Foundations of
 Quantum Mechanics

Hilbert Spaces \& Operators

Homework Problems

8. Orthogonal subspaces and projections onto subspaces ($\mathbf{1 6}$ points)

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis (ONB) of a Hilbert space \mathcal{H} and $N \in \mathbb{N}$.
(i) Prove that $E:=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$ is a sub vector space.
(ii) Give an ONB for the subspace $E=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$.
(iii) Show that $\left(\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}\right)^{\perp}=E^{\perp}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$.

Moreover, define the map

$$
P: \mathcal{H} \longrightarrow \mathcal{H}, P \psi:=\sum_{n=1}^{N}\left\langle\varphi_{n}, \psi\right\rangle \varphi_{n}
$$

(iv) Show that P is linear, i. e. for any $\varphi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have $P(\alpha \varphi+\psi)=\alpha P \varphi+P \psi$.
(v) Show that P is a projection, i. e. $P^{2}=P$.
(vi) Show that P is bounded, i. e. $\|P \varphi\| \leq\|\varphi\|$ holds for any $\varphi \in \mathcal{H}$.

Solution:

(i) The orthogonal complement is defined as

$$
E \stackrel{[1]}{=}\left\{\psi \in \mathcal{H} \mid\left\langle\varphi_{j}, \psi\right\rangle=0, j=1, \ldots, N\right\} .
$$

For any $\phi, \psi \in E$ and $\alpha \in \mathbb{C}$, also the vector $\alpha \phi+\psi$ is an element of $E[1]$: for all $j=1, \ldots, N$

$$
\left\langle\varphi_{j}, \alpha \phi+\psi\right\rangle=\alpha\left\langle\varphi_{j}, \phi\right\rangle+\left\langle\varphi_{j}, \psi\right\rangle \stackrel{[1]}{=} 0
$$

is satisfied. Hence, E is a linear subspace of \mathcal{H}.
(ii) $\left\{\varphi_{j}\right\}_{j=N+1}^{\infty}[1]$
(iii) Then $\varphi_{j} \in E^{\perp}$, because by definition of E

$$
\left\langle\varphi_{j}, \psi\right\rangle \stackrel{[1]}{=} 0
$$

holds for all $\psi \in \mathcal{H}$. Thus, $\varphi_{j} \in E^{\perp}$ for all $j=1, \ldots, N$. By (i), E is a linear sub space [1].

Now assume that there exists a $\psi \in E^{\perp}$ which is not a linear combination of $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ [1]. Since $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis of \mathcal{H}, we can express ψ as

$$
\begin{equation*}
\psi=\sum_{j=1}^{\infty} c_{j} \varphi_{j} \tag{1}
\end{equation*}
$$

By assumption, there exists a $n \geq N+1$ for which $c_{n} \neq 0$ [1]. But then

$$
\left\langle\varphi_{n}, \psi\right\rangle=c_{n} \neq 0
$$

and ψ cannot be an element of E^{\perp}, contradiction [1].
Hence, $E^{\perp}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$.
(iv) The linearity of P follows from the linearity of the scalar product in the first argument: for all $\phi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have

$$
\begin{aligned}
P(\alpha \phi+\psi) & \stackrel{[1]}{=} \sum_{j=1}^{N}\left\langle\varphi_{j}, \alpha \phi+\psi\right\rangle \varphi_{j}=\alpha \sum_{j=1}^{N}\left\langle\varphi_{j}, \phi\right\rangle \varphi_{j}+\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j} \\
& \stackrel{[1]}{=} \alpha P \phi+P \psi
\end{aligned}
$$

Hence, P is linear.
(v) For any $\psi \in \mathcal{H}$, we deduce using the linearity of P :

$$
\begin{aligned}
P^{2} \psi & =P\left(\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j}\right) \stackrel{[1]}{=} \sum_{k=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle P \varphi_{j} \\
& =\sum_{k, j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \underbrace{\left\langle\varphi_{k}, \varphi_{j}\right\rangle}_{=\delta_{k, j}} \varphi_{k}=\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j} \stackrel{[1]}{=} P \psi
\end{aligned}
$$

Hence, P is a projection.
(vi) With the help of Bessel's inequality [1], we obtain the claim:

$$
\|P \psi\|=\left\|\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j}\right\|\|\stackrel{[1]}{\leq}\| \psi \|
$$

