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Homework Problems

8. Orthogonal subspaces and projections onto subspaces (16 points)
Let {φn}n∈N be an orthonormal basis (ONB) of a Hilbert spaceH andN ∈ N.

(i) Prove that E :=
{
φ1, . . . , φN

}⊥ is a sub vector space.

(ii) Give an ONB for the subspace E =
{
φ1, . . . , φN

}⊥.
(iii) Show that

(
{φ1, . . . , φN}⊥

)⊥
= E⊥ = span

{
φ1, . . . , φN

}
.

Moreover, define the map

P : H −→ H , Pψ :=
N∑

n=1

⟨φn, ψ⟩ φn .

(iv) Show that P is linear, i. e. for any φ,ψ ∈ H and α ∈ C, we have P
(
αφ+ ψ

)
= αPφ+ Pψ.

(v) Show that P is a projection, i. e. P 2 = P .
(vi) Show that P is bounded, i. e. ∥Pφ∥ ≤ ∥φ∥ holds for any φ ∈ H.

Solution:

(i) The orthogonal complement is defined as

E
[1]
=
{
ψ ∈ H | ⟨φj , ψ⟩ = 0, j = 1, . . . , N

}
.

For any ϕ, ψ ∈ E andα ∈ C, also the vectorαϕ+ψ is an element ofE [1]: for all j = 1, . . . , N

⟨φj , α ϕ+ ψ⟩ = α ⟨φj , ϕ⟩+ ⟨φj , ψ⟩
[1]
= 0

is satisfied. Hence, E is a linear subspace ofH.
(ii) {φj}∞j=N+1 [1]

(iii) Then φj ∈ E⊥, because by definition of E

⟨φj , ψ⟩
[1]
= 0

holds for all ψ ∈ H. Thus, φj ∈ E⊥ for all j = 1, . . . , N . By (i), E is a linear sub space [1].
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Now assume that there exists a ψ ∈ E⊥ which is not a linear combination of {φ1, . . . , φN} [1].
Since

{
φj

}
j∈N is an orthonormal basis ofH, we can express ψ as

ψ =
∞∑
j=1

cj φj . [1]

By assumption, there exists a n ≥ N + 1 for which cn ̸= 0 [1]. But then

⟨φn, ψ⟩ = cn ̸= 0

and ψ cannot be an element of E⊥, contradiction [1].
Hence, E⊥ = span{φ1, . . . , φN}.

(iv) The linearity of P follows from the linearity of the scalar product in the first argument: for
all ϕ, ψ ∈ H and α ∈ C, we have

P
(
αϕ+ ψ

) [1]
=

N∑
j=1

⟨φj , α ϕ+ ψ⟩ φj = α

N∑
j=1

⟨φj , ϕ⟩ φj +

N∑
j=1

⟨φj , ψ⟩ φj

[1]
= αPϕ+ Pψ .

Hence, P is linear.
(v) For any ψ ∈ H, we deduce using the linearity of P :

P 2ψ = P

(
N∑
j=1

⟨φj , ψ⟩ φj

)
[1]
=

N∑
k=1

⟨φj , ψ⟩ Pφj

=

N∑
k,j=1

⟨φj , ψ⟩ ⟨φk, φj⟩︸ ︷︷ ︸
=δk,j

φk =

N∑
j=1

⟨φj , ψ⟩ φj
[1]
= Pψ

Hence, P is a projection.
(vi) With the help of Bessel’s inequality [1], we obtain the claim:

∥∥Pψ∥∥ =

∥∥∥∥∥∥
N∑
j=1

⟨φj , ψ⟩ φj

∥∥∥∥∥∥
[1]

≤ ∥ψ∥
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9. The Fock space (13 points)
LetH be a separable Hilbert space andH⊗n = H⊗· · ·⊗H the n-fold tensor product. By definition
we setH⊗0 := C. Define the Fock space overH as F(H) :=

⊕∞
n=0H⊗n with scalar product

⟨
φ,ψ

⟩
F
:=

∞∑
n=0

⟨
φn, ψn

⟩
H⊗n , φ =

(
φ0, φ1, . . .

