Differential Equations of

Stability of ODEs
 \& Hamilton's Equations of Motion

Homework Problems

8. The Lipschitz property (7 points)

Let $f \in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R})$ be a function so that f^{\prime} is bounded, i. e. there exists $L>0$ such that

$$
\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right|=L<\infty
$$

holds for all $x \in \mathbb{R}$. Show that f is globally Lipschitz. (Hint: use the mean value theorem.)

Solution:

We need to show there exists $L>0$ so that $|f(x)-f(y)| \leq L|x-y|$ holds for all $x, y \in \mathbb{R}$ [1]. For $x=y$, this statement is always satisfied [1]. So assume $x \neq y$.

We use the mean value theorem: for all $x, y \in \mathbb{R}$ with $x<y$ there exists a $c \in(x, y)$ so that

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c) \tag{2}
\end{equation*}
$$

holds. After taking the absolute value on both sides and using that f^{\prime} is bounded, we obtain

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \stackrel{[1]}{=}\left|f^{\prime}(c)\right| \stackrel{[1]}{\leq} \sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right|=L
$$

Multiplying with $x-y$ on both sides yields the Lipschitz property,

$$
\begin{equation*}
|f(x)-f(y)| \leq L|x-y| \tag{1}
\end{equation*}
$$

9. Hamiltonian equations of motion (23 points)

Let $H(q, p)=\frac{1}{2 m} p^{2}+V(q)$ be the energy function for a particle in one dimension subjected to the potential $V(q)=q^{2}+\sin (\pi q)$, and consider Hamilton's equations of motion

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{q}{p}=\binom{+\partial_{p} H}{-\partial_{q} H}=: X_{H} \tag{1}
\end{equation*}
$$

(i) Show that the Hamiltonian flow associated to (1) exists globally in time and for all initial conditions $\left(q_{0}, p_{0}\right) \in \mathbb{R}^{2}$.
(ii) Compute all fixed points of the Hamiltonian vector field X_{H}.
(iii) Investigate the stability of (1) around the fixed point as in Section 2.4, i. e. determine whether $(\underline{1})$ is stable, Liapunov stable or unstable. Moreover, are the fixed points hyperbolic or elliptic?
(iv) Sketch the potential V and mark the fixed points as well as their stability properties.

Solution:

(i) We will show that

$$
X_{H}(q, p)=\binom{+\partial_{p} H(q, p)}{-\partial_{q} H(q, p)} \stackrel{[1]}{=}\binom{\frac{p}{m}}{-2 q-\pi \cos (\pi q)}
$$

is globally Lipschitz and then invoke Corollary 2.2.8. With the exception of the term involving the cos, the terms are linear in either p or q, and thus with the help of

$$
\begin{align*}
& \left|q-q^{\prime}\right| \leq\left|\binom{q}{p}-\binom{q^{\prime}}{p^{\prime}}\right| \tag{1}\\
& \left|p-p^{\prime}\right| \leq\left|\binom{q}{p}-\binom{q^{\prime}}{p^{\prime}}\right|
\end{align*}
$$

we obtain global Lipschitz estimates for the first two of three terms,

$$
\begin{aligned}
\left|X_{H}(q, p)-X_{H}\left(q^{\prime}, p^{\prime}\right)\right| & \stackrel{[1]}{\leq}\left|\binom{\frac{p}{m}}{-2 q-\pi \cos (\pi q)}-\binom{\frac{p^{\prime}}{m}}{-2 q^{\prime}-\pi \cos \left(\pi q^{\prime}\right)}\right| \\
& \stackrel{[1]}{\leq}\left|\frac{p}{m}-\frac{p^{\prime}}{m}\right|+\left|-2 q-\left(-2 q^{\prime}\right)\right|+\left|\pi \cos (\pi q)-\pi \cos \left(\pi q^{\prime}\right)\right| \\
& \leq \frac{1}{m}\left|\binom{q}{p}-\binom{q^{\prime}}{p^{\prime}}\right|+2\left|\binom{q}{p}-\binom{q^{\prime}}{p^{\prime}}\right|+\pi\left|\cos (\pi q)-\pi \cos \left(\pi q^{\prime}\right)\right| \\
& \stackrel{[1]}{=}\left(\frac{1}{m}+2\right)\left|\binom{q}{p}-\binom{q^{\prime}}{p^{\prime}}\right|+\pi\left|\cos (\pi q)-\pi \cos \left(\pi q^{\prime}\right)\right| .
\end{aligned}
$$

