Foundations of Quantum Mechanics
 (APM 421 H)

Hilbert Spaces \& Quantum Mechanical States

Homework Problems

5. Weighted L^{2}-spaces

Let $\mu \in L^{\infty}\left(\mathbb{R}^{d}\right)$ be a function bounded away from 0 and $+\infty$, i. e. there exist $c, C>0$ such that

$$
0<c \leq \mu(x) \leq C<+\infty
$$

holds for almost all $x \in \mathbb{R}^{d}$. Define the weighted L^{2}-space $L_{\mu}^{2}\left(\mathbb{R}^{d}\right)$ as the pre-Hilbert space with scalar product

$$
\begin{equation*}
\langle f, g\rangle_{\mu}:=\int_{\mathbb{R}^{d}} \mathrm{~d} x \mu(x) \overline{f(x)} g(x) \tag{1}
\end{equation*}
$$

so that $\|f\|_{\mu}:=\sqrt{\langle f, f\rangle_{\mu}}<\infty$.
The standard (unweighted) $L^{2}\left(\mathbb{R}^{d}\right)$ space is defined as usual, i. e. we set $\mu(x)=1$ in the above.
(i) Show that $f \in L^{2}\left(\mathbb{R}^{d}\right)$ if and only if $f \in L_{\mu}^{2}\left(\mathbb{R}^{d}\right)$.
(ii) Show that the map

$$
U_{\mu}: L_{\mu}^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right), f \mapsto \sqrt{\mu} f
$$

is norm-preserving, i. e. $\|f\|_{\mu}=\left\|U_{\mu} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ holds for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$.
(iii) Show that $L_{\mu}^{2}\left(\mathbb{R}^{d}\right)$ is indeed a Hilbert space, i. e. prove that it is complete.
6. Decomposition of $L^{2}\left(\mathbb{R}^{2}\right)$ into symmetric and anti-symmetric part

A function $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ is called symmetric if $f(x, y)=f(y, x)$ and antisymmetric if $f(x, y)=$ $-f(y, x)$ hold for all $x, y \in \mathbb{R}$.
(i) Show that $L_{\mathrm{s}}^{2}\left(\mathbb{R}^{2}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{2}\right) \mid f\right.$ symmetric $\}$ is a closed (linear) subspace of $L^{2}\left(\mathbb{R}^{2}\right)$, i. e. prove that $L_{\mathrm{s}}^{2}\left(\mathbb{R}^{2}\right)$ is a linear subspace of the Hilbert space $L^{2}\left(\mathbb{R}^{2}\right)$, and that Cauchy sequences in $L_{\mathrm{s}}^{2}\left(\mathbb{R}^{2}\right)$ converge in $L_{\mathrm{s}}^{2}\left(\mathbb{R}^{2}\right)$.
Remark: Also $L_{\text {as }}^{2}\left(\mathbb{R}^{2}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{2}\right) \mid f\right.$ antisymmetric $\}$ is a closed subspace of $L^{2}\left(\mathbb{R}^{2}\right)$.
(ii) Show that any $f \in L^{2}\left(\mathbb{R}^{2}\right)$ can be uniquely decomposed $f=f_{\mathrm{s}}+f_{\text {as }}$ into a symmetric part $f_{\mathrm{s}} \in L_{\mathrm{a}}^{2}\left(\mathbb{R}^{2}\right)$ and an antisymmetric part $f_{\mathrm{as}} \in L_{\mathrm{as}}^{2}\left(\mathbb{R}^{2}\right)$.
(iii) What is the physical significance of $L_{\mathrm{s}}^{2}\left(\mathbb{R}^{2}\right)$ and $L_{\mathrm{as}}^{2}\left(\mathbb{R}^{2}\right)$?

7. Positive operators and the trace

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$ and ρ a density operator, i. e. $\rho^{*}=\rho, \rho \geq 0$ and

$$
\operatorname{Tr} \rho=\sum_{n \in \mathbb{N}}\left\langle\varphi_{n}, \rho \varphi_{n}\right\rangle=1
$$

(i) Show that the trace is independent of the choice of basis $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$.
(ii) Show that any rank-1 projection $P=\left\langle\psi_{*}, \cdot\right\rangle \psi_{*},\left\|\psi_{*}\right\|=1$, is a density operator.
(iii) Show that $\rho^{2}=\rho$ if and only if ρ is a rank- 1 projection.

Remark: A bounded operator ρ on a Hilbert space \mathcal{H} is selfadjoint ($\rho^{*}=\rho$) if and only if

$$
\langle\rho \psi, \varphi\rangle=\langle\psi, \rho \varphi\rangle
$$

holds for all $\varphi, \psi \in \mathcal{H}$.

