Foundations of

Operators

Homework Problems

12. Projections (19 points)

Consider the multiplication operator $P=p(\hat{x})$ on $L^{2}\left(\mathbb{R}^{d}\right)$ associated to the function

$$
p(x)=\left\{\begin{array}{ll}
1 & x \geq 0 \\
0 & x<0
\end{array} .\right.
$$

(i) Find 2 eigenfunctions.
(ii) Compute $\sigma(P)$.
(iii) Determine the nature of the spectrum, i. e. determine $\sigma_{\mathrm{p}}(P), \sigma_{\text {cont }}(P)$, and $\sigma_{\mathrm{r}}(P)$.
(iv) Prove that P is an orthogonal projection.

Solution:

(i) For instance, consider the functions

$$
\psi_{0}(x) \stackrel{[1]}{=}\left\{\begin{array}{ll}
1 & x \in[-1,0] \\
0 & \text { else }
\end{array}, \quad \psi_{1}(x) \stackrel{[1]}{=} \begin{cases}1 & x \in[0,1] \\
0 & \text { else }\end{cases}\right.
$$

(All that is important is that one of them is zero on $[0,+\infty)$ and the other is zero on $(-\infty, 0]$.) Then clearly, ψ_{0} is an eigenfunction to the eigenvalue $0,\left(P \psi_{0}\right)(x)=p(x) \psi_{0}(x)=0$ [1], while ψ_{1} is an eigenfunction to the eigenvalue $1,\left(P \psi_{1}\right)(x)=p(x) \psi_{1}(x)=\psi_{1}(x)$ [1].
(ii) First of all, P has two eigenvalues, namely 0 and 1 [2]: the eigenvectors to the eigenvalue 1 are functions which vanish almost everywhere on $(-\infty, 0)$. Similarly, eigenvectors to the eigenvalue 0 are functions which vanish almost everywhere on $[0,+\infty)$.
Since $(P-z) \varphi=0$ means that $((P-z) \varphi)(x)=0$ for almost all $x \in \mathbb{R}[1]$. Thus, for all $z \neq 0,1$ we have $(P-z) \varphi \neq 0$ for all $\varphi \neq 0$ [1], i. e. $P-z$ is invertible as long as $z \neq 0,1$ [1], and we have shown $\sigma(P)=\{0,1\}[1]$.
(iii) Since all vectors are eigenvectors, the spectrum consists just of point spectrum,

$$
\sigma_{\mathfrak{p}}(P) \stackrel{[1]}{=} \sigma(P)=\{0,1\}, \quad \sigma_{\text {cont }}(P) \stackrel{[1]}{=} \emptyset, \quad \sigma_{\mathbf{r}}(P) \stackrel{[1]}{=} \emptyset .
$$

(iv) p is a real-valued, bounded function, and hence, by problem 11 (ii) $P^{*}=P$ [2]. (Otherwise, one needs to show this by hand for this special case.)
To see $P^{2}=P$, we note $p^{2}=p$ in the sense of functions and conclude

$$
\left(P^{2} \varphi\right)(x) \stackrel{[1]}{=} p(x)^{2} \varphi(x) \stackrel{[1]}{=} p(x) \varphi(x) \stackrel{[1]}{=}(P \varphi)(x) .
$$

Thus, $P=P^{*}=P^{2}$ is an orthogonal projection [1].

13. The discrete Laplacian (24 points)

Consider the Hilbert space $\ell^{2}(\mathbb{Z})$ with the usual scalar product $\langle\cdot, \cdot\rangle_{\ell^{2}(\mathbb{Z})}$. Define the shift operator

$$
\mathfrak{s}: \ell^{2}(\mathbb{Z}) \longrightarrow \ell^{2}(\mathbb{Z}),(\mathfrak{s} \psi)(n):=\psi(n-1)
$$

as well as the shift by $a \in \mathbb{Z}$ lattice units, $\mathfrak{s}_{a}:=\mathfrak{s}^{a}$. Consider the discrete Laplacian

$$
\Delta: \ell^{2}(\mathbb{Z}) \longrightarrow \ell^{2}(\mathbb{Z}),(\Delta \psi)(n):=\psi(n+1)+\psi(n-1)-2 \psi(n)
$$

