Differential Equations of
Mathematical Physics

Classical Mechanics

Homework Problems

11. The Gaußian integral (4 points)

Show that

$$
\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-a x^{2}}=\sqrt{\frac{\pi}{a}}
$$

Solution:

We compute the square and use polar coordinates:

$$
\begin{aligned}
\left(\int_{\mathbb{R}} \mathrm{d} x e^{-a x^{2}}\right)^{2} & \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} x \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-a\left(x^{2}+y^{2}\right)} \\
& \stackrel{[1]}{=} \int_{0}^{\infty} \mathrm{d} r \int_{0}^{2 \pi} \mathrm{~d} \varphi r e^{-a r^{2}} \\
& =2 \pi\left[-\frac{1}{2 a} \mathrm{e}^{-a r^{2}}\right]_{0}^{\infty} \stackrel{[1]}{=} \frac{\pi}{a}
\end{aligned}
$$

Taking the square root yields the required equation,

$$
\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-a x^{2}} \stackrel{[1]}{=} \sqrt{\frac{\pi}{a}}
$$

12. Angular momentum as generator of rotations (11 points)

Consider the angular momentum observable $L(q, p)=\left(L_{1}(q, p), L_{2}(q, p), L_{3}(q, p)\right):=q \times p$. Show that L generates rotations:
(i) Solve

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} q(\omega)=\left\{L_{1}, q(\omega)\right\}, \quad q(0)=q_{0} \in \mathbb{R}^{3},
$$

explicitly.
(ii) Give the solution to

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} p(\omega)=\left\{L_{1}, p(\omega)\right\}, \quad p(0)=p_{0} \in \mathbb{R}^{3}
$$

explicitly. (You need not calculate the same thing twice.)
(iii) Give the flow Ψ to the ODE

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega}\binom{q}{p}=\binom{\left\{L_{1}, q\right\}}{\left\{L_{1}, p\right\}} .
$$

Does Ψ exist for all $\omega \in \mathbb{R}$?

Solution:

(i) Corollary 3.3.5 tells us we can compute $\left\{L_{1}, q\right\}$ instead of $\left\{L_{1}, q(\omega)\right\}$ [1], because

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} q(\omega)=\left\{L_{1}, q(\omega)\right\} \stackrel{[1]}{=}\left\{L_{1}, q\right\} \circ \Psi_{\omega}
$$

The Poisson bracket can be computed as

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} q_{j}=\left\{L_{1}, q_{j}\right\} \stackrel{[1]}{=} \partial_{p_{j}}\left(q_{2} p_{3}-q_{3} p_{2}\right)
$$

Hence, combining the three components yields the equation of motion of a classical spin (sheet 1, problem 3),

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} q=\left(\begin{array}{c}
0 \\
-q_{3} \\
+q_{2}
\end{array}\right) \stackrel{[1]}{=}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & +1 & 0
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=: \mathcal{L} q
$$

and thus the solution to $q(0)=q_{0}$ is given in terms of the matrix exponential $\mathrm{e}^{\omega \mathcal{L}}$ and the initial condition q_{0},

$$
q(t) \stackrel{[1]}{=}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \omega & -\sin \omega \\
0 & \sin \omega & \cos \omega
\end{array}\right) q_{0}=: R(\omega) q_{0}
$$

(ii) Similarly, we obtain the equations of motion for the momenta,

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} p_{j}=\left\{L_{1}, p_{j}\right\} \stackrel{[1]}{=}-\partial_{q_{j}}\left(q_{2} p_{3}-q_{3} p_{2}\right)
$$

i. e. collecting all three components, we once again recover the same equations as in (i):

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} p=\left(\begin{array}{c}
0 \\
-p_{3} \\
+p_{2}
\end{array}\right) \stackrel{[1]}{=}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & +1 & 0
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)=\mathcal{L} p .
$$

The solution is again

$$
p(\omega) \stackrel{[1]}{=} R(\omega) p_{0}
$$

where $R(\omega)$ is the same rotation matrix as in (i).
(iii) Now the flow can be easily expressed in terms of $R(\omega)$,

$$
\Psi_{\omega}(q, p) \stackrel{[2]}{=}(R(\omega) q, R(\omega) p) .
$$

Ψ exists for all $\omega \in \mathbb{R}[1]$.

