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8. The Lipschitz property (7 points)
Let f ∈ C1(R,R) be a function so that f ′ is bounded, i. e. there exists L > 0 such that

sup
x∈R

∣∣f ′(x)
∣∣ = L < ∞

holds for all x ∈ R. Show that f is globally Lipschitz. (Hint: use the mean value theorem.)

Solution:
We need to show there exists L > 0 so that

∣∣f(x)− f(y)
∣∣ ≤ L

∣∣x− y
∣∣ holds for all x, y ∈ R [1]. For

x = y, this statement is always satisfied [1]. So assume x ̸= y.
We use the mean value theorem: for all x, y ∈ R with x < y there exists a c ∈ (x, y) so that

f(x)− f(y)

x− y
= f ′(c) [2]

holds. After taking the absolute value on both sides and using that f ′ is bounded, we obtain∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ [1]
=

∣∣f ′(c)
∣∣ [1]

≤ sup
x∈R

∣∣f ′(x)
∣∣ = L.

Multiplying with x− y on both sides yields the Lipschitz property,∣∣f(x)− f(y)
∣∣ ≤ L

∣∣x− y
∣∣. [1]
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9. Hamiltonian equations of motion (23 points)
LetH(q, p) = 1

2mp2 + V (q) be the energy function for a particle in one dimension subjected to the
potential V (q) = q2 + sin(πq), and consider Hamilton’s equations of motion

d
dt

(
q
p

)
=

(
+∂pH
−∂qH

)
=: XH . (1)

(i) Show that the Hamiltonian flow associated to (1) exists globally in time and for all initial con-
ditions (q0, p0) ∈ R2.

(ii) Compute all fixed points of the Hamiltonian vector fieldXH .
(iii) Investigate the stability of (1) around the fixed point as in Section 2.4, i. e. determine whether

(1) is stable, Liapunov stable or unstable. Moreover, are the fixed points hyperbolic or elliptic?
(iv) Sketch the potential V and mark the fixed points as well as their stability properties.

Solution:

(i) We will show that

XH(q, p) =

(
+∂pH(q, p)
−∂qH(q, p)

)
[1]
=

( p
m

−2q − π cos(πq)

)
is globally Lipschitz and then invoke Corollary 2.2.8. With the exception of the term involving
the cos, the terms are linear in either p or q, and thus with the help of∣∣q − q′

∣∣ ≤ ∣∣∣∣(qp
)
−

(
q′

p′

)∣∣∣∣ [1]

∣∣p− p′
∣∣ ≤ ∣∣∣∣(qp

)
−

(
q′

p′

)∣∣∣∣
we obtain global Lipschitz estimates for the first two of three terms,

∣∣XH(q, p)−XH(q′, p′)
∣∣ [1]

≤
∣∣∣∣( p

m
−2q − π cos(πq)

)
−

(
p′

m
−2q′ − π cos(πq′)

)∣∣∣∣
[1]

≤
∣∣∣ p
m − p′

m

∣∣∣+ ∣∣−2q − (−2q′)
∣∣+ ∣∣π cos(πq)− π cos(πq′)

∣∣
≤ 1

m

∣∣∣∣(qp
)
−

(
q′

p′

)∣∣∣∣+ 2

∣∣∣∣(qp
)
−

(
q′

p′

)∣∣∣∣+ π
∣∣cos(πq)− π cos(πq′)

∣∣
[1]
=

(
1
m + 2

) ∣∣∣∣(qp
)
−

(
q′

p′

)∣∣∣∣+ π
∣∣cos(πq)− π cos(πq′)

∣∣.
To obtain a Lipschitz estimate for the last term, we use problem 8 [1]: since the derivative of
π cos(πq) is bounded, it is Lipschitz, and the smallest Lipschitz constant is

sup
q∈R

|π ∂q cos(πq)| = sup
q∈R

∣∣π2 sin(πq)
∣∣ = π2.

Hence, the vector field is globally Lipschitz,

∣∣XH(q, p)−XH(q′, p′)
∣∣ [1]

≤
(
1
m + 2 + π2

) ∣∣∣∣(qp
)
−

(
q′

p′

)∣∣∣∣ ∀(q, p), (q′, p′) ∈ R2,

and thus by Corollary 2.2.8, the Hamiltonian flow Φ exists globally in time [1].
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(ii) Fixed points (q0, p0) are stationary points of the vector field,

XH(q0, p0) =

( p0
m

−V ′(q0)

)
!
=

(
0
0

)
.

This implies p0 = 0 and V ′(q0) = 0 [1]. V has three local extrema, q0 1 ≈ −0.42, q0 2 ≈ 0.63
and q0 3 ≈ 1.22 [3].

