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Homework Problems

12. Projections (19 points)

Consider the multiplication operator P = p(&) on L?(R%) associated to the function

p(x)={1 v=0

0 z<0

(i) Find 2 eigenfunctions.
(ii) Compute o(P).
(iii) Determine the nature of the spectrum, i. e. determine o (P), ocont(P), and o, (P).

(iv) Prove that P is an orthogonal projection.

Solution:

(i) For instance, consider the functions

¢0(x)@{1 xe[—l,O}, wl(x)@{l re(0.1]

0 else 0 else

(All that is important is that one of them is zero on [0, +00) and the other is zero on (—c0, 0].)
Then clearly, ¢ is an eigenfunction to the eigenvalue 0, (P1)(z) = p(z) 1o(x) = 0[1], while
1 is an eigenfunction to the eigenvalue 1, (Py1)(z) = p(x) 1 (x) = ¥ (x) [1].

(ii) First of all, P has two eigenvalues, namely 0 and 1 [2]: the eigenvectors to the eigenvalue
1 are functions which vanish almost everywhere on (—o0, 0). Similarly, eigenvectors to the
eigenvalue 0 are functions which vanish almost everywhere on [0, +-00).

Since (P — z)¢ = 0 means that ((P — z)¢)(z) = 0 for almost all z € R [1]. Thus, for all
2z # 0,1 we have (P — 2)p # 0 forall p # 0[1],i.e. P — z is invertible as long as z # 0, 1 [1],
and we have shown o(P) = {0, 1} [1].

(iii) Since all vectors are eigenvectors, the spectrum consists just of point spectrum,

op(P) L o(P) = (0,1}, Ceont(P) D0, o(P) Y0,

(iv) p is a real-valued, bounded function, and hence, by problem 11 (ii) P* = P [2]. (Otherwise,
one needs to show this by hand for this special case.)
To see P? = P, we note p?> = p in the sense of functions and conclude

(Po)(x).

(P2o)(x) 2 p(2)? o(x) 2 p(a) o) =

Thus, P = P* = P? is an orthogonal projection [1].



13. The discrete Laplacian (24 points)
Consider the Hilbert space ¢?(Z) with the usual scalar product (-, - ) (z)- Define the shift operator
s5: 03(Z) — £3(Z), (s¢)(n) := Y(n —1)
as well as the shift by a € Z lattice units, s, := s%. Consider the discrete Laplacian

A7) — 12(Z), (AY)(n) :==d(n+1) +(n—1) — 2¢(n).

(i) Compute s} and prove that s, is unitary.

(ii) Show that A is a bounded operator on ¢2(Z).
(iii) Show that s, and A commute, i. e. [5,, A] := 5,A — As, = 0.
(iv) Compute A*.

(v) Determine E;, so that
Yp(n) = etink, neZke|—m+n,
is an eigenvalue to the discrete Laplacian,
(Atp)(n) = Extop(n).

Is ¢y, an element of ¢?(7Z)?

Remark: The Hilbert space (?(Z) is often used in solid state physics where the shift operator

-~ o~

(s¢)(n) := 1(n — 1) is interpreted as translating the particle by one lattice unit.

Solution:

(i) Let p,v € £%(Z) and a € Z. The adjoint operator s is then s_,,

(p,508) 23" 0(n) (saw) () 23" pm) w(n —a) LS ok + a) vk)

nez nez keZ
IS Ga@) (B k) U (5_ap, ).
keZ

5_, is also the inverse to s, [1], since

(5-a80) (n) = (50} (n + 0) = p(n + 0 — a) = p(n)

holds for all ¢ € ¢?(7Z) and n € Z. This means s, is unitary [1].
(ii) We recognize that actually A = s + s* — 2 [1], so we deduce A is bounded

] \ [1
1A < llsll + lls™[| + [I12]] = 4.

(iii) Translations commute amongst one another, s, 5, = 5,15 = 85 5, [1], and hence,

1
5. A B S05+ 5,5 — 25,

Essa+5*5a — 28, B As,

Hence, [s,, A]Y) = 0 and s, commutes with A [1].