(i) Compute \mathfrak{s}_{a}^{*} and prove that \mathfrak{s}_{a} is unitary.
(ii) Show that Δ is a bounded operator on $\ell^{2}(\mathbb{Z})$.
(iii) Show that \mathfrak{s}_{a} and Δ commute, i. e. $\left[\mathfrak{s}_{a}, \Delta\right]:=\mathfrak{s}_{a} \Delta-\Delta \mathfrak{s}_{a}=0$.
(iv) Compute Δ^{*}.
(v) Determine E_{k} so that

$$
\psi_{k}(n):=\mathrm{e}^{+\mathrm{i} n k}, \quad n \in \mathbb{Z}, k \in[-\pi,+\pi],
$$

is an eigenvalue to the discrete Laplacian,

$$
\left(\Delta \psi_{k}\right)(n)=E_{k} \psi_{k}(n)
$$

Is ψ_{k} an element of $\ell^{2}(\mathbb{Z})$?
Remark: The Hilbert space $\ell^{2}(\mathbb{Z})$ is often used in solid state physics where the shift operator $(\mathfrak{s} \widehat{\psi})(n):=\widehat{\psi}(n-1)$ is interpreted as translating the particle by one lattice unit.

Solution:

(i) Let $\varphi, \psi \in \ell^{2}(\mathbb{Z})$ and $a \in \mathbb{Z}$. The adjoint operator \mathfrak{s}_{a}^{*} is then \mathfrak{s}_{-a},

$$
\begin{aligned}
\left\langle\varphi, \mathfrak{s}_{a} \psi\right\rangle & \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}} \overline{\varphi(n)}\left(\mathfrak{s}_{a} \psi\right)(n) \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}} \overline{\varphi(n)} \psi(n-a) \stackrel{[1]}{=} \sum_{k \in \mathbb{Z}} \overline{\varphi(k+a)} \psi(k) \\
& \stackrel{[1]}{=} \sum_{k \in \mathbb{Z}} \overline{\left(\mathfrak{s}_{-a} \varphi\right)(k)} \psi(k) \stackrel{[1]}{=}\left\langle\mathfrak{s}_{-a} \varphi, \psi\right\rangle .
\end{aligned}
$$

\mathfrak{s}_{-a} is also the inverse to \mathfrak{s}_{a} [1], since

$$
\left(\mathfrak{s}_{-a} \mathfrak{s}_{a} \varphi\right)(n)=\left(\mathfrak{s}_{a} \varphi\right)(n+a)=\varphi(n+a-a)=\varphi(n)
$$

holds for all $\varphi \in \ell^{2}(\mathbb{Z})$ and $n \in \mathbb{Z}$. This means \mathfrak{s}_{a} is unitary [1].
(ii) We recognize that actually $\Delta=\mathfrak{s}+\mathfrak{s}^{*}-2$ [1], so we deduce Δ is bounded

$$
\|\Delta\| \stackrel{[1]}{\leq}\|\mathfrak{s}\|+\left\|\mathfrak{s}^{*}\right\|+\|2\| \stackrel{[1]}{=} 4
$$

(iii) Translations commute amongst one another, $\mathfrak{s}_{a} \mathfrak{s}_{b}=\mathfrak{s}_{a+b}=\mathfrak{s}_{b} \mathfrak{s}_{a}$ [1], and hence,

$$
\begin{aligned}
\mathfrak{s}_{a} \Delta & \stackrel{[1]}{=} \mathfrak{s}_{a} \mathfrak{s}+\mathfrak{s}_{a} \mathfrak{s}^{*}-2 \mathfrak{s}_{a} \\
& \stackrel{[1]}{=} \mathfrak{s s}_{a}+\mathfrak{s}^{*} \mathfrak{s}_{a}-2 \mathfrak{s}_{a} \stackrel{[1]}{=} \Delta \mathfrak{s}_{a}
\end{aligned}
$$

Hence, $\left[\mathfrak{s}_{a}, \Delta\right] \psi=0$ and \mathfrak{s}_{a} commutes with $\Delta[1]$.
(iv) We will see that the discrete Laplacian Δ is selfadjoint: for all $\varphi, \psi \in \ell^{2}(\mathbb{Z})$ we have

$$
\begin{aligned}
\langle\varphi, \Delta \psi\rangle & \stackrel{[1]}{=}\langle\varphi, \mathfrak{s} \psi\rangle+\left\langle\varphi, \mathfrak{s}^{*} \psi\right\rangle-2\langle\varphi, \psi\rangle \\
& \stackrel{[1]}{=}\left\langle\mathfrak{s}^{*} \varphi, \psi\right\rangle+\langle\mathfrak{s} \varphi, \psi\rangle-2\langle\varphi, \psi\rangle \\
& \stackrel{[1]}{=}\langle\Delta \varphi, \psi\rangle,
\end{aligned}
$$

