| UNIVERSITY OF Differential Equations of 2013-2014
¥ TORONTO Mathematical Physics Solutions 2
(APM 351Y) (2013.09.17)

Classification of Differential Equations
& Solution to the Exponential Equation

Homework Problems

5. Uniqueness of solutions of ordinary differential equations (13 points)

Consider the ODE

& =—|z|", z(0) = 1. (1)

(i) Find solutions to this ODE for
(a) a=2and
b) o =1,
and give the longest time interval on which these solutions exist.

(ii) In case of a = 1/2, the ODE does not have a unique solution: Show that for any ¢, > 2

(t—2)2 t<2
2<t<t
—tt—t0)? t>tg

O =

a(t) =

solves (1).

(iii) For two of the three values of o, the solution of (1) is either not unique or does not exist for
all ¢. Explain in each case why that does not contradict the Picard-Lindelof theorem.

Solution:

(i) (a) The differential equation is separable, so one may find solutions via the ansatz

t z(t)
t= / ds B —/ dea=2 = [:c_l]gf(t)
0 z(0)

G

where we have used the initial condition 2(0) = 1 and the fact that at least for small times,
x(t) > 0. This equation can be inverted,

1

1+t

x(t)

Clearly, the maximal time interval on which the solution exists is (—1, 00) [1].



(b) Again, as before, we can find the solution by integrating,

t z(t)
t:/ dsg—/ d:nx_lz—[lnx]“f(t)
0 z(0)
— Inz() +In1 Y “Inz().
This equation can be solved explicitly for all ¢ € R,

w(t) S e,

and in fact, z(t) > O for all t € R [1].

(ii) Independently of the value of to, we have z(0) = § (—2)? = 1, so the initial condition is always

satisfied. To verify whether z(¢) solves the ODE, we compare
f(t—-2) t<2

i) =40 2 <t < to
—2(t—to) t>tg

to

—St—2 t<2
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2<t<tg,
—3(t—ty) t>to
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and see that the two agree. Hence, z(t) is a solution for any ¢, > 2.

(iii) o = 2: Here, the solution does not exist for all times. This is not a contradiction to the Picard-
Lindeldf theorem, because the vector field F(z) = —x?2 is not Lipschitz, it grows faster than
|z|. Hence, the assumptions of the Picard-Lindel6f theorem are not satisfied. [1]

a = 1/2: The solution is not unique: the vector field F(x) = —\/z is only Lipschitz away from
x = 0, and as soon as the trajectory reaches = = 0, the solution cannot be uniquely extended.
Also here, the assumptions of the Picard-Lindel6f theorem are not verified. [1]



6. Using the Grénwall lemma to estimate the distance between trajectories (8 points)

Assume the vector field F' : R — R" is globally Lipschitz with constant L > 0, and let ® be the
flow associated to & = F. Moreover, let zg, z;, € R™ be two points which are e-close,

xo—z(| = €.
Use the Grénwall lemma to estimate the distance between x(t) := ®,(zo) and 2/ (t) := ®4(x) from
above (similar to equations (2.2.5) and equations (2.2.6)). Make your arguments rigorously.

Solution:

Since the vector field F' is globally Lipschitz, Corollary 2.2.8 applies and we know that the flow ®
exists for all £ € R [1]. Choose

u(t) := |(t) — CL',(t)’. 1]
Then u(0) = |z(0) — 2/(0)| = |z — x| = ¢ [11.

Repeating the arguments of equation (2.2.7), we know that

(z(t+6) — 2/ (t+0)) — (z(t) — (1))

d ' _
a0 -] = |t ’
i |(z(t +0) —2/(t+6)) — (x(t) — /(1))
6—0 ‘5|
ot +0) —al(t+ )| —=(t) —2'(t)] _ d
> lim 3] = U [1]

Thus, we can estimate the time derivative of u by w itself:
. . . 1
a(t) < |a(t) — /@) B |F(x(t)) — F(2/ (1))
U Lla(t) — ' (t)| = Lu(t)

Hence, the Grénwall lemma 2.2.6 applies [1] and we obtain

ult) < u(0)ett H e etk



7. The classical harmonic oscillator (25 points)

Consider the driven harmonic oscillator
G(t) +w®qt) = f(t) (2)

of frequency w > 0.