9. The Fock space (13 points)

Let \mathcal{H} be a separable Hilbert space and $\mathcal{H}^{\otimes n}=\mathcal{H} \otimes \cdots \otimes \mathcal{H}$ the n-fold tensor product. By definition we set $\mathcal{H}^{\otimes 0}:=\mathbb{C}$. Define the Fock space over \mathcal{H} as $\mathfrak{F}(\mathcal{H}):=\bigoplus_{n=0}^{\infty} \mathcal{H}^{\otimes n}$ with scalar product

$$
\langle\varphi, \psi\rangle_{\mathfrak{F}}:=\sum_{n=0}^{\infty}\left\langle\varphi_{n}, \psi_{n}\right\rangle_{\mathcal{H}^{\otimes n}}, \quad \varphi=\left(\varphi_{0}, \varphi_{1}, \ldots\right), \psi=\left(\psi_{0}, \psi_{1}, \ldots\right) \in \mathfrak{F}(\mathcal{H}) .
$$

In the physics literature, $\mathcal{H}^{\otimes n}$ is called the n-particle Fock sector.
(i) Give a countable orthonormal basis of $\mathfrak{F}(\mathcal{H})$. (No proof is necessary.)
(ii) Show that for any element $\psi=\left(\psi_{0}, \psi_{1}, \psi_{2}, \ldots\right)$ of $\mathfrak{F}(\mathcal{H})$

$$
\lim _{n \rightarrow \infty}\left\|\psi_{n}\right\|_{\mathcal{H}^{\otimes n}}=0
$$

holds where ψ_{n} is the corresponding element of the n-particle Fock sector.
Let A be a linear, bounded operator on \mathcal{H} with domain $\mathcal{D}(A)=\mathcal{H}$. Then we define the second quantization of A as the operator

$$
\mathrm{d} \Gamma(A):=\bigoplus_{n=0}^{\infty}\left(A \otimes \mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \mathrm{id}_{\mathcal{H}}+\ldots+\mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \mathrm{id}_{\mathcal{H}} \otimes A\right)
$$

acting on $\mathfrak{F}(\mathcal{H})$.
(iii) Give the action of $\mathrm{d} \Gamma(A)$ on the nth Fock sector $\mathcal{H}^{\otimes n}$, i. e. find $(\mathrm{d} \Gamma(A) \psi)_{n}$.
(iv) Give the domain of $\mathrm{d} \Gamma\left(\mathrm{id}_{\mathcal{H}}\right)$ and discuss the physical meaning of $\mathrm{d} \Gamma\left(\mathrm{id}_{\mathcal{H}}\right)$.

Solution:

(i) Since \mathcal{H} is countable, there exists a countable orthonormal basis $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ [1]. Then

$$
\begin{equation*}
\left\{\left(1, \varphi_{k_{11}}, \varphi_{k_{21}} \otimes \varphi_{k_{22}}, \ldots, \varphi_{k_{n 1}} \otimes \cdots \otimes \varphi_{k_{n n}}, \ldots\right)\right\}_{\substack{1 \leq j \leq n \\ k_{n j} \in \mathbb{N}}}^{\substack{n \in \mathbb{N}\\}} \tag{2}
\end{equation*}
$$

is a countable orthonormal basis of $\mathfrak{F}(\mathcal{H})$.
(ii) Pick an arbitrary $\psi=\left(\psi_{0}, \psi_{1}, \ldots\right) \in \mathfrak{F}(\mathcal{H})$. Then

$$
\begin{equation*}
\|\psi\|^{2}=\sum_{n=0}^{\infty}\left\|\psi_{n}\right\|_{\mathcal{H}^{\otimes n}}^{2}<\infty \tag{1}
\end{equation*}
$$

which necessarily means $\left\|\psi_{n}\right\|_{\mathcal{H}^{\otimes n}} \rightarrow 0$ as $n \rightarrow \infty$ [1].
(iii) $(\mathrm{d} \Gamma(A) \psi)_{n}=\left(A \otimes \mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \operatorname{id}_{\mathcal{H}}+\ldots+\mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \operatorname{id}_{\mathcal{H}} \otimes A\right) \psi_{n} \quad$ [1]
(iv) The second quantization of the identity is the so-called (particle) number operator [1] which - as the name suggests - measures the number of particles. The operator acts on the nth Fock sector $\mathcal{H}^{\otimes n}$ as