(iii) The differential of the Hamiltonian vector field is

DXH(q, p) =

(
0 1/m

−V ′′(q) 0

)
=

(
0 1/m

−2 + π2 sin(πq) 0

)
[1].

This matrix has the eigenvalues

λ±(q) = ±
√

π2 sin(πq)− 2

m
. [1]

q0 1 ≈ −0.42: The term under the square root is negative and thus the λ± ∈ iR are purely
imaginary. Thus, the vector field is marginally stable [1], elliptic [1] and not hyperbolic.
q0 2 ≈ 0.63: The term under the square root is positive and thus the λ± ∈ R are purely real
with λ+ > 0 > λ−. Thus, the vector field is unstable [1], hyperbolic [1] and not elliptic.
q0 3 ≈ 1.22: The term under the square root is negative and thus the λ± ∈ iR are purely
imaginary. Thus, the vector field is marginally stable [1], elliptic [1] and not hyperbolic.

(iv) The stable, elliptic fixed points correspond to local minima while the local maximum is unsta-
ble and hyperbolic. [3]
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10. A two-dimensional classical particle in a magnetic field (17 points)
Assume the magnetic field b ∈ C∞(R2,R) is smooth and bounded, and define the associated mag-
netic field matrix

B(q) =

(
0 −b(q)

+b(q) 0

)
Moreover, letH(q, p) = 1

2p
2 be the energy function for a particle with mass 1 and

d
dt

(
q
p

)
=

(
0 +idR2

−idR2 B

)(
∇qH
∇pH

)
=: XH (2)

its equations of motion.
(i) Find the fixed points of the Hamiltonian vector fieldXH and investigate the stability proper-

ties of (2) at those fixed points.
(ii) Now assume b is constant. Solve the equations of motion explicitly for the initial conditions

(q0, p0). (You may make use of all your previous homework problems.)

Solution:
(i) The fixed points of the Hamiltonian vector field

XH(q, p) =

(
0 +idR2

−idR2 B(q)

)(
∇qH(q, p)
∇pH(q, p)

)
=

(
0 +idR2

−idR2 B(q)

)(
0
p

)
[2]
=

(
p

B(q)p

)
are (q0, 0) [1].
We then compute the differential

DXH(q, p)
[1]
=

(
0 idR2

B′(q)p B(q)

)
.

and set p = 0,

DXH(q0, 0)
[1]
=

(
0 idR2

0 B(q0)

)
.

Since this is a block matrix, the eigenvalues can be computed easily using

det
(
A B
0 D

)
= detA detD,

because then

det
(
λ idC4 −DXH(q0, 0)

) [1]
= det

(
λ idC2 −idC2

0 λ idC2 −B(q0)

)
= det

(
λ idC2

)
det

(
λ idC2 −B(q0)

)
= λ2 det

(
λ +b(q0)

−b(q0) λ

)
[1]
= λ2

(
λ2 + b(q0)

2
)
.

The eigenvalues of this matrix are thus λ1,2 = 0 [1] and λ3,4 = ±i
√

|b(q0)| [1]. This means all
fixed points are marginally stable [1] and elliptic [1].
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(ii) Now the magnetic field b is constant. Given that q̇(t) = p(t), we can obtain q(t) by integrating
p(t),

q(t)
[1]
= q0 +

∫ t

0
ds p(s).

So let us solve the equation for p(t) which just a linear ODE:

ṗ(t)
[1]
= B p =

(
0 −b
+b 0

)
p

We can solve this by using problem 3 from sheet 1, because B is just the lower 2× 2 block of
the matrix H of problem 3. Thus the matrix exponential is also just the lower 2 × 2 matrix
block, i. e.

p(t)
[1]
= etBp0 =

(
cos(bt) − sin(bt)
sin(bt) cos(bt)

)(
p0 1
p0 2

)
[1]
=

(
p0 1 cos(bt)− p0 2 sin(bt)
p0 1 sin(bt) + p0 2 cos(bt)

)
.

So we can integrate p(t) explicitly, and obtain

q(t)
[1]
=

(
q0 1
q0 2

)
+

∫ t

0
ds

(
p0 1 cos(bs)− p0 2 sin(bs)
p0 1 sin(bs) + p0 2 cos(bs)

)
=

(
q0 1
q0 2

)
+

[
1

b

(
p0 1 sin(bs) + p0 2 cos(bs)
−p0 1 cos(bs) + p0 2 sin(bs)

)]t
0

[1]
=

(
q0 1
q0 2

)
+

1

b

(
p0 1 sin(bt) + p0 2

(
cos(bt)− 1

)
−p0 1

(
cos(bt)− 1

)
+ p0 2 sin(bt)

)
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