)
, ψ =

(
ψ0, ψ1, . . .

)
∈ F(H).

In the physics literature,H⊗n is called the n-particle Fock sector.
(i) Give a countable orthonormal basis of F(H). (No proof is necessary.)
(ii) Show that for any element ψ =

(
ψ0, ψ1, ψ2, . . .) of F(H)

lim
n→∞

∥∥ψn

∥∥
H⊗n = 0

holds where ψn is the corresponding element of the n-particle Fock sector.

Let A be a linear, bounded operator on H with domain D(A) = H. Then we define the second
quantization ofA as the operator

dΓ(A) :=
∞⊕
n=0

(
A⊗ idH ⊗ · · · ⊗ idH + . . .+ idH ⊗ · · · ⊗ idH ⊗A

)
acting on F(H).

(iii) Give the action of dΓ(A) on the nth Fock sectorH⊗n, i. e. find
(
dΓ(A)ψ

)
n
.

(iv) Give the domain of dΓ(idH) and discuss the physical meaning of dΓ(idH).

Solution:

(i) SinceH is countable, there exists a countable orthonormal basis {φn}n∈N [1]. Then{(
1, φk1 1 , φk2 1 ⊗ φk2 2 , . . . , φkn 1 ⊗ · · · ⊗ φknn , . . .

)}
n∈N

1≤j≤n
kn j∈N

[2]

is a countable orthonormal basis of F(H).
(ii) Pick an arbitrary ψ = (ψ0, ψ1, . . .) ∈ F(H). Then

∥ψ∥2 =
∞∑
n=0

∥∥ψn

∥∥2
H⊗n <∞ [1]

which necessarily means
∥∥ψn

∥∥
H⊗n → 0 as n→ ∞ [1].

(iii)
(
dΓ(A)ψ

)
n
=
(
A⊗ idH ⊗ · · · ⊗ idH + . . .+ idH ⊗ · · · ⊗ idH ⊗A

)
ψn [1]

(iv) The second quantization of the identity is the so-called (particle) number operator [1] which
– as the name suggests – measures the number of particles. The operator acts on the nth Fock
sectorH⊗n as

idH ⊗ idH ⊗ · · · ⊗ idH + . . .+ idH ⊗ · · · ⊗ idH ⊗ idH︸ ︷︷ ︸
n terms

[1]
= n idH⊗n
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and hence, we have

dΓ(idH)
[2]
=

∞⊕
n=0

n idH⊗n .

The domain consists of states with a finite number of particles [1], i. e.

D
(
dΓ(idH)

) [1]
=
{
φ ∈ F(H)

∣∣ dΓ(idH)φ ∈ F(H)
}

[1]
=
{
φ = (φ0, φ1, . . .) ∈ F(H)

∣∣ ∑∞
n=0 n

2
∣∣⟨φn, φn

⟩
H⊗n

∣∣2 <∞
}
.
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10. Best approximation: Fourier series (12 points)
Let L2([0, 2π]) be the Hilbert space of square-integrable functions with scalar product

⟨f, g⟩ := 1

2π

∫ 2π

0
dx f(x) g(x).

(i) Show that {e+inx}n∈Z is an orthonormal system of vectors in L2([0, 2π]).
(ii) Let E := {e+inx} n∈Z

|n|≤4
, and consider the functions f(x) = sin(2x) and g(x) = x. Give the

element of best approximation of f and g in spanE.
(iii) Why don’t these arguments work for L2(R)?

Solution:

(i) The scalar product for n ̸= m is

⟨
e+inx, e+imx

⟩ [1]
=

1

2π

∫ 2π

0
dx e−inx e+imx

=
1

2π

∫ 2π

0
e+i(m−n)x =

1

2π

1

i(m− n)
e+i(m−n)x

∣∣∣2π
0

[1]
= 0.