$$
\underbrace{\mathrm{id}_{\mathcal{H}} \otimes \operatorname{id}_{\mathcal{H}} \otimes \cdots \otimes \mathrm{id}_{\mathcal{H}}+\ldots+\mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \mathrm{id}_{\mathcal{H}} \otimes \operatorname{id}_{\mathcal{H}}}_{n \text { terms }} \stackrel{[1]}{=} n \operatorname{id}_{\mathcal{H} \otimes n}
$$

and hence, we have

$$
\mathrm{d} \Gamma\left(\mathrm{id}_{\mathcal{H}}\right) \stackrel{[2]}{=} \bigoplus_{n=0}^{\infty} n \mathrm{id}_{\mathcal{H} \otimes n}
$$

The domain consists of states with a finite number of particles [1], i. e.

$$
\begin{aligned}
\mathcal{D}\left(\mathrm{d} \Gamma\left(\operatorname{id}_{\mathcal{H}}\right)\right) & \stackrel{[1]}{=}\left\{\varphi \in \mathfrak{F}(\mathcal{H}) \mid \mathrm{d} \Gamma\left(\operatorname{id}_{\mathcal{H}}\right) \varphi \in \mathfrak{F}(\mathcal{H})\right\} \\
& \stackrel{[1]}{=}\left\{\varphi=\left.\left(\varphi_{0}, \varphi_{1}, \ldots\right) \in \mathfrak{F}(\mathcal{H})\left|\sum_{n=0}^{\infty} n^{2}\right|\left\langle\varphi_{n}, \varphi_{n}\right\rangle_{\mathcal{H}^{\otimes n}}\right|^{2}<\infty\right\} .
\end{aligned}
$$

10. Best approximation: Fourier series (12 points)

Let $L^{2}([0,2 \pi])$ be the Hilbert space of square-integrable functions with scalar product

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x \overline{f(x)} g(x)
$$

(i) Show that $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system of vectors in $L^{2}([0,2 \pi])$.
(ii) Let $E:=\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{\substack{n \in \mathbb{Z} \\|n| \leq 4}}$, and consider the functions $f(x)=\sin (2 x)$ and $g(x)=x$. Give the element of best approximation of f and g in span E.
(iii) Why don't these arguments work for $L^{2}(\mathbb{R})$?

Solution:

(i) The scalar product for $n \neq m$ is

$$
\begin{aligned}
\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} m x}\right\rangle & \stackrel{[1]}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} n x} \mathrm{e}^{+\mathrm{i} m x} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{+\mathrm{i}(m-n) x}=\left.\frac{1}{2 \pi} \frac{1}{i(m-n)} \mathrm{e}^{+\mathrm{i}(m-n) x}\right|_{0} ^{2 \pi} \stackrel{[1]}{=} 0
\end{aligned}
$$

For $n=m$ we obtain instead

$$
\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} m x}\right\rangle \stackrel{[1]}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x \mathrm{e}^{+\mathrm{i}(m-n) x}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x 1 \stackrel{[1]}{=} 1
$$

The vectors are all mutually orthogonal and are normed to 1 , and hence, $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system [1].
(ii) Since $f(x) \stackrel{[1]}{=} \frac{1}{\mathrm{i} 2}\left(\mathrm{e}^{+\mathrm{i} 2 x}-\mathrm{e}^{-2 x}\right)$ it lies in E, and f is its own Element of Best Approximation [1]. For g we proceed to compute the Fourier components, starting with $n=0$:

$$
c_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x x \stackrel{[1]}{=} \pi
$$

For $n \neq 0$ we obtain

$$
\begin{aligned}
c_{n} \stackrel{[1]}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x x \mathrm{e}^{+\mathrm{i} n x} & =\left.\frac{1}{\mathrm{i} 2 \pi n} x \mathrm{e}^{+\mathrm{i} n x}\right|_{0} ^{2 \pi}-\frac{1}{\mathrm{i} 2 \pi n} \int_{0}^{2 \pi} \mathrm{~d} x 1 \cdot e^{i n x} \\
& =\frac{1}{\mathrm{i} n}-\frac{1}{2 \pi}\left[\frac{1}{(\mathrm{i} n)^{2}} \mathrm{e}^{+\mathrm{i} n x}\right]_{0}^{2 \pi} \stackrel{[1]}{=} \frac{1}{\mathrm{i} n}
\end{aligned}
$$

