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Classical Mechanics

Homework Problems

11. The Gaußian integral (4 points)
Show that ∫

R
dx e−ax2

=

√
π

a
.

Solution:
We compute the square and use polar coordinates:(∫

R
dx e−ax2

)2
[1]
=

∫
R
dx
∫
R
dy e−a(x2+y2)

[1]
=

∫ ∞

0
dr
∫ 2π

0
dφ r e−ar2

= 2π

[
− 1

2a
e−ar2

]∞
0

[1]
=

π

a

Taking the square root yields the required equation,∫
R
dx e−ax2 [1]

=

√
π

a
.
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12. Angular momentum as generator of rotations (11 points)
Consider the angular momentum observableL(q, p) =

(
L1(q, p), L2(q, p), L3(q, p)

)
:= q×p. Show

that L generates rotations:
(i) Solve

d
dωq(ω) =

{
L1, q(ω)

}
, q(0) = q0 ∈ R3,

explicitly.
(ii) Give the solution to

d
dωp(ω) =

{
L1, p(ω)

}
, p(0) = p0 ∈ R3,

explicitly. (You need not calculate the same thing twice.)
(iii) Give the flowΨ to the ODE

d
dω

(
q
p

)
=

(
{L1, q}
{L1, p}

)
.

DoesΨ exist for all ω ∈ R?

Solution:

(i) Corollary 3.3.5 tells us we can compute {L1, q} instead of
{
L1, q(ω)

}
[1], because

d
dωq(ω) =

{
L1, q(ω)

} [1]
= {L1, q} ◦Ψω.

The Poisson bracket can be computed as

d
dωqj = {L1, qj}

[1]
= ∂pj

(
q2 p3 − q3 p2

)
.

Hence, combining the three components yields the equation of motion of a classical spin
(sheet 1, problem 3),

d
dωq =

 0
−q3
+q2

 [1]
=

0 0 0
0 0 −1
0 +1 0

q1
q2
q3

 =: L q,

and thus the solution to q(0) = q0 is given in terms of the matrix exponential eωL and the
initial condition q0,

q(t)
[1]
=

1 0 0
0 cosω − sinω
0 sinω cosω

 q0 =: R(ω) q0.

(ii) Similarly, we obtain the equations of motion for the momenta,

d
dωpj = {L1, pj}

[1]
= −∂qj

(
q2 p3 − q3 p2

)
,
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i. e. collecting all three components, we once again recover the same equations as in (i):

d
dωp =

 0
−p3
+p2

 [1]
=

0 0 0
0 0 −1
0 +1 0

p1
p2
p3

 = L p.

The solution is again

p(ω)
[1]
= R(ω) p0

where R(ω) is the same rotation matrix as in (i).
(iii) Now the flow can be easily expressed in terms of R(ω),

Ψω(q, p)
[2]
=
(
R(ω) q,R(ω) p

)
.

Ψ exists for all ω ∈ R [1].
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13. Averages with respect to states & the spectrum of observables (20 points)

(i) Show that the Gaußian measure

µa,b(A) :=
1

πab

∫
A
dq dp e−

(q−q0)
2

a2 e−
(p−p0)

2

b2 , A ⊂ R2 Borel set,

localized around a point in phase space (q0, p0) ∈ R2 of widths a, b > 0 is a classical state in
the sense of Definition 3.1.1. (You need not prove that µa,b is a Borel measure.)

(ii) Compute the energy average

Eµa,b
(H) =

1

πab

∫
R2

dq dp e−
(q−q0)

2

a2 e−
(p−p0)

2

b2 H(q, p)

for the one-dimensional harmonic oscillator HamiltonianH(q, p) = 1
2(p

2 + q2) with respect to
the Gaußian state µa,b.

(iii) Show that lim
a,b→0

Eµa,b
(H) = H(q0, p0).

(iv) Now consider the case where phase space is R6 = R3 × R3. Show that the each of the three
components of angular momentum L(q, p) = q × p are constants of motion for the three-
dimensional harmonic oscillator dynamics generated byHR3(q, p) :=

∑3
j=1H(qj , pj).

(v) Give the spectrum for the observables q1, p1, L1 andH .

Solution:

(i) Positivity: This follows directly from the positivity of the Gaußian,

1

πab
e−

(q−q0)
2

a2 e−
(p−p0)

2

b2 > 0, [1]

so that also

µa,b(A) =
1

πab

∫
A
dq dp e−

(q−q0)
2

a2 e−
(p−p0)

2

b2 > 0 [1]

holds true for any Borel set A ⊆ R2.