To obtain a Lipschitz estimate for the last term, we use problem 8 [1]: since the derivative of $\pi \cos (\pi q)$ is bounded, it is Lipschitz, and the smallest Lipschitz constant is

$$
\sup _{q \in \mathbb{R}}\left|\pi \partial_{q} \cos (\pi q)\right|=\sup _{q \in \mathbb{R}}\left|\pi^{2} \sin (\pi q)\right|=\pi^{2}
$$

Hence, the vector field is globally Lipschitz,

$$
\left|X_{H}(q, p)-X_{H}\left(q^{\prime}, p^{\prime}\right)\right| \stackrel{[1]}{\leq}\left(\frac{1}{m}+2+\pi^{2}\right)\left|\binom{q}{p}-\binom{q^{\prime}}{p^{\prime}}\right| \quad \forall(q, p),\left(q^{\prime}, p^{\prime}\right) \in \mathbb{R}^{2}
$$

and thus by Corollary 2.2.8, the Hamiltonian flow Φ exists globally in time [1].
(ii) Fixed points $\left(q_{0}, p_{0}\right)$ are stationary points of the vector field,

$$
X_{H}\left(q_{0}, p_{0}\right)=\binom{\frac{p_{0}}{m}}{-V^{\prime}\left(q_{0}\right)} \stackrel{!}{=}\binom{0}{0} .
$$

This implies $p_{0}=0$ and $V^{\prime}\left(q_{0}\right)=0[1] . V$ has three local extrema, $q_{01} \approx-0.42, q_{02} \approx 0.63$ and $q_{03} \approx 1.22$ [3].
(iii) The differential of the Hamiltonian vector field is

$$
D X_{H}(q, p)=\left(\begin{array}{cc}
0 & 1 / m \tag{1}\\
-V^{\prime \prime}(q) & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 / m \\
-2+\pi^{2} \sin (\pi q) & 0
\end{array}\right)
$$

This matrix has the eigenvalues

$$
\begin{equation*}
\lambda_{ \pm}(q)= \pm \sqrt{\frac{\pi^{2} \sin (\pi q)-2}{m}} . \tag{1}
\end{equation*}
$$

$q_{01} \approx-0.42$: The term under the square root is negative and thus the $\lambda_{ \pm} \in \mathrm{i} \mathbb{R}$ are purely imaginary. Thus, the vector field is marginally stable [1], elliptic [1] and not hyperbolic.
$q_{02} \approx 0.63$: The term under the square root is positive and thus the $\lambda_{ \pm} \in \mathbb{R}$ are purely real with $\lambda_{+}>0>\lambda_{-}$. Thus, the vector field is unstable [1], hyperbolic [1] and not elliptic.
$q_{03} \approx 1.22$: The term under the square root is negative and thus the $\lambda_{ \pm} \in \mathrm{i} \mathbb{R}$ are purely imaginary. Thus, the vector field is marginally stable [1], elliptic [1] and not hyperbolic.
(iv) The stable, elliptic fixed points correspond to local minima while the local maximum is unstable and hyperbolic. [3]

10. A two-dimensional classical particle in a magnetic field (17 points)

Assume the magnetic field $b \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ is smooth and bounded, and define the associated magnetic field matrix

$$
B(q)=\left(\begin{array}{cc}
0 & -b(q) \\
+b(q) & 0
\end{array}\right)
$$

Moreover, let $H(q, p)=\frac{1}{2} p^{2}$ be the energy function for a particle with mass 1 and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{q}{p}=\left(\begin{array}{cc}
0 & +\mathrm{id}_{\mathbb{R}^{2}} \tag{2}\\
-\mathrm{id}_{\mathbb{R}^{2}} & B
\end{array}\right)\binom{\nabla_{q} H}{\nabla_{p} H}=: X_{H}
$$

its equations of motion.
(i) Find the fixed points of the Hamiltonian vector field X_{H} and investigate the stability properties of (2) at those fixed points.
(ii) Now assume b is constant. Solve the equations of motion explicitly for the initial conditions $\left(q_{0}, p_{0}\right)$. (You may make use of all your previous homework problems.)