(i) Solve the homogeneous equation (i. e. set f = 0in (2)) by rewriting it as a first-order problem
(cf. Section 2.1 of the lecture notes). Determine the dimensionality of the space of solutions.

(i) Find a system of real-valued solutions for the homogeneous equation.

(iii) Solve the inhomogeneous problem for the functions f and initial conditions listed below, and
characterize the behavior of the solutions as ¢ — +o00. Also verify that the solution satisfies
the initial conditions.

(@) f(t) = w? € R (constant function), ¢(0) = 0, ¢(0) =0
(b) f(t) = w? cos(wt), q(0) =0, §(0) = w

Solution:

(i) Wesety; := g and ys := ¢ [1] so that we can rewrite (2) as

: (i) . (—53 y> * (f?ﬂ) B (—?«ﬂ é) @2) i <f?t)> |
=H

The flow associated to the homogeneous equation is e'’’. A quick calculation reveals that
is diagonalizable, has eigenvalues +iw and

H = U diag(+iw, —iw) U™*
B (1 1) fiw 01/l —i
C \iw  —iw 0 —iw) 2\1 +iw)’
Hence, we can compute the exponential:

ot W g7 ot diag(iw,—iw) ;-1

w1 1 et 0\ 1/1 —i
C\iw —iw 0 e ™) 2\l +i

_1 e—Htw e—itw 1 —i/w
2 \iwet  —jwe ™ | \ 1 +i/y

B 1 e—l—it.w 4 e‘it.“ %(_e-—&-itw 4 ?—itw)
- 2 \iw (e+1tw _ e—ltw) e+1tw + e—ltw

(1] cos wt % sinwt

~ \~wsinwt coswt

(Note that the lower row is the time derivative of the upper row - as it should be.)
The dimension of the system of solutions is 2 [1].

(i) A set of real solutions to (2) would be cos wt [1] and sinwt [1].



(iii) The general solution to the inhomogeneous problem here is

t s)
=< (1) + /d (1)
[ coswt  Lsinwt) (¢(0) d L f(s) sinw(t — s)
= wsinwt coswt q(0) / * U f(s) cosw(t — s)
(a) Here, yo = (¢(0),4(0)) = 0[1].
1 [ coswt Lsinwt) (0 cosw(t—s) Lsinw(t—s) 0
y(t) = (—w sinwt  coswt ) (O) +/ ds < —w sinw(t —s) cosw(t — s) > <w2>
td w sinw(t — s) +cosw(t — s) ti cos(0 — coswt
/0 s w2coswt—s wsmwt—s) o \w(0+sinwt)
[1] (11— coswt
-\ wsinwt
The solution q( ) y1(t) = sinwt to (2) is just the first component of y. Note that y(0) =
(0))

(0,0) = ( (0) [1]. The solution y(¢) oscillates, and hence it remains bounded as
t — doo [1].

1

(b) To solve this for yo = (0,w) [1], we just need to add the homogeneous solution for y, to
the term containing the inhomogeneity. In order to compute the latter explicitly, we need

1] 1

sinw(s —t) cosws = 3 sinw(2s — t) — 5 sinwt
cosw(s —t) cosws = 3 cosw(2s — t) + 5 coswt

(These equations can be derived by writing sin and cos in terms of complex exponentials.)
Hence, we obtain

/td %f(s) sinw(t —s)\ 1 1/td w sinw(2s — t) — w sinwt
0 S\ f(s) cosw(t—s) ) 2 0 * \w? cosw(2s — t) + w? coswt

—3 cosw(2s —t) —ws sinwt !
¢ sinw(2s — t) + w? s coswt 0

( — coswt — 2wt sinwt + cos wt >

w sinwt + 2w? t coswt + w sinwt

M\H »Jk\i—‘ N —

—wt sinwt
w sinwt + w? t coswt

Now the total solution is just the sum,
) [ ( coswt Lsinwt) (0 n 1 —wt sinwt
=\ —wsinwt  coswt w 2 \w sinwt + w?t coswt

[ ( sinwt n 1 —wt sinwt
~ \w coswt 2 \w sinwt + w?t coswt

Again, y(0) = (0,w) satisfies the initial conditions [1]. lim;_ 1 |y;(t)| = oo for j = 1,2
[1].



