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5. Weighted L2-spaces (16 points)
Let µ ∈ L∞(Rd) be a function bounded away from 0 and+∞, i. e. there exist c, C > 0 such that

0 < c ≤ µ(x) ≤ C < +∞

holds for almost all x ∈ Rd. Define the weighted L2-space L2
µ(Rd) as the pre-Hilbert space with

scalar product

⟨f, g⟩µ :=

∫
Rd

dxµ(x) f(x) g(x) (1)

so that ∥f∥µ :=
√

⟨f, f⟩µ <∞.

The standard (unweighted) L2(Rd) space is defined as usual, i. e. we set µ(x) = 1 in the above.
(i) Show that f ∈ L2(Rd) if and only if f ∈ L2

µ(Rd).
(ii) Show that the map

Uµ : L2
µ(Rd) −→ L2(Rd) , f 7→ √

µf ,

is norm-preserving, i. e. ∥f∥µ = ∥Uµf∥L2(Rd) holds for all f ∈ L2(Rd).

(iii) Show that L2
µ(Rd) is indeed a Hilbert space, i. e. prove that it is complete.

Solution:

(i) “⇒:” Let f ∈ L2(Rd). Then by definition ∥f∥ <∞, and hence also

∥f∥2µ
[1]
=

∫
R3

dxµ(x)
∣∣f(x)∣∣2 [1]

≤
∫
R3

dxC
∣∣f(x)∣∣2 [1]

= C∥f∥2 <∞ .

“⇐:” Now assume f ∈ L2
µ(Rd). Since 0 < 1/µ(x) ≤ 1/c < +∞, we deduce

∥f∥2 [1]
=

∫
R3

dx
∣∣f(x)∣∣2 = ∫

R3

dx µ(x)
µ(x)

∣∣f(x)∣∣2
[1]

≤ c−1

∫
R3

dxµ(x)
∣∣f(x)∣∣2 [1]

= c−1 ∥f∥2µ .
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(ii) Let f ∈ L2(Rd). Then we compute∥∥Uµf
∥∥2
L2(Rd)

[1]
= ⟨√µf,√µf⟩L2(Rd) =

∫
Rd

dx
∣∣√µ(x) f(x)∣∣2

[1]
=

∫
Rd

dxµ(x)
∣∣f(x)∣∣2 = ⟨f, f⟩µ

[1]
= ∥f∥2µ .

Hence, Uµ is norm-preserving.
(iii) Let {fj}j∈N be a Cauchy sequence inL2

µ(Rd) [1]. That means
{
Uµfj

}
j∈N is a Cauchy sequence

in L2(Rd) [1]. Seeing as L2(Rd) is complete, Uµfj converges to some g ∈ L2(Rd) [1].
Since Uµ is norm-preserving and linear, it is also invertible [1]. Moreover, the inverse U−1

µ =

Uµ−1 : L2(Rd) −→ L2
µ(Rd) is also norm-preserving by (ii) [1].

Thus, fj converges to U−1
µ g in L2

µ(Rd) [1],∥∥fj − U−1
µ g

∥∥
µ
=

∥∥U−1
µ

(
Uµfj − g

)∥∥
µ

(ii)
=

∥∥Uµfj − g
∥∥
L2(Rd)

j→∞−−−→ 0 .

Hence, L2
µ(Rd) is complete, and thus a Hilbert space [1].
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6. Decomposition of L2(R2) into symmetric and anti-symmetric part (20 points)
A function f : R2 −→ C is called symmetric if f(x, y) = f(y, x) and antisymmetric if f(x, y) =
−f(y, x) hold for all x, y ∈ R.
(i) Show that L2

s (R2) :=
{
f ∈ L2(R2) | f symmetric

}
is a closed (linear) subspace of L2(R2),

i. e. prove that L2
s (R2) is a linear subspace of the Hilbert space L2(R2), and that Cauchy se-

quences in L2
s (R2) converge in L2

s (R2).
Remark: Also L2

as(R2) :=
{
f ∈ L2(R2) | f antisymmetric

}
is a closed subspace of L2(R2).

