

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 2 (2014.09.19)

Hilbert Spaces & Quantum Mechanical States

Homework Problems

5. Weighted L²-spaces

Let $\mu \in L^{\infty}(\mathbb{R}^d)$ be a function bounded away from 0 and $+\infty$, i. e. there exist c, C > 0 such that

$$0 < c \le \mu(x) \le C < +\infty$$

holds for almost all $x \in \mathbb{R}^d$. Define the weighted L^2 -space $L^2_\mu(\mathbb{R}^d)$ as the pre-Hilbert space with scalar product

$$\langle f, g \rangle_{\mu} := \int_{\mathbb{R}^d} \mathrm{d}x \,\mu(x) \,\overline{f(x)} \,g(x)$$
 (1)

so that $\|f\|_{\mu} := \sqrt{\langle f, f \rangle_{\mu}} < \infty.$

The standard (unweighted) $L^2(\mathbb{R}^d)$ space is defined as usual, i. e. we set $\mu(x) = 1$ in the above.

- (i) Show that $f \in L^2(\mathbb{R}^d)$ if and only if $f \in L^2_\mu(\mathbb{R}^d)$.
- (ii) Show that the map

$$U_{\mu}: L^2_{\mu}(\mathbb{R}^d) \longrightarrow L^2(\mathbb{R}^d), \ f \mapsto \sqrt{\mu}f,$$

is norm-preserving, i. e. $\|f\|_{\mu} = \|U_{\mu}f\|_{L^2(\mathbb{R}^d)}$ holds for all $f \in L^2(\mathbb{R}^d)$.

(iii) Show that $L^2_{\mu}(\mathbb{R}^d)$ is indeed a Hilbert space, i. e. prove that it is complete.

6. Decomposition of $L^2(\mathbb{R}^2)$ into symmetric and anti-symmetric part

- A function $f : \mathbb{R}^2 \longrightarrow \mathbb{C}$ is called symmetric if f(x, y) = f(y, x) and antisymmetric if f(x, y) = -f(y, x) hold for all $x, y \in \mathbb{R}$.
 - (i) Show that $L^2_s(\mathbb{R}^2) := \{ f \in L^2(\mathbb{R}^2) \mid f \text{ symmetric} \}$ is a closed (linear) subspace of $L^2(\mathbb{R}^2)$, i. e. prove that $L^2_s(\mathbb{R}^2)$ is a linear subspace of the Hilbert space $L^2(\mathbb{R}^2)$, and that Cauchy sequences in $L^2_s(\mathbb{R}^2)$ converge in $L^2_s(\mathbb{R}^2)$.

Remark: Also $L^2_{as}(\mathbb{R}^2) := \{ f \in L^2(\mathbb{R}^2) \mid f \text{ antisymmetric} \}$ is a closed subspace of $L^2(\mathbb{R}^2)$.

- (ii) Show that any $f \in L^2(\mathbb{R}^2)$ can be uniquely decomposed $f = f_s + f_{as}$ into a symmetric part $f_s \in L^2_a(\mathbb{R}^2)$ and an antisymmetric part $f_{as} \in L^2_{as}(\mathbb{R}^2)$.
- (iii) What is the physical significance of $L^2_s(\mathbb{R}^2)$ and $L^2_{as}(\mathbb{R}^2)$?

7. Positive operators and the trace

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of $L^2(\mathbb{R}^d)$ and ρ a density operator, i. e. $\rho^* = \rho$, $\rho \ge 0$ and

$$\operatorname{Tr} \rho = \sum_{n \in \mathbb{N}} \langle \varphi_n, \rho \varphi_n \rangle = 1.$$

- (i) Show that the trace is independent of the choice of basis $\{\varphi_n\}_{n\in\mathbb{N}}$.
- (ii) Show that any rank-1 projection $P = \langle \psi_*, \cdot \rangle | | \psi_* || = 1$, is a density operator.
- (iii) Show that $\rho^2 = \rho$ if and only if ρ is a rank-1 projection.

Remark: A bounded operator ρ on a Hilbert space \mathcal{H} is selfadjoint ($\rho^* = \rho$) if and only if

$$\langle \rho \psi, \varphi \rangle = \langle \psi, \rho \varphi \rangle$$

holds for all $\varphi, \psi \in \mathcal{H}$.

Hand in home work on: Friday, 26 September 2014, before class