For n = m we obtain instead⟨
e+inx, e+imx

⟩ [1]
=

1

2π

∫ 2π

0
dx e+i(m−n)x =

1

2π

∫ 2π

0
dx 1 [1]

= 1.

The vectors are all mutually orthogonal and are normed to 1, and hence, {e+inx}n∈Z is an
orthonormal system [1].

(ii) Since f(x) [1]
= 1

i2
(
e+i2x− e−2x) it lies inE, and f is its own Element of Best Approximation [1].

For g we proceed to compute the Fourier components, starting with n = 0:

c0 =
1

2π

∫ 2π

0
dxx [1]

= π

For n ̸= 0 we obtain

cn
[1]
=

1

2π

∫ 2π

0
dxx e+inx =

1

i2πnx e
+inx

∣∣∣2π
0

− 1

i2πn

∫ 2π

0
dx 1 · einx

=
1

in − 1

2π

[
1

(in)2 e+inx
]2π
0

[1]
=

1

in

Thus, the Element of Best Approximation of g in E is

gE(x) = π +

4∑
n=1

1

in
(
e+inx − e−inx) [1]

= π +

4∑
n=1

2

n
sinnx.

(iii) The functions e+inx ̸∈ L2(R) are not square integrable [1], and hence, the arguments cannot
be repeated.
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11. Multiplication operators (14 points)
Let V ∈ L∞(Rd) and define the multiplication operator

(TV ψ)(x) := V (x)ψ(x) , ψ ∈ L2(Rd) .

(i) Show that TV : L2(Rd) −→ L2(Rd) is bounded.
(ii) Assume V ∈ L∞(Rd) is real-valued. Show that then ⟨φ, TV ψ⟩L2(Rd) = ⟨TV φ,ψ⟩L2(Rd) holds

for all φ,ψ ∈ L2(Rd), i. e. TV is selfadjoint.
(iii) Assume that V is bounded away from 0 and+∞, i. e. that there exist C > c > 0 so that

0 < c ≤ V (x) ≤ C < +∞

holds for all x ∈ Rd. Find the inverse of TV and show the inverse is bounded.

Solution:

(i) From the elementary estimate
∣∣(TV ψ)(x)∣∣ = ∣∣V (x)ψ(x)

∣∣ ≤ ∥V ∥∞
∣∣ψ(x)∣∣ [1], we deduce

∥∥TV ψ∥∥ [1]
=

(∫
Rd

dx
∣∣(TV ψ)(x)∣∣2)1/2

[1]

≤
(∫

Rd

dx ∥V ∥2∞|ψ(x)|2
)1/2

= ∥V ∥∞
(∫

Rd

dx |ψ(x)|2
)1/2

[1]
= ∥V ∥∞ ∥ψ∥ .

Hence, TV is bounded [1].
(ii) The claim follows from V = V and direct computation: for any φ,ψ ∈ L2(Rd), we have

⟨φ, TV ψ⟩
[1]
=

∫
Rd

dxφ(x) (TV ψ)(x)
[1]
=

∫
Rd

dxφ(x)V (x)ψ(x)

=

∫
Rd

dxV (x)φ(x)ψ(x) =

∫
Rd

dx (TV φ)(x)ψ(x)

[1]
= ⟨TV φ,ψ⟩ .

(iii) Since V is bounded away from 0 and+∞, so is V −1 [1],

0 < C−1 ≤ V −1(x) ≤ c−1 <∞ .

Hence, also TV −1 : L2(Rd) −→ L2(Rd) is a bounded multiplication operator by (i) [1]. More-
over, by direct computation, we verify that TV −1 is the inverse to TV [1], e. g.(

TV TV −1ψ
)
(x)

[1]
= V (x)

(
TV −1ψ

)
(x)

= V (x)V −1(x)ψ(x)
[1]
= ψ(x) ,

and similarly TV −1 TV = idL2(Rd) [1].
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