Differential Equations of Mathematical Physics (APM 351 Y)

2013–2014 Problem Sheet 2 (2013.09.17)

Classification of Differential Equations & Solution to the Exponential Equation

Homework Problems

5. Uniqueness of solutions of ordinary differential equations (13 points)

Consider the ODE

$$\dot{x} = -|x|^{\alpha}, \qquad x(0) = 1.$$
 (1)

- (i) Find solutions to this ODE for
 - (a) $\alpha = 2$ and
 - (b) $\alpha = 1$,

and give the longest time interval on which these solutions exist.

(ii) In case of $\alpha=1/2$, the ODE does *not* have a unique solution: Show that for any $t_0>2$

$$x(t) = \begin{cases} \frac{1}{4}(t-2)^2 & t \le 2\\ 0 & 2 < t \le t_0\\ -\frac{1}{4}(t-t_0)^2 & t > t_0 \end{cases}$$

solves (1).

(iii) For two of the three values of α , the solution of (1) is either not unique or does not exist for all t. Explain in each case why that does *not* contradict the Picard-Lindelöf theorem.

6. Using the Grönwall lemma to estimate the distance between trajectories (8 points)

Assume the vector field $F:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ is globally Lipschitz with constant L>0, and let Φ be the flow associated to $\dot{x}=F$. Moreover, let $x_0,x_0'\in\mathbb{R}^n$ be two points which are ε -close, $\left|x_0-x_0'\right|=\varepsilon$. Use the Grönwall lemma to estimate the distance between $x(t):=\Phi_t(x_0)$ and $x'(t):=\Phi_t(x_0')$ from above (similar to equations (2.2.5) and equations (2.2.6)). Make your arguments rigorously.

7. The classical harmonic oscillator (25 points)

Consider the driven harmonic oscillator

$$\ddot{q}(t) + \omega^2 q(t) = f(t) \tag{2}$$

of frequency $\omega > 0$.

(i) Solve the homogeneous equation (i. e. set f = 0 in (2)) by rewriting it as a first-order problem (cf. Section 2.1 of the lecture notes). Determine the dimensionality of the space of solutions.

- (ii) Find a system of real-valued solutions for the homogeneous equation.
- (iii) Solve the inhomogeneous problem for the functions f and initial conditions listed below, and characterize the behavior of the solutions as $t\to\pm\infty$. Also verify that the solution satisfies the initial conditions.
 - (a) $f(t) = \omega^2 \in \mathbb{R}$ (constant function), q(0) = 0, $\dot{q}(0) = 0$
 - (b) $f(t) = \omega^2 \cos(\omega t), q(0) = 0, \dot{q}(0) = \omega$

Hand in home work on: Thursday, 26 September 2013, before class