13. Averages with respect to states \& the spectrum of observables (20 points)

(i) Show that the Gaußian measure

$$
\mu_{a, b}(A):=\frac{1}{\pi a b} \int_{A} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}}, \quad A \subset \mathbb{R}^{2} \text { Borel set },
$$

localized around a point in phase space $\left(q_{0}, p_{0}\right) \in \mathbb{R}^{2}$ of widths $a, b>0$ is a classical state in the sense of Definition 3.1.1. (You need not prove that $\mu_{a, b}$ is a Borel measure.)
(ii) Compute the energy average

$$
\mathbb{E}_{\mu_{a, b}}(H)=\frac{1}{\pi a b} \int_{\mathbb{R}^{2}} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}} H(q, p)
$$

for the one-dimensional harmonic oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$ with respect to the Gaußian state $\mu_{a, b}$.
(iii) Show that $\lim _{a, b \rightarrow 0} \mathbb{E}_{\mu_{a, b}}(H)=H\left(q_{0}, p_{0}\right)$.
(iv) Now consider the case where phase space is $\mathbb{R}^{6}=\mathbb{R}^{3} \times \mathbb{R}^{3}$. Show that the each of the three components of angular momentum $L(q, p)=q \times p$ are constants of motion for the threedimensional harmonic oscillator dynamics generated by $H_{\mathbb{R}^{3}}(q, p):=\sum_{j=1}^{3} H\left(q_{j}, p_{j}\right)$.
(v) Give the spectrum for the observables q_{1}, p_{1}, L_{1} and H.

Solution:

(i) Positivity: This follows directly from the positivity of the Gaußian,

$$
\begin{equation*}
\frac{1}{\pi a b} \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}}>0, \tag{1}
\end{equation*}
$$

so that also

$$
\begin{equation*}
\mu_{a, b}(A)=\frac{1}{\pi a b} \int_{A} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}}>0 \tag{1}
\end{equation*}
$$

holds true for any Borel set $A \subseteq \mathbb{R}^{2}$.
Normalization: We now use the fact that the integral factors as well as problem 11:

$$
\begin{aligned}
\mu_{a, b}\left(\mathbb{R}^{2}\right) \stackrel{[1]}{=} & \frac{1}{\pi a b} \int_{\mathbb{R}^{2}} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}} \\
& =\frac{1}{\pi a b}\left(\int_{\mathbb{R}} \mathrm{d} q \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}}\right)\left(\int_{\mathbb{R}} \mathrm{d} p \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}}\right) \\
& \stackrel{[1]}{=} \frac{1}{\pi a b}(\sqrt{\pi} a)(\sqrt{\pi} b) \stackrel{[1]}{=} 1
\end{aligned}
$$

Hence, the measure is also normalized.
(ii) Since the expectation value is linear, we can rewrite the expectation value as the sum of two similar terms:

$$
\mathbb{E}_{\mu_{a, b}}(H) \stackrel{[1]}{=} \frac{1}{2}\left(\mathbb{E}_{\mu_{a, b}}\left(p^{2}\right)+\mathbb{E}_{\mu_{a, b}}\left(q^{2}\right)\right)
$$

Given the symmetry, we will only calculate $\mathbb{E}_{\mu_{a, b}}\left(p^{2}\right)$ in detail:

$$
\begin{aligned}
\mathbb{E}_{\mu_{a, b}}\left(p^{2}\right) & \stackrel{[1]}{=} \frac{1}{\pi a b} \int_{\mathbb{R}^{2}} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}} p^{2} \\
& =\frac{1}{\pi a b}\left(\int_{\mathbb{R}} \mathrm{d} q \mathrm{e}^{-\frac{q^{2}}{a^{2}}}\right)\left(\int_{\mathbb{R}} \mathrm{d} p\left(p+p_{0}\right)^{2} \mathrm{e}^{-\frac{p^{2}}{b^{2}}}\right) \\
& \stackrel{[1]}{=} \frac{1}{\pi a b}(\sqrt{\pi} a) \int_{\mathbb{R}} \mathrm{d} p\left(p^{2}+2 p_{0} p+p_{0}^{2}\right) \mathrm{e}^{-\frac{p^{2}}{b^{2}}} \\
& =\frac{1}{\sqrt{\pi} b} \int_{\mathbb{R}} \mathrm{d} p\left(p^{2}+2 p_{0} p+p_{0}^{2}\right) \mathrm{e}^{-\frac{p^{2}}{b^{2}}}
\end{aligned}
$$

The second and third term of the integral can be computed directly using the symmetry $p \mapsto$ $-p$ of the integrand:

$$
\begin{aligned}
& \int_{\mathbb{R}} \mathrm{d} p 2 p_{0} p \mathrm{e}^{-\frac{p^{2}}{b^{2}}} \stackrel{[1]}{=} 2 \int_{0}^{\infty} \mathrm{d} p 2 p_{0} p \mathrm{e}^{-\frac{p^{2}}{b^{2}}} \\
&=4 p_{0}\left[-\frac{b^{2}}{2} \mathrm{e}^{-\frac{p^{2}}{b^{2}}}\right]_{0}^{\infty} \stackrel{[1]}{=} 2 p_{0} b^{2} \\
& \int_{\mathbb{R}} \mathrm{d} p p_{0}^{2} \mathrm{e}^{-\frac{p^{2}}{b^{2}}}=p_{0}^{2} \sqrt{\pi} b
\end{aligned}
$$

We use the symmetry $p \mapsto-p$ of the integrand again and apply partial integration to compute the first term:

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi} b} \int_{\mathbb{R}} \mathrm{d} p p^{2} \mathrm{e}^{-\frac{p^{2}}{b^{2}}} \stackrel{[1]}{=} \frac{2}{\sqrt{\pi} b} \int_{0}^{\infty} \mathrm{d} p \underbrace{p}_{=u} \underbrace{p \mathrm{e}^{-\frac{p^{2}}{b^{2}}}}_{=v^{\prime}} \\
&=\frac{2}{\sqrt{\pi} b}\left[-\frac{b^{2}}{2} p \mathrm{e}^{-\frac{p^{2}}{b^{2}}}\right]_{0}^{\infty}+\frac{2}{\sqrt{\pi} b} \frac{b^{2}}{2} \int_{0}^{\infty} \mathrm{d} p \mathrm{e}^{-\frac{p^{2}}{b^{2}}} \\
& \stackrel{[1]}{=} \frac{b^{2}}{2}
\end{aligned}
$$

Overall, we obtain

$$
\begin{aligned}
\mathbb{E}_{\mu_{a, b}}\left(p^{2}\right) & =\frac{1}{\sqrt{\pi} b}\left(\frac{b^{2}}{2}+2 p_{0} b^{2}+p_{0}^{2} \sqrt{\pi} b\right) \\
& \stackrel{[1]}{=} \frac{b}{2 \sqrt{\pi}}+\frac{2 p_{0} b}{\sqrt{\pi}}+p_{0}^{2}
\end{aligned}
$$

Exchanging the roles of q and p as well as of a and b yields

$$
\mathbb{E}_{\mu_{a, b}}\left(q^{2}\right)=\frac{a}{2 \sqrt{\pi}}+\frac{2 q_{0} a}{\sqrt{\pi}}+q_{0}^{2}
$$

and thus

$$
\mathbb{E}_{\mu_{a, b}}(H) \stackrel{[1]}{=} \frac{a}{4 \sqrt{\pi}}+\frac{q_{0} a}{\sqrt{\pi}}+\frac{q_{0}^{2}}{2}+\frac{b}{4 \sqrt{\pi}}+\frac{p_{0} b}{\sqrt{\pi}}+\frac{p_{0}^{2}}{2}
$$

