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Hilbert Spaces & Operators

Homework Problems

8. Orthogonal subspaces and projections onto subspaces (16 points)

Let {¢n }nen be an orthonormal basis (ONB) of a Hilbert space H and N € N,
(i) Prove that E := {@1, ce gaN}L is a sub vector space.
(ii) Give an ONB for the subspace E = {1, ..., @N}L.

(iii) Show that ({gpl, . ,@N}l)J‘ = FE+ = span{apl, - <pN}.

Moreover, define the map

N
P:-H—H, P@b::Z(@mW Pn -

n=1

(iv) Show that P is linear, i. . for any ¢, € H and a € C, we have P(ap + ¢) = o Pp + Py
(v) Show that P is a projection, i. e. P?> = P.

(vi) Show that P is bounded, i. e. | Po|| < ||¢]| holds for any ¢ € H.

Solution:

(i) The orthogonal complement is defined as

1 .
EZ{yeH| (pj.4) =0, j=1,....N}.
Forany ¢, € Eand a € C, also the vector a ¢+ is an element of E [1]: forallj =1,... N

(@i a6 +) = a (95,6) + (w5, 9) 20

is satisfied. Hence, E is a linear subspace of H.

CORCHCINE
(iii) Theng; € E+, because by definition of

(oi) Do

holds for all ¢) € H. Thus, ¢, € Etforallj =1,...,N.By(i), E is a linear sub space [1].



Now assume that there exists a¢» € £~ which is not a linear combination of {1, ..., on} [1].
Since {goj }j oy isan orthonormal basis of #, we can express 1) as

b= cip;. [1]
j=1

By assumption, there exists an > N + 1 for which ¢, # 0[1]. But then

(¢n,P) =cn #0

and 1 cannot be an element of E--, contradiction [1].
Hence, £+ = span{y1,..., 0N}

(iv) The linearity of P follows from the linearity of the scalar product in the first argument: for
all 9 € H and o € C, we have

N N N
Pad+9) Y (prao+v) o= (0.0) i+ D (5 ¥) ¢
i=1 =1

Hence, P is linear.

(v) For any ¢ € H, we deduce using the linearity of P:

N
P%:P(Z 0 ) S (g5, 4) Po;
=1 k=1
= 1
Z (05, ¥) (0r,03) ok =D _ (0 ) ;= Py
) ——— =

=0,

Hence, P is a projection.

(vi) With the help of Bessel’s inequality [1], we obtain the claim:

N i
[Py = Z 01, 0) 5| < Y]



9. The Fock space (13 points)

Let H be a separable Hilbert space and H®" = H @ - - - ® H the n-fold tensor product. By definition
we set H®? := C. Define the Fock space over H as F(H) := P;>, H®™ with scalar product

(e 9]

<§07ﬂ)>3 = Z<‘Pna¢n>7{®na ¥ = (9007 P1s - )37/) = (1/)0,@01, .- ) € 3(7'[)

n=0
In the physics literature, H®" is called the n-particle Fock sector.

(i) Give a countable orthonormal basis of §(H). (No proof is necessary.)
(ii) Show that for any element v = (4o, ¥1, 2, . ..) of F(H)

lim [[$n]|yyen =0

n—oo

holds where 1), is the corresponding element of the n-particle Fock sector.
Let A be a linear, bounded operator on H with domain D(A) = #H. Then we define the second
quantization of A as the operator

dr(A) ::@(A@idq{®~--®idy+...+idH®--~®idH®A)

n=0
acting on §(H).

(iii) Give the action of dI'(A) on the nth Fock sector #®™, i. e. find (d['(A)v), .
(iv) Give the domain of dI'(idy ) and discuss the physical meaning of dT"(idy).

Solution:

(i) Since H is countable, there exists a countable orthonormal basis {¢;, } nen [1]. Then

{(178016117801621 ®<)0k227"'7<)0kn1 & ®(10k'nn7)} nEN [2]
1<j<n
kn jEN

is a countable orthonormal basis of F(H).
(ii) Pick an arbitrary ¢ = (g, 1,...) € §(H). Then

1012 = 3" [[n50n < 00 1]
n=0

which necessarily means Hl/}nH — 0asn — oo [1].

