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Operators

Homework Problems
12. Projections (19 points)

Consider the multiplication operator P = p(x̂) on L2(Rd) associated to the function

p(x) =

{
1 x ≥ 0

0 x < 0
.

(i) Find 2 eigenfunctions.
(ii) Compute σ(P ).
(iii) Determine the nature of the spectrum, i. e. determine σp(P ), σcont(P ), and σr(P ).
(iv) Prove that P is an orthogonal projection.

Solution:

(i) For instance, consider the functions

ψ0(x)
[1]
=

{
1 x ∈ [−1, 0]

0 else
, ψ1(x)

[1]
=

{
1 x ∈ [0, 1]

0 else
.

(All that is important is that one of them is zero on [0,+∞) and the other is zero on (−∞, 0].)
Then clearly,ψ0 is an eigenfunction to the eigenvalue 0, (Pψ0)(x) = p(x)ψ0(x) = 0 [1], while
ψ1 is an eigenfunction to the eigenvalue 1, (Pψ1)(x) = p(x)ψ1(x) = ψ1(x) [1].

(ii) First of all, P has two eigenvalues, namely 0 and 1 [2]: the eigenvectors to the eigenvalue
1 are functions which vanish almost everywhere on (−∞, 0). Similarly, eigenvectors to the
eigenvalue 0 are functions which vanish almost everywhere on [0,+∞).
Since (P − z)φ = 0 means that

(
(P − z)φ

)
(x) = 0 for almost all x ∈ R [1]. Thus, for all

z ̸= 0, 1 we have (P − z)φ ̸= 0 for all φ ̸= 0 [1], i. e. P − z is invertible as long as z ̸= 0, 1 [1],
and we have shown σ(P ) = {0, 1} [1].

(iii) Since all vectors are eigenvectors, the spectrum consists just of point spectrum,

σp(P )
[1]
= σ(P ) = {0, 1}, σcont(P )

[1]
= ∅, σr(P )

[1]
= ∅.

(iv) p is a real-valued, bounded function, and hence, by problem 11 (ii) P ∗ = P [2]. (Otherwise,
one needs to show this by hand for this special case.)
To see P 2 = P , we note p2 = p in the sense of functions and conclude

(P 2φ)(x)
[1]
= p(x)2 φ(x)

[1]
= p(x)φ(x)

[1]
= (Pφ)(x).

Thus, P = P ∗ = P 2 is an orthogonal projection [1].
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13. The discrete Laplacian (24 points)
Consider the Hilbert space ℓ2(Z)with the usual scalar product ⟨ · , · ⟩ℓ2(Z). Define the shift operator

s : ℓ2(Z) −→ ℓ2(Z), (sψ)(n) := ψ(n− 1)

as well as the shift by a ∈ Z lattice units, sa := sa. Consider the discrete Laplacian

∆ : ℓ2(Z) −→ ℓ2(Z), (∆ψ)(n) := ψ(n+ 1) + ψ(n− 1)− 2ψ(n).

(i) Compute s∗a and prove that sa is unitary.
(ii) Show that∆ is a bounded operator on ℓ2(Z).
(iii) Show that sa and∆ commute, i. e. [sa,∆] := sa∆−∆sa = 0.
(iv) Compute∆∗.
(v) Determine Ek so that

ψk(n) := e+ink, n ∈ Z, k ∈ [−π,+π],

is an eigenvalue to the discrete Laplacian,

(∆ψk)(n) = Ekψk(n).

Is ψk an element of ℓ2(Z)?
Remark: The Hilbert space ℓ2(Z) is often used in solid state physics where the shift operator
(sψ̂)(n) := ψ̂(n− 1) is interpreted as translating the particle by one lattice unit.

Solution:

(i) Let φ,ψ ∈ ℓ2(Z) and a ∈ Z. The adjoint operator s∗a is then s−a,⟨
φ, saψ

⟩ [1]
=

∑
n∈Z

φ(n) (saψ)(n)
[1]
=

∑
n∈Z

φ(n)ψ(n− a)
[1]
=

∑
k∈Z

φ(k + a)ψ(k)

[1]
=

∑
k∈Z

(s−aφ)(k)ψ(k)
[1]
=

⟨
s−aφ,ψ

⟩
.

s−a is also the inverse to sa [1], since(
s−asaφ

)
(n) = (saφ)(n+ a) = φ(n+ a− a) = φ(n)

holds for all φ ∈ ℓ2(Z) and n ∈ Z. This means sa is unitary [1].
(ii) We recognize that actually∆ = s+ s∗ − 2 [1], so we deduce∆ is bounded

∥∆∥
[1]

≤ ∥s∥+ ∥s∗∥+ ∥2∥ [1]
= 4.

(iii) Translations commute amongst one another, sa sb = sa+b = sb sa [1], and hence,

sa∆
[1]
= sa s+ sa s

∗ − 2sa
[1]
= s sa + s∗ sa − 2sa

[1]
= ∆ sa

Hence, [sa,∆]ψ = 0 and sa commutes with∆ [1].
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(iv) We will see that the discrete Laplacian∆ is selfadjoint: for all φ,ψ ∈ ℓ2(Z) we have⟨
φ,∆ψ

⟩ [1]
= ⟨φ, sψ⟩+ ⟨φ, s∗ψ⟩ − 2 ⟨φ,ψ⟩
[1]
= ⟨s∗φ,ψ⟩+ ⟨sφ,ψ⟩ − 2 ⟨φ,ψ⟩
[1]
=

⟨
∆φ,ψ

⟩
,

i. e.∆∗ = ∆ is selfadjoint [1].
(v) We apply∆ to the sequence ψk with entries ψk(n) = e+ink, k ∈ [−π,+π] and obtain

(∆ψk)(n) = ψk(n+ 1) + ψk(n− 1)− 2ψk(n)
[1]
= e+i(n+1)k + e+i(n−1)k − 2e+ink

[1]
=

(
e+ik + e−ik − 2

)
e+ink [1]

=
(
2 cos k − 2

)
e+ink [1]

=: Ek ψk(n).