Normalization: We now use the fact that the integral factors as well as problem 11:

µa,b(R2)
[1]
=

1

πab

∫
R2

dq dp e−
(q−q0)

2

a2 e−
(p−p0)

2

b2

=
1

πab

(∫
R
dq e−

(q−q0)
2

a2

) (∫
R
dp e−

(p−p0)
2

b2

)
[1]
=

1

πab

(√
π a
) (√

π b
) [1]
= 1

Hence, the measure is also normalized.
(ii) Since the expectation value is linear, we can rewrite the expectation value as the sum of two

similar terms:

Eµa,b
(H)

[1]
= 1

2

(
Eµa,b

(p2) + Eµa,b
(q2)

)
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Given the symmetry, we will only calculate Eµa,b
(p2) in detail:

Eµa,b
(p2)

[1]
=

1

πab

∫
R2

dq dp e−
(q−q0)

2

a2 e−
(p−p0)

2

b2 p2

=
1

πab

(∫
R
dq e−

q2

a2

) (∫
R
dp (p+ p0)

2 e−
p2

b2

)
[1]
=

1

πab

(√
π a
) ∫

R
dp
(
p2 + 2p0 p+ p20

)
e−

p2

b2

=
1√
π b

∫
R
dp
(
p2 + 2p0 p+ p20

)
e−

p2

b2

The second and third term of the integral can be computed directly using the symmetry p 7→
−p of the integrand: ∫

R
dp 2p0 p e−

p2

b2
[1]
= 2

∫ ∞

0
dp 2p0 p e−

p2

b2

= 4p0

[
−b2

2
e−

p2

b2

]∞
0

[1]
= 2p0 b

2∫
R
dp p20 e

− p2

b2 = p20
√
π b

We use the symmetry p 7→ −p of the integrand again and apply partial integration to compute
the first term:

1√
π b

∫
R
dp p2 e−

p2

b2
[1]
=

2√
π b

∫ ∞

0
dp p︸︷︷︸

=u

p e−
p2

b2︸ ︷︷ ︸
=v′

=
2√
π b

[
−b2

2
p e−

p2

b2

]∞
0

+
2√
π b

b2

2

∫ ∞

0
dp e−

p2

b2

[1]
=

b2

2

Overall, we obtain

Eµa,b
(p2) =

1√
π b

(
b2

2
+ 2p0 b

2 + p20
√
π b

)
[1]
=

b

2
√
π
+

2p0 b√
π

+ p20.

Exchanging the roles of q and p as well as of a and b yields

Eµa,b
(q2) =

a

2
√
π
+

2q0 a√
π

+ q20,

and thus

Eµa,b
(H)

[1]
=

a

4
√
π
+

q0 a√
π

+
q20
2

+
b

4
√
π
+

p0 b√
π
+

p20
2
.

(iii) Since Eµa,b
(H) is a quadratic polynomial in a and b, taking the limit is trivial, and we obtain

lim
a,b→0

Eµa,b
(H) = lim

a,b→0

(
a

4
√
π
+

q0 a√
π

+
q20
2

+
b

4
√
π
+

p0 b√
π
+

p20
2

)
[1]
= 1

2

(
p20 + q20

)
.
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(iv) According to Corollary 3.3.5, an observable f is a constant of motion iff {HR3 , f} = 0.
The computations are straight-forward. For the first component we give the computation in
full detail:

{HR3 , L1} = ∇pHR3 · ∇qL1 −∇qHR3 · ∇pL1

= p · ∇q

(
q2 p3 − q3 p2

)
− q · ∇p

(
q2 p3 − q3 p2

)
= p ·

 0
+p3
−p2

− q ·

 0
−q3
+q2

 =
(
p2 p3 − p3 p2

)
−
(
−q2 q3 + q3 q2

)
[1]
= 0

The other components are computed similarly.

{HR3 , L2} = p ·

−p3
0

+p1

− q ·

+q3
0

−q1

 [1]
= 0

{HR3 , L3} = p ·

+p2
−p1
0

− q ·

−q2
+q1
0

 [1]
= 0

(v) The spectrum of the observable is the image of the function (cf. Definition 3.1.3):

spec q1 = im q1
[1/2]
= R

spec p1 = im p1
[1/2]
= R

specL1 = imL1
[1/2]
= R

specH = imH
[1/2]
= [0,+∞)
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14. Magnetic classical systems (17 points)
Consider the equations of motion of a non-relativistic particle in three dimensions which is sub-
jected to an electromagnetic field where E = −∇qV is the electric field and B =