HEOn
(iii) (d(A)y) = (AQidy ® - @idy +... +idy ®--- @idy @ A)p, [1]

(iv) The second quantization of the identity is the so-called (particle) number operator [1] which
- as the name suggests — measures the number of particles. The operator acts on the nth Fock
sector H®™ as

idH®idH®---®idH+...+idH®---®idH®idHEnidﬂm

n terms




and hence, we have
N
dT(idy) = @D nidyen.
n=0

The domain consists of states with a finite number of particles [1], i. e.

D(dr(idw)) & {¢ € 3(H) | dTidw)o € 3(3) }

(1]

= {30 = (@079017 .- ) € S(/H) ‘ ZSLO:O n2‘<(pn’¢n>y®n ? < OO}




10. Best approximation: Fourier series (12 points)

Let L?([0, 27]) be the Hilbert space of square-integrable functions with scalar product

1 2
(fi9) =5 ; dz f(z) g()-
(i) Show that {e™™"*}, .7 is an orthonormal system of vectors in L?([0, 27]).
(ii) Let F := {e*"*} .z, and consider the functions f(x) = sin(2z) and g(x) = z. Give the
Inl<4
element of best approximation of f and ¢ in span E.

(iii) Why don’t these arguments work for L?(R)?

Solution:

(i) The scalar product for n # m is

<e+i"x’ e+im:}c> E i o dp e in@ o tima

2 0

_ i on e+i(m—n)m _ i# e+1(m—n)x 2 é] 0
27 Jo 27 i(m —n) 0 ‘

For n = m we obtain instead
2 2
<e+inx,e+ima:> E 1/ m da e+i(m—n):v _ i ™ 4ol E .
27T 0 27T 0

The vectors are all mutually orthogonal and are normed to 1, and hence, {e*"*}, 7 is an
orthonormal system [1].

1 .
(ii) Since f(x) ] 5 (eT12* — e727) jt lies in E, and f is its own Element of Best Approximation [1].

For g we proceed to compute the Fourier components, starting with n = 0:

1 2
o= — dxwgﬂ
2w 0

For n # 0 we obtain

n 1 1 [

2 . 1 .27
Cn = — dexe™™ = —_getin®| .
2m Jo i2mn 0 i2mn Jo

21
— 1 1 |: 1 e+inm:| (1] i

“in 27 | (in)? Ozin

dz1-em®

Thus, the Element of Best Approximation of g in F is

|

4
& (Lptine  —inx m g .
(e e™ ™) =+ 321 ~ sinna.

(iii) The functions e™™* ¢ L?(R) are not square integrable [1], and hence, the arguments cannot
be repeated.



11. Multiplication operators (14 points)
Let V € L°°(R?) and define the multiplication operator

(Tvy)(z) == V(z) ¢ (x), € L*(RY).

(i) Show that Ty : L?(R%) — L2(R?) is bounded.
(ii) Assume V € L>®(RY) is real-valued. Show that then (¢, T}1)) r2@®d) = (Tve, V) [2(gay holds
for all , 1 € L?(RY), 1. e. Ty is selfadjoint.

(iii) Assume that V is bounded away from 0 and +o0, i. e. that there exist C' > ¢ > 0 so that
0<e<V(r)<C<+x
holds for all € R?. Find the inverse of T, and show the inverse is bounded.

Solution:

(i) From the elementary estimate |(Tyv)(z)| = |V (z) ¢ (2)| < ||V |¢ ()| [1], we deduce
1/
7ol 2 ( [ e |zl

< ([ asvito |)W
IVl ([ e luto?)

1
= [V]loo 9] -

Hence, Ty is bounded [1].
(ii) The claim follows from V = V and direct computation: for any ¢, € L?>(R?), we have

(o, Ty & /\uw m/d e

= da V(z) o(x) / dz (Ty ) (z) ()
Rd
1
gme%
(iii) Since V is bounded away from 0 and +oo, sois V! [1],

0<Cl<Vv iz <! <.

Hence, also T},—1 : L?(R%) — L?(R?) is a bounded multiplication operator by (i) [1]. More-
over, by direct computation, we verify that Ty, is the inverse to Ty [1], e. g.

(Ty Ty ) (2) LV (@) (Ty14) (@)

and similarly 7y, Ty = id 2 (ga) [1].