(ii) Show that any f ∈ L2(R2) can be uniquely decomposed f = fs + fas into a symmetric part
fs ∈ L2

a(R2) and an antisymmetric part fas ∈ L2
as(R2).

(iii) What is the physical significance of L2
s (R2) and L2

as(R2)?

Solution:

(i) It is clear that L2
s (R2) is a vector space with scalar product [1]. We just have to show that

Cauchy sequences {fn}n∈N ⊂ L2
s (R2) converge in L2

s (R2), i. e. that limits of symmetric func-
tions are symmetric [1]. However, we do know that fn → f converges in L2(R2) to some
function f , because L2(R2) is a Hilbert space, and Hilbert spaces are complete [1]. Moreover,
let us systematically use the notation f̃(x, y) := f(y, x).
Then we have ∥∥f̃ − f

∥∥ [1]

≤
∥∥f̃ − f̃

∥∥+
∥∥f̃n − fn

∥∥+
∥∥fn − f

∥∥
L2 .

We know that f̃n = fn since the fn are symmetric, and we deduce that the term in the middle
vanishes identically [1]. Moreover, we have∥∥f̃ − f̃n

∥∥
L2

[1]
=

∫
R2

dx dy
∣∣f̃(x, y)− f̃n(x, y)

∣∣2
[1]
=

∫
R2

dx dy
∣∣f(y, x)− fn(y, x)

∣∣2
[1]
=

∥∥f − fn
∥∥
L2 ,

and consequently

∥∥f̃ − f
∥∥ [1]

≤ 2
∥∥fn − f

∥∥.
Since the right-hand side goes to 0 as n→ ∞, we know that f̃ = f holds, the limit function is
symmetric [1].

(ii) Any function f on R2 can be split

fs(x, y)
[1]
= 1

2

(
f(x, y) + f(y, x)

)
fas(x, y)

[1]
= 1

2

(
f(x, y)− f(y, x)

)
into symmetric and antisymmetric part, f = fs+ fas [1]. By the triangle inequality, fs and fas
are again square-integrable, e. g.

∥fs∥ ≤ 1
2∥f∥+

1
2∥f̃∥ = ∥f∥ [1]

and analogously for fas.
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It remains to show that the decomposition is unique [1]. Assume f = gs + gas is another
decomposition of f into symmetric and antisymmetric part. Then we subtract the two de-
compositions from one another:(

fs − gs
)
(x, y) +

(
fas − gas

)
(x, y)

[1]
= 0

After adding the above equation for (x, y) to that evaluated (y, x), and exploiting the symme-
try and antisymmetry of the terms, one deduces that

fs(x, y)
[1]
= gs(x, y)

holds for almost all x, y ∈ R. A similar argument yields that fas(x, y) = gas(x, y) almost
everywhere [1], and hence, the decomposition is unique [1].

(iii) L2(R2) can be seen as the Hilbert space of two quantum particles moving in R [1]. Quantum
particles are either bosons or fermions, and the two particle species can be distinguished from
one another in multiparticle systems: the wave functions of bosonic particles are symmetric,
ψ(x, y) = ψ(y, x) [1] while fermionic wave functions satisfy ψ(x, y) = −ψ(y, x) [1].
The above decomposition tells us that fermionic and bosonic wave functions live in different
sub spaces, and if these sub spaces were not closed, then one could not distinguish between
bosons and fermions in practice: if there existed a sequence of symmetric (bosonic) wave
functions ψn which converged to an antisymmetric (fermionic) wave function ψ, then one
could approximate fermionic “behavior” through bosonic wave functions.
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7. Positive operators and the trace (28 points)
Let {φn}n∈N be an orthonormal basis of L2(Rd) and ρ a density operator, i. e. ρ∗ = ρ, ρ ≥ 0 and

Tr ρ =
∑
n∈N

⟨φn, ρφn⟩ = 1.

(i) Show that the trace is independent of the choice of basis {φn}n∈N.
(ii) Show that any rank-1 projection P = ⟨ψ∗, · ⟩ ψ∗, ∥ψ∗∥ = 1, is a density operator.
(iii) Show that ρ2 = ρ if and only if ρ is a rank-1 projection.
Remark: A bounded operator ρ on a Hilbert spaceH is selfadjoint (ρ∗ = ρ) if and only if

⟨ρψ, φ⟩ = ⟨ψ, ρφ⟩

holds for all φ,ψ ∈ H.