(iii) Since $\mathbb{E}_{\mu_{a, b}}(H)$ is a quadratic polynomial in a and b, taking the limit is trivial, and we obtain

$$
\begin{aligned}
\lim _{a, b \rightarrow 0} \mathbb{E}_{\mu_{a, b}}(H) & =\lim _{a, b \rightarrow 0}\left(\frac{a}{4 \sqrt{\pi}}+\frac{q_{0} a}{\sqrt{\pi}}+\frac{q_{0}^{2}}{2}+\frac{b}{4 \sqrt{\pi}}+\frac{p_{0} b}{\sqrt{\pi}}+\frac{p_{0}^{2}}{2}\right) \\
& \stackrel{[1]}{=} \frac{1}{2}\left(p_{0}^{2}+q_{0}^{2}\right)
\end{aligned}
$$

(iv) According to Corollary 3.3.5, an observable f is a constant of motion iff $\left\{H_{\mathbb{R}^{3}}, f\right\}=0$.

The computations are straight-forward. For the first component we give the computation in full detail:

$$
\begin{aligned}
\left\{H_{\mathbb{R}^{3}}, L_{1}\right\} & =\nabla_{p} H_{\mathbb{R}^{3}} \cdot \nabla_{q} L_{1}-\nabla_{q} H_{\mathbb{R}^{3}} \cdot \nabla_{p} L_{1} \\
& =p \cdot \nabla_{q}\left(q_{2} p_{3}-q_{3} p_{2}\right)-q \cdot \nabla_{p}\left(q_{2} p_{3}-q_{3} p_{2}\right) \\
& =p \cdot\left(\begin{array}{c}
0 \\
+p_{3} \\
-p_{2}
\end{array}\right)-q \cdot\left(\begin{array}{c}
0 \\
-q_{3} \\
+q_{2}
\end{array}\right)=\left(p_{2} p_{3}-p_{3} p_{2}\right)-\left(-q_{2} q_{3}+q_{3} q_{2}\right) \\
& \stackrel{[1]}{=} 0
\end{aligned}
$$

The other components are computed similarly.

$$
\begin{aligned}
& \left\{H_{\mathbb{R}^{3}}, L_{2}\right\}=p \cdot\left(\begin{array}{c}
-p_{3} \\
0 \\
+p_{1}
\end{array}\right)-q \cdot\left(\begin{array}{c}
+q_{3} \\
0 \\
-q_{1}
\end{array}\right) \stackrel{[1]}{=} 0 \\
& \left\{H_{\mathbb{R}^{3}}, L_{3}\right\}=p \cdot\left(\begin{array}{c}
+p_{2} \\
-p_{1} \\
0
\end{array}\right)-q \cdot\left(\begin{array}{c}
-q_{2} \\
+q_{1} \\
0
\end{array}\right) \stackrel{[1]}{=} 0
\end{aligned}
$$

(v) The spectrum of the observable is the image of the function (cf. Definition 3.1.3):

$$
\begin{aligned}
& \operatorname{spec} q_{1}=\operatorname{im} q_{1} \stackrel{[1 / 2]}{=} \mathbb{R} \\
& \operatorname{spec} p_{1}=\operatorname{im} p_{1} \stackrel{[1 / 2]}{=} \mathbb{R} \\
& \operatorname{spec} L_{1}=\operatorname{im} L_{1} \stackrel{[1 / 2]}{=} \mathbb{R} \\
& \operatorname{spec} H=\operatorname{im} H \stackrel{[1 / 2]}{=}[0,+\infty)
\end{aligned}
$$