i. e. $\Delta^{*}=\Delta$ is selfadjoint [1].
(v) We apply Δ to the sequence ψ_{k} with entries $\psi_{k}(n)=\mathrm{e}^{+\mathrm{i} n k}, k \in[-\pi,+\pi]$ and obtain

$$
\begin{aligned}
&\left(\Delta \psi_{k}\right)(n)=\psi_{k}(n+1)+\psi_{k}(n-1)-2 \psi_{k}(n) \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i}(n+1) k}+\mathrm{e}^{\mathrm{+i}(n-1) k}-2 \mathrm{e}^{+\mathrm{i} n k} \\
& \stackrel{[1]}{=}\left(\mathrm{e}^{+\mathrm{i} k}+\mathrm{e}^{-\mathrm{i} k}-2\right) \mathrm{e}^{+\mathrm{i} n k} \stackrel{[1]}{=}(2 \cos k-2) \mathrm{e}^{+\mathrm{i} n k} \stackrel{[1]}{=}: E_{k} \psi_{k}(n) .
\end{aligned}
$$

Since $\left|\psi_{k}(n)\right|=\left|\mathrm{e}^{+\mathrm{ink}}\right|=1$ is independent of $n \in \mathbb{Z}$, the sequence ψ_{k} cannot be square summable, because $\psi_{k} \in \ell^{2}(\mathbb{Z})$ necessarily implies $\lim _{|n| \rightarrow \infty} \psi_{k}(n)=0$ [1].

14. Position and momentum representation (15 points)

Consider $\ell^{2}(\mathbb{Z})$ with the usual scalar $\langle\cdot, \cdot\rangle_{\ell^{2}(\mathbb{Z})}$ product and $L^{2}([0,2 \pi])$ endowed with the scalar product

$$
\langle\widehat{\varphi}, \widehat{\psi}\rangle_{L^{2}([0,2 \pi])}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} k \overline{\widehat{\varphi}(k)} \widehat{\psi}(k) .
$$

Define the Fourier transform

$$
\begin{array}{r}
\mathcal{F}: L^{2}([0,2 \pi]) \longrightarrow \ell^{2}(\mathbb{Z}) \\
\psi(n)=(\mathcal{F} \hat{\psi})(n):=\left\langle\mathrm{e}^{+\mathrm{i} n k}, \widehat{\psi}\right\rangle_{L^{2}([0,2 \pi])}
\end{array}
$$

and its inverse

$$
\ell^{2}(\mathbb{Z}) \ni \psi \mapsto\left(\mathcal{F}^{-1} \psi\right)(k)=\sum_{n \in \mathbb{Z}} \psi(n) \mathrm{e}^{+\mathrm{i} n k}
$$

You may use without proof that \mathcal{F} is unitary.
(i) For the shift operator $(\mathfrak{s} \widehat{\psi})(n):=\widehat{\psi}(n-1)$, compute $\mathcal{F}^{-1} \mathfrak{s} \mathcal{F}$.
(ii) For the discrete Laplacian from problem 13, compute the momentum representation $\mathcal{F}^{-1} \Delta \mathcal{F}$.
(iii) What is the connection between ψ_{k} from problem $13(\mathrm{v})$ in the position representation and $\mathcal{F}^{-1} \Delta \mathcal{F}$ in the momentum representation? Heuristically, what is the inverse Fourier transform of ψ_{k} ?
(iv) Is $\Delta \geq 0$? Justify your answer.

Solution:

(i) Pick $\widehat{\psi} \in L^{2}([0,2 \pi])$. Then a straightforward computation yields

$$
\begin{aligned}
&\left(\mathcal{F}^{-1} \mathfrak{s} \mathcal{F} \hat{\psi}\right)(k) \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}}(\mathfrak{s} \mathcal{F} \hat{\psi})(n) \mathrm{e}^{+\mathrm{i} n k} \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}}(\mathcal{F} \widehat{\psi})(n-1) \mathrm{e}^{+\mathrm{i} k} \mathrm{e}^{+\mathrm{i}(n-1) k} \\
&=\mathrm{e}^{+\mathrm{i} k} \sum_{n^{\prime} \in \mathbb{Z}}(\mathcal{F} \widehat{\psi})\left(n^{\prime}\right) \mathrm{e}^{+\mathrm{i} n^{\prime} k} \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} k} \widehat{\psi}(k) .
\end{aligned}
$$