Solution:

(i) The fixed points of the Hamiltonian vector field

$$
\begin{aligned}
X_{H}(q, p) & =\left(\begin{array}{cc}
0 & +\mathrm{id}_{\mathbb{R}^{2}} \\
-\mathrm{id}_{\mathbb{R}^{2}} & B(q)
\end{array}\right)\binom{\nabla_{q} H(q, p)}{\nabla_{p} H(q, p)} \\
& =\left(\begin{array}{cc}
0 & +\mathrm{id}_{\mathbb{R}^{2}} \\
-\mathrm{id}_{\mathbb{R}^{2}} & B(q)
\end{array}\right)\binom{0}{p} \\
& \stackrel{[2]}{=}\binom{p}{B(q) p}
\end{aligned}
$$

are $\left(q_{0}, 0\right)[1]$.
We then compute the differential

$$
D X_{H}(q, p) \stackrel{[1]}{=}\left(\begin{array}{cc}
0 & \mathrm{id}_{\mathbb{R}^{2}} \\
B^{\prime}(q) p & B(q)
\end{array}\right) .
$$

and set $p=0$,

$$
D X_{H}\left(q_{0}, 0\right) \stackrel{[1]}{=}\left(\begin{array}{cc}
0 & \mathrm{id}_{\mathbb{R}^{2}} \\
0 & B\left(q_{0}\right)
\end{array}\right) .
$$

Since this is a block matrix, the eigenvalues can be computed easily using

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)=\operatorname{det} A \operatorname{det} D
$$

because then

$$
\begin{aligned}
\operatorname{det}\left(\lambda \mathrm{id}_{\mathbb{C}^{4}}-D X_{H}\left(q_{0}, 0\right)\right) & \stackrel{[1]}{=} \operatorname{det}\left(\begin{array}{cc}
\lambda \mathrm{id}_{\mathbb{C}^{2}} & -\mathrm{id}_{\mathbb{C}^{2}} \\
0 & \lambda \mathrm{id}_{\mathbb{C}^{2}}-B\left(q_{0}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\lambda \operatorname{id}_{\mathbb{C}^{2}}\right) \operatorname{det}\left(\lambda \mathrm{id}_{\mathbb{C}^{2}}-B\left(q_{0}\right)\right) \\
& =\lambda^{2} \operatorname{det}\left(\begin{array}{cc}
\lambda & +b\left(q_{0}\right) \\
-b\left(q_{0}\right) & \lambda
\end{array}\right) \\
& \stackrel{[1]}{=} \lambda^{2}\left(\lambda^{2}+b\left(q_{0}\right)^{2}\right) .
\end{aligned}
$$

The eigenvalues of this matrix are thus $\lambda_{1,2}=0$ [1] and $\lambda_{3,4}= \pm \mathbf{i} \sqrt{\left|b\left(q_{0}\right)\right|}[1]$. This means all fixed points are marginally stable [1] and elliptic [1].
(ii) Now the magnetic field b is constant. Given that $\dot{q}(t)=p(t)$, we can obtain $q(t)$ by integrating $p(t)$,

$$
q(t) \stackrel{[1]}{=} q_{0}+\int_{0}^{t} \mathrm{~d} s p(s)
$$

So let us solve the equation for $p(t)$ which just a linear ODE:

$$
\dot{p}(t) \stackrel{[1]}{=} B p=\left(\begin{array}{cc}
0 & -b \\
+b & 0
\end{array}\right) p
$$

We can solve this by using problem 3 from sheet 1 , because B is just the lower 2×2 block of the matrix H of problem 3. Thus the matrix exponential is also just the lower 2×2 matrix block, i. e.

$$
\begin{aligned}
p(t) & \stackrel{[1]}{=} \mathrm{e}^{t B} p_{0}=\left(\begin{array}{cc}
\cos (b t) & -\sin (b t) \\
\sin (b t) & \cos (b t)
\end{array}\right)\binom{p_{01}}{p_{02}} \\
& \stackrel{[1]}{=}\left(\begin{array}{ccc}
p_{01} & \cos (b t)-p_{02} & \sin (b t) \\
p_{01} & \sin (b t)+p_{02} & \cos (b t)
\end{array}\right) .
\end{aligned}
$$

So we can integrate $p(t)$ explicitly, and obtain

$$
\begin{aligned}
q(t) & \stackrel{[1]}{=}\binom{q_{01}}{q_{02}}+\int_{0}^{t} \mathrm{~d} s\binom{p_{01} \cos (b s)-p_{02} \sin (b s)}{p_{01} \sin (b s)+p_{02} \cos (b s)} \\
& =\binom{q_{01}}{q_{02}}+\left[\frac{1}{b}\binom{p_{01} \sin (b s)+p_{02} \cos (b s)}{-p_{01} \cos (b s)+p_{02} \sin (b s)}\right]_{0}^{t} \\
& \stackrel{[1]}{=}\binom{q_{01}}{q_{02}}+\frac{1}{b}\binom{p_{01} \sin (b t)+p_{02}(\cos (b t)-1)}{-p_{01}(\cos (b t)-1)+p_{02} \sin (b t)}
\end{aligned}
$$