14. Magnetic classical systems (17 points)

Consider the equations of motion of a non-relativistic particle in three dimensions which is subjected to an electromagnetic field where $\mathbf{E}=-\nabla_{q} V$ is the electric field and $\mathbf{B}=\left(\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}\right)$. In other words, we are considering the Hamilton function H and the magnetic version of Hamilton's equations of motion

$$
\left(\begin{array}{cc}
B & -\mathrm{id}_{\mathbb{R}^{3}} \tag{1}\\
+\mathrm{id}_{\mathbb{R}^{3}} & 0
\end{array}\right)\binom{\dot{q}}{\dot{p}}=\binom{\nabla_{q} H}{\nabla_{p} H}
$$

where the magnetic field matrix

$$
B(q)=\left(\begin{array}{ccc}
0 & +\mathbf{B}_{3} & -\mathbf{B}_{2} \\
-\mathbf{B}_{3} & 0 & +\mathbf{B}_{1} \\
+\mathbf{B}_{2} & -\mathbf{B}_{1} & 0
\end{array}\right)
$$

is defined in terms of the components of \mathbf{B}. We denote the corresponding Hamiltonian flow with Φ. Moreover, we define the magnetic Poisson bracket

$$
\{f, g\}_{B}:=\sum_{j=1}^{3}\left(\partial_{p_{j}} f \partial_{q_{j}} g-\partial_{q_{j}} f \partial_{p_{j}} g\right)-\sum_{j, k=1}^{3} B_{j k} \partial_{p_{j}} f \partial_{p_{k}} g
$$

(i) Show that $\{\cdot, \cdot\}_{B}$ generates equations (1).
(Hint: Consider the equations of motion generated by H for q and p in the Heisenberg picture.)
(ii) Show that \mathbf{B} is source-free, i. e. $\nabla_{q} \cdot \mathbf{B}=0$.
(Hint: Rewrite the magnetic field $\mathbf{B}=\nabla_{q} \times \mathbf{A}$ as the curl of a vector potential A.)
(iii) Show that $\{f, g\}_{B}$ is antisymmetric and has the derivation property (cf. Proposition 3.3.4).
(iv) Show that energy is a constant of motion by computing the time-derivative of $H(t):=H \circ \Phi_{t}$.

Solution:

(i) First, let us start with the equations of motion for position:

$$
\begin{aligned}
\dot{q}_{j} & =\left\{H, q_{j}\right\}_{B} \stackrel{[1]}{=}\left\{H, q_{j}\right\}-\sum_{l, k=1}^{3} B_{l k} \partial_{p_{l}} H \partial_{p_{k}} q_{j} \\
& \stackrel{[1]}{=} \partial_{p_{j}} H
\end{aligned}
$$

The equations of motion for p contain a magnetic contribution:

$$
\begin{aligned}
& \dot{p}_{j}=\left\{H, q_{j}\right\}_{B} \stackrel{[1]}{=}\left\{H, p_{j}\right\}-\sum_{l, k=1}^{3} B_{l k} \partial_{p_{l}} H \partial_{p_{k}} p_{j} \\
& \stackrel{[1]}{=}-\partial_{q_{j}} H-\sum_{l=1}^{3} B_{l j} \partial_{p_{l}} H \stackrel{[1]}{=}-\partial_{q_{j}} H+\sum_{l=1}^{3} B_{j l} \dot{q}_{j}
\end{aligned}
$$

If we collect these equations for the components of \dot{q} and \dot{p}, then we recover (1):

$$
\begin{aligned}
&\binom{\dot{q}}{\dot{p}}=\binom{+\nabla_{p} H}{-\nabla_{q} H+B \dot{q}} \\
& \Leftrightarrow \\
&\left(\begin{array}{cc}
B & -\mathrm{id}_{\mathbb{R}^{3}} \\
+\mathrm{id}_{\mathbb{R}^{3}} & 0
\end{array}\right)\binom{\dot{q}}{\dot{p}} \stackrel{[1]}{=}\binom{\nabla_{q} H}{\nabla_{p} H}
\end{aligned}
$$