Hence, the discrete Laplacian in momentum representation is the multiplication operator $\mathcal{F}^{-1} \mathfrak{s} \mathcal{F}=\mathrm{e}^{+\mathrm{i} \hat{k}}[1]$.
(ii) Given that $\Delta=\mathfrak{s}+\mathfrak{s}^{*}-2$ [1], we can reuse the result from (i) to conclude that in momentum representation, the discrete Laplacian is multiplication by $2 \cos k-2$,

$$
\begin{aligned}
\mathcal{F}^{-1} \Delta \mathcal{F} & \stackrel{[1]}{=} \mathcal{F}^{-1}\left(\mathfrak{s}+\mathfrak{s}^{*}-2\right) \mathcal{F} \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \hat{k}}+\mathrm{e}^{-\mathrm{i} \hat{k}}-2 \\
& \stackrel{[1]}{=} 2 \cos \hat{k}-2 .
\end{aligned}
$$

(iii) The ψ_{k} were pseudoeigenvectors to Δ [1], meaning that while they satisfy the eigenvalue equation, they are not square-summable [1]. Heuristically, their inverse Fourier transform is the delta function $\delta(\cdot-k)$ [1], because $\mathcal{F}^{-1} \Delta \mathcal{F}$ is a multiplication operator and the eigenvectors of multiplication operators are delta distributions.
(iv) No, $\Delta \leq 0$: One can check that in Fourier representation, with $\widehat{\psi}=\mathcal{F}^{-1} \psi$

$$
\begin{aligned}
\langle\psi, \Delta \psi\rangle_{\ell^{2}(\mathbb{Z})} & \stackrel{[1]}{=}\left\langle\mathcal{F}^{-1} \psi, \mathcal{F}^{-1} \Delta \mathcal{F F}^{-1} \psi\right\rangle_{L^{2}([0,2 \pi])} \\
& \stackrel{[1]}{=}\langle\widehat{\psi},(2 \cos \hat{k}-2) \widehat{\psi}\rangle_{L^{2}([0,2 \pi])} \\
& \stackrel{[1]}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} k \underbrace{(2 \cos k-2)}_{\leq 0}|\widehat{\psi}(k)|^{[1]} \stackrel{[1]}{\leq} 0
\end{aligned}
$$

15. Rank-1 operators (14 points)

Suppose $\varphi, \psi \neq 0$ are elements of a Hilbert space \mathcal{H}, and define the rank- 1 operator $T=|\varphi\rangle\langle\psi|$ via

$$
T \phi=\langle\psi, \phi\rangle \varphi .
$$

(i) Find all eigenvectors and eigenvalues of T.
(ii) Compute $\sigma(T)$.
(iii) Determine the nature of the spectrum, i. e. determine $\sigma_{\mathrm{p}}(T), \sigma_{\text {cont }}(T)$ and $\sigma_{\mathrm{r}}(T)$.

Solution:

(i) We can read off the eigenvalues from the form of the operator: the first eigenvector is φ [1] with eigenvalue $\lambda:=\langle\psi, \varphi\rangle[1]$.
The other eigenvalue is 0 [1], because for any vector ϕ perpendicular to ψ, we have $T \phi=0$ [1], and thus the eigenspace is

$$
\operatorname{ker} T \stackrel{[1]}{=}\{\psi\}^{\perp} .
$$

Now there are two cases: $\psi \perp \varphi$, and then also $\lambda=0$ and the only eigenvalue is 0 [1]. Or $\langle\psi, \varphi\rangle \neq 0$ and T has two different eigenvalues [1].
(ii) Clearly, $\{0, \lambda\} \subseteq \sigma(T)$ where $\lambda=\langle\psi, \varphi\rangle$ [1].

Since $\operatorname{ran} T=\operatorname{span}\{\varphi\}$ is a one-dimensional subspace, the operator $T-z$ is always invertible on $(\operatorname{ran} T)^{\perp}$ [1]. On the one-dimensional subspace $\operatorname{ran} T$, the operator is invertible if and only if $z \neq \lambda$ [1]. Hence, we have shown $\sigma(T)=\{0, \lambda\}[1]$.
(iii) By the classification introduced in Chapter 4.1, we know that

$$
\sigma_{\mathrm{p}}(T)=\sigma(P) \stackrel{[1]}{=}\{0, \lambda\}, \quad \sigma_{\mathrm{cont}}(T) \stackrel{[1]}{=} \emptyset, \quad \sigma_{\mathbf{r}}(T) \stackrel{[1]}{=} \emptyset
$$

