Foundations of Quantum Mechanics
 (APM 421 H)

Hilbert Spaces \& Operators

Homework Problems

8. Orthogonal subspaces and projections onto subspaces

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis (ONB) of a Hilbert space \mathcal{H} and $N \in \mathbb{N}$.
(i) Prove that $E:=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$ is a sub vector space.
(ii) Give an ONB for the subspace $E=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$.
(iii) Show that $\left(\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}\right)^{\perp}=E^{\perp}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$.

Moreover, define the map

$$
P: \mathcal{H} \longrightarrow \mathcal{H}, P \psi:=\sum_{n=1}^{N}\left\langle\varphi_{n}, \psi\right\rangle \varphi_{n}
$$

(iv) Show that P is linear, i. e. for any $\varphi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have $P(\alpha \varphi+\psi)=\alpha P \varphi+P \psi$.
(v) Show that P is a projection, i. e. $P^{2}=P$.
(vi) Show that P is bounded, i. e. $\|P \varphi\| \leq\|\varphi\|$ holds for any $\varphi \in \mathcal{H}$.

9. The Fock space

Let \mathcal{H} be a separable Hilbert space and $\mathcal{H}^{\otimes n}=\mathcal{H} \otimes \cdots \otimes \mathcal{H}$ the n-fold tensor product. By definition we set $\mathcal{H}^{\otimes 0}:=\mathbb{C}$. Define the Fock space over \mathcal{H} as $\mathfrak{F}(\mathcal{H}):=\bigoplus_{n=0}^{\infty} \mathcal{H}^{\otimes n}$ with scalar product

$$
\langle\varphi, \psi\rangle_{\mathfrak{F}}:=\sum_{n=0}^{\infty}\left\langle\varphi_{n}, \psi_{n}\right\rangle_{\mathcal{H}^{\otimes n}}, \quad \varphi=\left(\varphi_{0}, \varphi_{1}, \ldots\right), \psi=\left(\psi_{0}, \psi_{1}, \ldots\right) \in \mathfrak{F}(\mathcal{H})
$$

In the physics literature, $\mathcal{H}^{\otimes n}$ is called the n-particle Fock sector.
(i) Give a countable orthonormal basis of $\mathfrak{F}(\mathcal{H})$. (No proof is necessary.)
(ii) Show that for any element $\psi=\left(\psi_{0}, \psi_{1}, \psi_{2}, \ldots\right)$ of $\mathfrak{F}(\mathcal{H})$

$$
\lim _{n \rightarrow \infty}\left\|\psi_{n}\right\|_{\mathcal{H}^{\otimes n}}=0
$$

holds where ψ_{n} is the corresponding element of the n-particle Fock sector.
Let A be a linear, bounded operator on \mathcal{H} with domain $\mathcal{D}(A)=\mathcal{H}$. Then we define the second quantization of A as the operator

$$
\mathrm{d} \Gamma(A):=\bigoplus_{n=0}^{\infty}\left(A \otimes \mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \mathrm{id}_{\mathcal{H}}+\ldots+\mathrm{id}_{\mathcal{H}} \otimes \cdots \otimes \operatorname{id}_{\mathcal{H}} \otimes A\right)
$$

acting on $\mathfrak{F}(\mathcal{H})$.
(iii) Give the action of $\mathrm{d} \Gamma(A)$ on the nth Fock sector $\mathcal{H}^{\otimes n}$, i. e. find $(\mathrm{d} \Gamma(A) \psi)_{n}$.
(iv) Give the domain of $\mathrm{d} \Gamma\left(\mathrm{id}_{\mathcal{H}}\right)$ and discuss the physical meaning of $\mathrm{d} \Gamma\left(\mathrm{id}_{\mathcal{H}}\right)$.
10. Best approximation: Fourier series

Let $L^{2}([0,2 \pi])$ be the Hilbert space of square-integrable functions with scalar product

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x \overline{f(x)} g(x)
$$

(i) Show that $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system of vectors in $L^{2}([0,2 \pi])$.
(ii) Let $E:=\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{\substack{n \in \mathbb{Z} \\|n| \leq 4}}$, and consider the functions $f(x)=\sin (2 x)$ and $g(x)=x$. Give the element of best approximation of f and g in span E.
(iii) Why don't these arguments work for $L^{2}(\mathbb{R})$?

11. Multiplication operators

Let $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and define the multiplication operator

$$
\left(T_{V} \psi\right)(x):=V(x) \psi(x), \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

(i) Show that $T_{V}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is bounded.
(ii) Assume $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ is real-valued. Show that then $\left\langle\varphi, T_{V} \psi\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\langle T_{V} \varphi, \psi\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}$ holds for all $\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$, i. e. T_{V} is selfadjoint.
(iii) Assume that V is bounded away from 0 and $+\infty$, i. e. that there exist $C>c>0$ so that

$$
0<c \leq V(x) \leq C<+\infty
$$

holds for all $x \in \mathbb{R}^{d}$. Find the inverse of T_{V} and show the inverse is bounded.