Thus, the Element of Best Approximation of g in E is

$$
g_{E}(x)=\pi+\sum_{n=1}^{4} \frac{1}{\mathrm{i} n}\left(\mathrm{e}^{+\mathrm{i} n x}-\mathrm{e}^{-\mathrm{i} n x}\right) \stackrel{[1]}{=} \pi+\sum_{n=1}^{4} \frac{2}{n} \sin n x .
$$

(iii) The functions $\mathrm{e}^{+\mathrm{i} n x} \notin L^{2}(\mathbb{R})$ are not square integrable [1], and hence, the arguments cannot be repeated.

11. Multiplication operators (14 points)

Let $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and define the multiplication operator

$$
\left(T_{V} \psi\right)(x):=V(x) \psi(x), \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

(i) Show that $T_{V}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is bounded.
(ii) Assume $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ is real-valued. Show that then $\left\langle\varphi, T_{V} \psi\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\langle T_{V} \varphi, \psi\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}$ holds for all $\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$, i. e. T_{V} is selfadjoint.
(iii) Assume that V is bounded away from 0 and $+\infty$, i. e. that there exist $C>c>0$ so that

$$
0<c \leq V(x) \leq C<+\infty
$$

holds for all $x \in \mathbb{R}^{d}$. Find the inverse of T_{V} and show the inverse is bounded.

Solution:

(i) From the elementary estimate $\left|\left(T_{V} \psi\right)(x)\right|=|V(x) \psi(x)| \leq\|V\|_{\infty}|\psi(x)|$ [1], we deduce

$$
\begin{aligned}
\left\|T_{V} \psi\right\| & \stackrel{[1]}{=}\left(\int_{\mathbb{R}^{d}} \mathrm{~d} x\left|\left(T_{V} \psi\right)(x)\right|^{2}\right)^{1 / 2} \\
& \stackrel{[1]}{\leq}\left(\int_{\mathbb{R}^{d}} \mathrm{~d} x\|V\|_{\infty}^{2}|\psi(x)|^{2}\right)^{1 / 2} \\
& =\|V\|_{\infty}\left(\int_{\mathbb{R}^{d}} \mathrm{~d} x|\psi(x)|^{2}\right)^{1 / 2} \\
& \stackrel{[1]}{=}\|V\|_{\infty}\|\psi\| .
\end{aligned}
$$

Hence, T_{V} is bounded [1].
(ii) The claim follows from $\bar{V}=V$ and direct computation: for any $\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{aligned}
\left\langle\varphi, T_{V} \psi\right\rangle & \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} x \overline{\varphi(x)}\left(T_{V} \psi\right)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} x \overline{\varphi(x)} V(x) \psi(x) \\
& =\int_{\mathbb{R}^{d}} \mathrm{~d} x \overline{V(x) \varphi(x)} \psi(x)=\int_{\mathbb{R}^{d}} \mathrm{~d} x \overline{\left(T_{V} \varphi\right)(x)} \psi(x) \\
& \stackrel{[1]}{=}\left\langle T_{V} \varphi, \psi\right\rangle .
\end{aligned}
$$

(iii) Since V is bounded away from 0 and $+\infty$, so is $V^{-1}[1]$,

$$
0<C^{-1} \leq V^{-1}(x) \leq c^{-1}<\infty
$$

Hence, also $T_{V^{-1}}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is a bounded multiplication operator by (i) [1]. Moreover, by direct computation, we verify that $T_{V^{-1}}$ is the inverse to T_{V} [1], e. g.

$$
\begin{aligned}
\left(T_{V} T_{V^{-1}} \psi\right)(x) & \stackrel{[1]}{=} V(x)\left(T_{V^{-1}} \psi\right)(x) \\
& =V(x) V^{-1}(x) \psi(x) \stackrel{[1]}{=} \psi(x)
\end{aligned}
$$

and similarly $T_{V^{-1}} T_{V}=\operatorname{id}_{L^{2}\left(\mathbb{R}^{d}\right)}[1]$.