(iv) We will see that the discrete Laplacian A is selfadjoint: for all ¢, € ¢2(Z) we have

(o, A0) B (0, 50) + (0, 570) — 2 (i, )
1

= <5*§07 ¢> + <5(P7 77/}) -2 <SO> w>

i.e. A* = A is selfadjoint [1].
(v) We apply A to the sequence 15, with entries ¢ (n) = e™"*, k € [—n, +7] and obtain

(M) (n) = p(n+ 1) + g (n — 1) — 24y (n) D eHimtDE | gHiln=Dk _ gertink

[ (eTF 4 e~ — 2) gtink i (2cosk — 2) etk e Ej thi(n).

Since [ (n)| = |e™™*| = 1 is independent of n € Z, the sequence 1, cannot be square
summable, because 1, € (*(Z) necessarily implies limy,,|_, - 1%(n) = 0[1].



14. Position and momentum representation (15 points)

Consider ¢%(Z) with the usual scalar (-, - ), (z) product and L%(]0,27]) endowed with the scalar
product

o~ 1 2m — -
<¢’w>L2([0,2w]) = % 0 dk@( )iﬁ(k‘)

Define the Fourier transform

.F‘aquo o)) — £3(Z),
Y(n) = (Fi)(n) *‘"’fa@m ([0,27))

and its inverse

C(Z) 3¢ — (F) (k) =D db(n)et™.

neL

You may use without proof that F is unitary.
(i) For the shift operator (s¢))(n) := ¢ (n — 1), compute F~'s F.
(ii) Forthe discrete Laplacian from problem 13, compute the momentum representation 7' A F.

(iii) What is the connection between 1), from problem 13 (v) in the position representation and
F~1 A F in the momentum representation? Heuristically, what is the inverse Fourier trans-
form of ¢;.?

(iv) Is A > 07 Justify your answer.

Solution:

(i) Pick ¢ € L?(]0,27]). Then a straightforward computation yields

15 F) (k) B 3 (s Fip)(n) etink [ Z(‘HZ)(” 1) etik g Hin— Dk

neL ne’

+1k Z ]_-,¢ +mk 1] —szp(k)

n' €L

Hence, the discrete Laplacian in momentum representation is the multiplication operator
FlsF=et*[1].

(ii) Giventhat A = s+ s* — 2[1], we can reuse the result from (i) to conclude that in momentum
representation, the discrete Laplacian is multiplication by 2 cos k — 2,

Fiarl

EQCOSE—Z

F! (5+5*—2)]—"Ee+i’;+e’i’;—2

(iii) The v, were pseudoeigenvectors to A [1], meaning that while they satisfy the eigenvalue equa-
tion, they are not square-summable [1]. Heuristically, their inverse Fourier transform is the
delta function 6(- — k) [1], because F~! A F is a multiplication operator and the eigenvectors
of multiplication operators are delta distributions.



(iv) No, A < 0: One can check that in Fourier representation, with 1/5 =F 1y

(1] —1 -1 —1
(0. M0 gy & (F 0 FIAFF ) L

= dk (2cosk —2) [¢(k)|” <0
27 Jo N—— ™
<0



15. Rank-1 operators (14 points)
Suppose @, 1 # 0 are elements of a Hilbert space H, and define the rank-1 operator T' = |¢) (| via

To = (¥, ¢) .

(i) Find all eigenvectors and eigenvalues of T..
(ii) Compute o(T).

(iii) Determine the nature of the spectrum, i. e. determine o, (T"), ocont(T') and or(T).

Solution:

(i) We can read off the eigenvalues from the form of the operator: the first eigenvector is ¢ [1]
with eigenvalue A := (¢, ¢) [1].

The other eigenvalue is 0 [1], because for any vector ¢ perpendicular to ), we have T¢ = 0
[1], and thus the eigenspace is

ker T 2 {3t
Now there are two cases: 1 L ¢, and then also A\ = 0 and the only eigenvalue is 0 [1]. Or
(1, p) # 0 and T has two different eigenvalues [1].
(ii) Clearly, {0, A} C o(T) where A\ = (¢, ¢) [1].

Since ranT' = span{y} is a one-dimensional subspace, the operator 7" — z is always invertible

on (ranT) *[1]. on the one-dimensional subspace ran T, the operator is invertible if and only
if 2 # X\ [1]. Hence, we have shown o(T") = {0, A} [1].

(iii) By the classification introduced in Chapter 4.1, we know that

1

=
=

UP(T) =o(P) E {0, A}, ocont(T) = 0, or(T)