Since |ψk(n)| =
∣∣e+ink∣∣ = 1 is independent of n ∈ Z, the sequence ψk cannot be square

summable, because ψk ∈ ℓ2(Z) necessarily implies lim|n|→∞ ψk(n) = 0 [1].
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14. Position and momentum representation (15 points)
Consider ℓ2(Z) with the usual scalar ⟨ · , · ⟩ℓ2(Z) product and L2([0, 2π]) endowed with the scalar
product

⟨
φ̂, ψ̂

⟩
L2([0,2π])

:=
1

2π

∫ 2π

0
dk φ̂(k) ψ̂(k).

Define the Fourier transform

F : L2([0, 2π]) −→ ℓ2(Z),

ψ(n) =
(
F ψ̂

)
(n) :=

⟨
e+ink, ψ̂

⟩
L2([0,2π])

and its inverse

ℓ2(Z) ∋ ψ 7→
(
F−1ψ

)
(k) =

∑
n∈Z

ψ(n) e+ink.

You may use without proof that F is unitary.
(i) For the shift operator (sψ̂)(n) := ψ̂(n− 1), compute F−1 sF .
(ii) For the discrete Laplacian fromproblem13, compute themomentumrepresentationF−1∆F .
(iii) What is the connection between ψk from problem 13 (v) in the position representation and

F−1∆F in the momentum representation? Heuristically, what is the inverse Fourier trans-
form of ψk?

(iv) Is∆ ≥ 0? Justify your answer.

Solution:

(i) Pick ψ̂ ∈ L2([0, 2π]). Then a straightforward computation yields(
F−1 sF ψ̂

)
(k)

[1]
=

∑
n∈Z

(
sF ψ̂

)
(n) e+ink [1]

=
∑
n∈Z

(F ψ̂)(n− 1) e+ik e+i(n−1)k

= e+ik
∑
n′∈Z

(F ψ̂)(n′) e+in′k [1]
= e+ik ψ̂(k).

Hence, the discrete Laplacian in momentum representation is the multiplication operator
F−1 sF = e+ik̂ [1].

(ii) Given that∆ = s+ s∗ − 2 [1], we can reuse the result from (i) to conclude that in momentum
representation, the discrete Laplacian is multiplication by 2 cos k − 2,

F−1∆F [1]
= F−1

(
s+ s∗ − 2

)
F [1]

= e+ik̂ + e−ik̂ − 2

[1]
= 2 cos k̂ − 2.

(iii) Theψk were pseudoeigenvectors to∆ [1], meaning thatwhile they satisfy the eigenvalue equa-
tion, they are not square-summable [1]. Heuristically, their inverse Fourier transform is the
delta function δ(·−k) [1], becauseF−1∆F is a multiplication operator and the eigenvectors
of multiplication operators are delta distributions.
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(iv) No,∆ ≤ 0: One can check that in Fourier representation, with ψ̂ = F−1ψ⟨
ψ,∆ψ

⟩
ℓ2(Z)

[1]
=

⟨
F−1ψ,F−1∆FF−1ψ

⟩
L2([0,2π])

[1]
=

⟨
ψ̂,

(
2 cos k̂ − 2

)
ψ̂
⟩
L2([0,2π])

[1]
=

1

2π

∫ 2π

0
dk

(
2 cos k − 2

)︸ ︷︷ ︸
≤0

∣∣ψ̂(k)∣∣2 [1]

≤ 0
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15. Rank-1 operators (14 points)
Suppose φ,ψ ̸= 0 are elements of a Hilbert spaceH, and define the rank-1 operator T = |φ⟩⟨ψ| via

Tϕ = ⟨ψ, ϕ⟩ φ.

(i) Find all eigenvectors and eigenvalues of T .
(ii) Compute σ(T ).
(iii) Determine the nature of the spectrum, i. e. determine σp(T ), σcont(T ) and σr(T ).

Solution:

(i) We can read off the eigenvalues from the form of the operator: the first eigenvector is φ [1]
with eigenvalue λ := ⟨ψ,φ⟩ [1].
The other eigenvalue is 0 [1], because for any vector ϕ perpendicular to ψ, we have Tϕ = 0
[1], and thus the eigenspace is

kerT [1]
= {ψ}⊥.

Now there are two cases: ψ ⊥ φ, and then also λ = 0 and the only eigenvalue is 0 [1]. Or
⟨ψ,φ⟩ ̸= 0 and T has two different eigenvalues [1].

(ii) Clearly, {0, λ} ⊆ σ(T ) where λ = ⟨ψ,φ⟩ [1].
Since ranT = span{φ} is a one-dimensional subspace, the operator T −z is always invertible
on

(
ranT

)⊥ [1]. On the one-dimensional subspace ranT , the operator is invertible if and only
if z ̸= λ [1]. Hence, we have shown σ(T ) = {0, λ} [1].

(iii) By the classification introduced in Chapter 4.1, we know that

σp(T ) = σ(P )
[1]
= {0, λ}, σcont(T )

[1]
= ∅, σr(T )

[1]
= ∅.
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