

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 3 (2014.09.26)

Hilbert Spaces & Operators

Homework Problems

8. Orthogonal subspaces and projections onto subspaces

- Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an orthonormal basis (ONB) of a Hilbert space \mathcal{H} and $N\in\mathbb{N}$.
 - (i) Prove that $E := \{\varphi_1, \ldots, \varphi_N\}^{\perp}$ is a sub vector space.
- (ii) Give an ONB for the subspace $E = \{\varphi_1, \ldots, \varphi_N\}^{\perp}$.
- (iii) Show that $(\{\varphi_1, \ldots, \varphi_N\}^{\perp})^{\perp} = E^{\perp} = \operatorname{span}\{\varphi_1, \ldots, \varphi_N\}.$

Moreover, define the map

$$P: \mathcal{H} \longrightarrow \mathcal{H}, \ P\psi := \sum_{n=1}^{N} \langle \varphi_n, \psi \rangle \ \varphi_n$$

- (iv) Show that P is linear, i. e. for any $\varphi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have $P(\alpha \varphi + \psi) = \alpha P \varphi + P \psi$.
- (v) Show that *P* is a projection, i. e. $P^2 = P$.
- (vi) Show that *P* is bounded, i. e. $||P\varphi|| \le ||\varphi||$ holds for any $\varphi \in \mathcal{H}$.

9. The Fock space

Let \mathcal{H} be a separable Hilbert space and $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ the *n*-fold tensor product. By definition we set $\mathcal{H}^{\otimes 0} := \mathbb{C}$. Define the Fock space over \mathcal{H} as $\mathfrak{F}(\mathcal{H}) := \bigoplus_{n=0}^{\infty} \mathcal{H}^{\otimes n}$ with scalar product

$$\langle \varphi, \psi \rangle_{\mathfrak{F}} := \sum_{n=0}^{\infty} \langle \varphi_n, \psi_n \rangle_{\mathcal{H}^{\otimes n}}, \qquad \varphi = (\varphi_0, \varphi_1, \ldots), \psi = (\psi_0, \psi_1, \ldots) \in \mathfrak{F}(\mathcal{H}).$$

In the physics literature, $\mathcal{H}^{\otimes n}$ is called the *n*-particle Fock sector.

- (i) Give a countable orthonormal basis of $\mathfrak{F}(\mathcal{H})$. (No proof is necessary.)
- (ii) Show that for any element $\psi = (\psi_0, \psi_1, \psi_2, ...)$ of $\mathfrak{F}(\mathcal{H})$

$$\lim_{n \to \infty} \left\| \psi_n \right\|_{\mathcal{H}^{\otimes n}} = 0$$

holds where ψ_n is the corresponding element of the *n*-particle Fock sector.

Let A be a linear, bounded operator on \mathcal{H} with domain $\mathcal{D}(A) = \mathcal{H}$. Then we define the *second quantization of* A as the operator

$$\mathsf{d}\Gamma(A) := \bigoplus_{n=0}^{\infty} (A \otimes \mathsf{id}_{\mathcal{H}} \otimes \cdots \otimes \mathsf{id}_{\mathcal{H}} + \ldots + \mathsf{id}_{\mathcal{H}} \otimes \cdots \otimes \mathsf{id}_{\mathcal{H}} \otimes A)$$

acting on $\mathfrak{F}(\mathcal{H})$.

- (iii) Give the action of $d\Gamma(A)$ on the *n*th Fock sector $\mathcal{H}^{\otimes n}$, i. e. find $(d\Gamma(A)\psi)_n$.
- (iv) Give the domain of $d\Gamma(id_{\mathcal{H}})$ and discuss the physical meaning of $d\Gamma(id_{\mathcal{H}})$.

10. Best approximation: Fourier series

Let $L^2([0, 2\pi])$ be the Hilbert space of square-integrable functions with scalar product

$$\langle f,g \rangle := \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}x \,\overline{f(x)} \,g(x)$$

- (i) Show that $\{e^{+inx}\}_{n\in\mathbb{Z}}$ is an orthonormal system of vectors in $L^2([0, 2\pi])$.
- (ii) Let $E := \{e^{+inx}\}_{\substack{n \in \mathbb{Z} \\ |n| \leq 4}}$, and consider the functions $f(x) = \sin(2x)$ and g(x) = x. Give the element of best approximation of f and g in span E.
- (iii) Why don't these arguments work for $L^2(\mathbb{R})$?

11. Multiplication operators

Let $V \in L^{\infty}(\mathbb{R}^d)$ and define the multiplication operator

$$(T_V\psi)(x) := V(x)\,\psi(x)\,,\qquad\qquad \psi \in L^2(\mathbb{R}^d)\,.$$

- (i) Show that $T_V : L^2(\mathbb{R}^d) \longrightarrow L^2(\mathbb{R}^d)$ is bounded.
- (ii) Assume $V \in L^{\infty}(\mathbb{R}^d)$ is real-valued. Show that then $\langle \varphi, T_V \psi \rangle_{L^2(\mathbb{R}^d)} = \langle T_V \varphi, \psi \rangle_{L^2(\mathbb{R}^d)}$ holds for all $\varphi, \psi \in L^2(\mathbb{R}^d)$, i. e. T_V is selfadjoint.
- (iii) Assume that V is bounded away from 0 and $+\infty$, i. e. that there exist C > c > 0 so that

$$0 < c \le V(x) \le C < +\infty$$

holds for all $x \in \mathbb{R}^d$. Find the inverse of T_V and show the inverse is bounded.

Hand in home work on: Friday, 3 October 2014, before class