(
B1,B2,B3

)
. In

other words, we are considering the Hamilton functionH and the magnetic version of Hamilton’s
equations of motion (

B −idR3

+idR3 0

)(
q̇
ṗ

)
=

(
∇qH
∇pH

)
(1)

where the magnetic field matrix

B(q) =

 0 +B3 −B2

−B3 0 +B1

+B2 −B1 0


is defined in terms of the components of B. We denote the corresponding Hamiltonian flow withΦ.
Moreover, we define the magnetic Poisson bracket

{
f, g
}
B
:=

3∑
j=1

(
∂pjf ∂qjg − ∂qjf ∂pjg

)
−

3∑
j,k=1

Bjk ∂pjf ∂pkg.

(i) Show that {· , ·}B generates equations (1).
(Hint: Consider the equations ofmotion generated byH for q and p in the Heisenberg picture.)

(ii) Show that B is source-free, i. e.∇q · B = 0.
(Hint: Rewrite the magnetic field B = ∇q × A as the curl of a vector potential A.)

(iii) Show that {f, g}B is antisymmetric and has the derivation property (cf. Proposition 3.3.4).
(iv) Show that energy is a constant of motion by computing the time-derivative ofH(t) := H ◦Φt.

Solution:
(i) First, let us start with the equations of motion for position:

q̇j = {H, qj}B
[1]
= {H, qj} −

3∑
l,k=1

Blk ∂plH ∂pkqj

[1]
= ∂pjH

The equations of motion for p contain a magnetic contribution:

ṗj = {H, qj}B
[1]
= {H, pj} −

3∑
l,k=1

Blk ∂plH ∂pkpj

[1]
= −∂qjH −

3∑
l=1

Blj ∂plH
[1]
= −∂qjH +

3∑
l=1

Bjl q̇j

If we collect these equations for the components of q̇ and ṗ, then we recover (1):(
q̇
ṗ

)
=

(
+∇pH

−∇qH +B q̇

)
⇔(

B −idR3

+idR3 0

)(
q̇
ṗ

)
[1]
=

(
∇qH
∇pH

)

7



(ii) Let us denote the trajectory starting at (q0, p0) with
(
q(t), p(t)

)
= Φt(q0, p0). Then we com-

pute:

d
dt
(
H(t)

)
(q0, p0) =

d
dtH

(
q(t), p(t)

)
[1]
=

3∑
j=1

(
∂qjH

(
q(t), p(t)

)
q̇j(t) + ∂pjH

(
q(t), p(t)

)
ṗj(t)

)
[1]
=

3∑
j=1

(
∂qjH

(
q(t), p(t)

)
∂pjH

(
q(t), p(t)

)
+ ∂pjH

(
q(t), p(t)

)
·

·

(
−∂qjH

(
q(t), p(t)

)
+

3∑
k=1

Bjk

(
q(t)

)
∂pkH

(
q(t), p(t)

)))
= ∇pH

(
q(t), p(t)

)
·B
(
q(t)

)
∇pH

(
q(t), p(t)

)
[1]
= ∇pH

(
q(t), p(t)

)
·
(
∇pH

(
q(t), p(t)

)
× B

(
q(t)

)) [1]
= 0

Since the above holds for any choice of (q0, p0), we deduce that energy is conserved [1].
(iii) Any magnetic field B = ∇q × A can be written as the curl of a vector potential A, and thus,

using the standard equality∇q · ∇q × A = 0 [2], we deduce B is source-free:

∇q · B = ∇q ·
(
∇q × A

)
= ∂q1

(
∂q2A3 − ∂q3A2

)
+ ∂q2

(
∂q3A1 − ∂q1A3

)
+ ∂q3

(
∂q1A2 − ∂q2A1

)
= ∂q1∂q2A3 − ∂q2∂q1A3 − ∂q1∂q3A2 + ∂q3∂q1A2 + ∂q2∂q3A1 − ∂q3∂q2A1

= 0

(iv) Antisymmetry: Bjk = −Bkj implies

{f, g}B = {f, g} −
3∑

j,k=1

Bjk ∂pjf ∂pkg

[1]
= −{g, f}+

3∑
j,k=1

Bkj ∂pjf ∂pkg

[1]
= −{g, f}B

Derivation property:

{
f g, h

}
B
=
{
f g, h

}
−

3∑
j,k=1

Bjk ∂pj (f g) ∂pkh

[1]
= f {g, h}+ g {f, h} −

3∑
j,k=1

Bjk

(
∂pjf g + f ∂pjg

)
∂pkh

[1]
= f {g, h}B + g {f, h}B
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