(ii) Let us denote the trajectory starting at $\left(q_{0}, p_{0}\right)$ with $(q(t), p(t))=\Phi_{t}\left(q_{0}, p_{0}\right)$. Then we compute:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}(H(t))\left(q_{0}, p_{0}\right)= \frac{\mathrm{d}}{\mathrm{~d} t} H(q(t), p(t)) \\
& \stackrel{[1]}{=} \sum_{j=1}^{3}\left(\partial_{q_{j}} H(q(t), p(t)) \dot{q}_{j}(t)+\partial_{p_{j}} H(q(t), p(t)) \dot{p}_{j}(t)\right) \\
& \stackrel{[1]}{=} \sum_{j=1}^{3}\left(\partial_{q_{j}} H(q(t), p(t)) \partial_{p_{j}} H(q(t), p(t))+\partial_{p_{j}} H(q(t), p(t)) .\right. \\
&\left.\quad \cdot\left(-\partial_{q_{j}} H(q(t), p(t))+\sum_{k=1}^{3} B_{j k}(q(t)) \partial_{p_{k}} H(q(t), p(t))\right)\right) \\
&=\nabla_{p} H(q(t), p(t)) \cdot B(q(t)) \nabla_{p} H(q(t), p(t)) \\
& \stackrel{[1]}{=} \nabla_{p} H(q(t), p(t)) \cdot\left(\nabla_{p} H(q(t), p(t)) \times \mathbf{B}(q(t))\right) \stackrel{[1]}{=} 0
\end{aligned}
$$

Since the above holds for any choice of $\left(q_{0}, p_{0}\right)$, we deduce that energy is conserved [1].
(iii) Any magnetic field $\mathbf{B}=\nabla_{q} \times \mathbf{A}$ can be written as the curl of a vector potential \mathbf{A}, and thus, using the standard equality $\nabla_{q} \cdot \nabla_{q} \times \mathbf{A}=0$ [2], we deduce \mathbf{B} is source-free:

$$
\begin{aligned}
\nabla_{q} \cdot \mathbf{B} & =\nabla_{q} \cdot\left(\nabla_{q} \times \mathbf{A}\right) \\
& =\partial_{q_{1}}\left(\partial_{q_{2}} \mathbf{A}_{3}-\partial_{q_{3}} \mathbf{A}_{2}\right)+\partial_{q_{2}}\left(\partial_{q_{3}} \mathbf{A}_{1}-\partial_{q_{1}} \mathbf{A}_{3}\right)+\partial_{q_{3}}\left(\partial_{q_{1}} \mathbf{A}_{2}-\partial_{q_{2}} \mathbf{A}_{1}\right) \\
& =\partial_{q_{1}} \partial_{q_{2}} \mathbf{A}_{3}-\partial_{q_{2}} \partial_{q_{1}} \mathbf{A}_{3}-\partial_{q_{1}} \partial_{q_{3}} \mathbf{A}_{2}+\partial_{q_{3}} \partial_{q_{1}} \mathbf{A}_{2}+\partial_{q_{2}} \partial_{q_{3}} \mathbf{A}_{1}-\partial_{q_{3}} \partial_{q_{2}} \mathbf{A}_{1} \\
& =0
\end{aligned}
$$

(iv) Antisymmetry: $B_{j k}=-B_{k j}$ implies

$$
\begin{aligned}
\{f, g\}_{B} & =\{f, g\}-\sum_{j, k=1}^{3} B_{j k} \partial_{p_{j}} f \partial_{p_{k}} g \\
& \stackrel{[1]}{=}-\{g, f\}+\sum_{j, k=1}^{3} B_{k j} \partial_{p_{j}} f \partial_{p_{k}} g \\
& \stackrel{[1]}{=}-\{g, f\}_{B}
\end{aligned}
$$

Derivation property:

$$
\begin{aligned}
\{f g, h\}_{B} & =\{f g, h\}-\sum_{j, k=1}^{3} B_{j k} \partial_{p_{j}}(f g) \partial_{p_{k}} h \\
& \stackrel{[1]}{=} f\{g, h\}+g\{f, h\}-\sum_{j, k=1}^{3} B_{j k}\left(\partial_{p_{j}} f g+f \partial_{p_{j}} g\right) \partial_{p_{k}} h \\
& \stackrel{[1]}{=} f\{g, h\}_{B}+g\{f, h\}_{B}
\end{aligned}
$$

