^{-\frac{\lambda}{2}x^2}, \lambda > 0$$
, and
(ii) $\varphi_{\lambda}(x) = \sqrt[4]{\frac{\lambda}{\pi}} e^{+ix\xi_0} e^{-\frac{\lambda}{2}(x-x_0)^2}, \lambda > 0, x_0, \xi_0 \in \mathbb{R}$

Here, the standard deviation

$$\sigma_{\psi}(H) := \sqrt{\mathbb{E}_{\psi}\Big(\big(H - \mathbb{E}_{\psi}(H)\big)^2\Big)}$$

for a selfadjoint operator $H = H^*$ with respect to ψ , $\|\psi\| = 1$, is defined as in the lecture notes via the expectation value

$$\mathbb{E}_{\psi}(H) := \langle \psi, H\psi \rangle.$$

4. The framework of physical theories (optional)

Identify (1) states, (2) observables and (3) dynamical equations for the following physical theories:

- (i) Classical mechanics on \mathbb{R}^d
- (ii) Classical electromagnetism

Hand in home work on: Friday, 19 September 2014, before class