Solution:

(i) By assumption, the sum

Tr ρ =
∑
n∈N

⟨φn, ρφn⟩ = 1

converges to 1 [1], and the positivity of ρ implies it also converges absolutely to 1 [1].
To show that the sum is independent of the choice of orthonormal basis, let {ψj}j∈N be a
second orthonormal basis. Then we can express any φn from the first orthonormal basis in
terms of the ψj ,

φn
[1]
=

∑
j∈N

⟨ψj , φn⟩ ψj .

Plugged into the sum, we obtain

1 = Tr ρ [1]
=

∑
n∈N

⟨φn, ρφn⟩
[1]
=

∑
j,l,n∈N

⟨
⟨ψj , φn⟩ ψj , ρ ⟨ψl, φn⟩ ψl

⟩
[1]
=

∑
j,l,n∈N

⟨ψj , φn⟩ ⟨ψl, φn⟩ ⟨ψj , ρ ψl⟩
[1]
=

∑
j,l,n∈N

⟨
ψl, ⟨φn, ψj⟩ φn

⟩
⟨ψj , ρ ψl⟩

[1]
=

∑
j,l∈N

⟨ψl, ψj⟩ ⟨ψj , ρ ψl⟩
[1]
=

∑
j∈N

⟨ψj , ρ ψj⟩ .

(ii) First of all, P = ⟨ψ∗, · ⟩ ψ∗ is selfadjoint, because for all φ, ϕ ∈ L2(Rd), we have⟨
φ,Pϕ

⟩ [1]
=

⟨
φ, ⟨ψ∗, ϕ⟩ ψ∗

⟩
= ⟨ψ∗, ϕ⟩ ⟨φ,ψ∗⟩

[1]
=

⟨
⟨ψ∗, φ⟩ψ∗, ϕ

⟩
[1]
=

⟨
Pφ, ϕ

⟩
.

Moreover, P ≥ 0 because P 2 = P , and thus

⟨φ,Pφ⟩ [1]
=

⟨
φ,P 2φ

⟩ [1]
= ⟨P ∗φ,Pφ⟩ = ⟨Pφ, Pφ⟩

[1]

≥ 0 .
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By (i), we can compute the trace in any orthonormal basis, so for instancewe can pick {φn}n∈N
with φ1 = ψ∗, and in that basis only one term of the sum survives,

TrP [1]
=

∞∑
n=1

⟨φn, Pφn⟩
[1]
= ⟨ψ∗, Pψ∗⟩+

∞∑
n=2

⟨φn, Pφn⟩

[1]
= ⟨ψ∗, ψ∗⟩+ 0

[1]
= 1 .

Thus, P is a density operator.
(iii) “⇐:” If ρ is a rank-1 projection, then ρ2 = ρ is a density operator by (ii) [1].

“⇒:” Assume ρ2 = ρ, i. e. ρ is an orthogonal projection (selfadjointness is included in the
definition of ρ) [1]. Hence, we can spit L2(Rd) = ran ρ ⊕

(
ran ρ

)⊥ into the range of ρ and its
orthogonal complement, and the action of ρ and ψ = ψρ + ψ⊥

ρ is

ρψ = ρ
(
ψρ + ψ⊥

ρ

)
= ψρ . [1]

Thus, choosing a basis {φn}n∈N = {φn}n∈I ∪ {φn}n∈N\I where {φn}n∈I is an orthonormal
basis of ran ρ, we compute

Tr ρ [1]
=

∑
n∈N

⟨φn, ρφn⟩
[1]
=

∑
n∈I

⟨φn, ρφn⟩

[1]
=

∑
n∈I

⟨φn, φn⟩
[1]
= |I| !

= 1 .

Since |I| is the dimensionality of ran ρ [1], we deduce that dim
(
ran ρ

)
= 1, and thus, P is a

rank-1 projection [1].
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