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11. The Gauf3ian integral (4 points)
Show that
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Solution:

We compute the square and use polar coordinates:
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Taking the square root yields the required equation,
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12. Angular momentum as generator of rotations (11 points)

Consider the angular momentum observable L(q, p) = (L1(q,p), L2(q, p), L3(g, p)) := g X p. Show
that L generates rotations:

(i) Solve
d 3
W) = {L1,qw)}, q(0) = q € R’,
explicitly.
(ii) Give the solution to
d
@) = {Lp@)}, p(0) = py € R?,

explicitly. (You need not calculate the same thing twice.)

(iii) Give the flow ¥ to the ODE
d <q> _ <{L1,q}>
dw \p {Li,p})"

Does U exist for all w € R?

Solution:

(i) Corollary 3.3.5 tells us we can compute { L1, ¢} instead of {Ll, q(w)} [1], because

2 4@ = (@)} oy o v,

The Poisson bracket can be computed as

d 1
Wl = {L1,q;} & Op, (4203 — a3 p2)-

Hence, combining the three components yields the equation of motion of a classical spin
(sheet 1, problem 3),

d 0\ (0 0 o Q1
wi= | s|=10 0 -l)ja|=Lg
+g2 0 +1 O q3

and thus the solution to ¢(0) = qo is given in terms of the matrix exponential e~* and the
initial condition ¢,

0 1 0 0
q(t) = [0 cosw —sinw | g0 =: R(w) qo.
0 sinw cosw

(i) Similarly, we obtain the equations of motion for the momenta,

d 1
b= {L1,p;} 1 —0q; (2p3 — a3 p2),



i. e. collecting all three components, we once again recover the same equations as in (i):

0 0 O 0 D1
d 1
a =\ —p3 Q 0 0 -1 b2 | = Ep
+p2 0 +1 O D3

The solution is again

where R(w) is the same rotation matrix as in (i).

(iii) Now the flow can be easily expressed in terms of R(w),

. (g,p) 2 (R(w) g, R(w)p).

U exists for all w € R[1].



13. Averages with respect to states & the spectrum of observables (20 points)
(i) Show that the GauRian measure

(a—aq9)? _ (p—pg)?
b2

1 _
tap(A) = / dgdpe 2 e , A C R? Borel set,
’ mab 4

localized around a point in phase space (qo,po) € R? of widths a,b > 0 is a classical state in
the sense of Definition 3.1.1. (You need not prove that s, j is a Borel measure.)

(ii) Compute the energy average

1 _a—90)? _ (=p)?

Eu,,(H) = dgdpe <2 e > Hq,p)

wab Jge
for the one-dimensional harmonic oscillator Hamiltonian H (¢, p) = 3(p? + ¢?) with respect to
the GauRian state /1, p,.
(iii) Show that lim E, ,(H) = H/(qo,po).
a,b—0 ’
(iv) Now consider the case where phase space is R® = R? x R3. Show that the each of the three

components of angular momentum L(q,p) = g X p are constants of motion for the three-
dimensional harmonic oscillator dynamics generated by Hgs (¢, p) := 2?21 H(qj,pj)-

(v) Give the spectrum for the observables q1, p1, L1 and H.

Solution:

(i) Positivity: This follows directly from the positivity of the GauRian,

1 _=w)?® _-p)?
ae ‘12 e b2 >0, [1]

so that also

(a—aq0)? _ (p—p0)?
b2

1 _
Ma7b(A) = 7Tab/Adq dp (S a (S >0 [1]

holds true for any Borel set A C R2,
Normalization: We now use the fact that the integral factors as well as problem 11:

[1] 1 _a—a?  _ (p—p0)?
Ma,b(RQ):ﬁ . dgdpe <2 e @2

i (/ dge” (qaq20)2) </ dp e<pbgo>2>
TFGb R R

L (vra) (vab) 21

wab

=

Hence, the measure is also normalized.

(ii) Since the expectation value is linear, we can rewrite the expectation value as the sum of two
similar terms:

1
E/'La,b (H) = %(Eﬂa,b (p2) + Eﬂa,b (q2))



Given the symmetry, we will only calculate E,,, , (p®) in detail:

[ 1 _(a=a)®> _ (»=p)®
Eﬂa,b(p2):% dgdpe a2 e 2 p?

([ (o)

:W b VTa /dp P’ +2pop +pj)e” b2

b/dp (p? +2pop+po)e_72
R

The second and third term of the integral can be computed directly using the symmetry p —
—p of the integrand:

2 o0 2
/dp 2pope” 7 u 2/ dp 2pope” 7
R 0

2
/dppge_& = pyVTh
R

We use the symmetry p — —p of the integrand again and apply partial integration to compute
the first term:

Overall, we obtain

Exchanging the roles of g and p as well as of a and b yields
a 2q0 a
By (4%) = 5= + o= + 43,

NN

and thus

2
B ()= 7ot et g+ at ety

(iii) Since E,, ,(H) is a quadratic polynomial in a and b, taking the limit is trivial, and we obtain

. a qdo a b POb pO

%(p% + QO)~

1=



(iv) According to Corollary 3.3.5, an observable f is a constant of motion iff { Hgs, f} = 0.
The computations are straight-forward. For the first component we give the computation in
full detail:
{HRS,Ll} = VPHR3 . qul - quR3 . Vle
=p-Vele2ps —a3p2) — a- V(a2 p3 — q3p2)

0 0
=p-|+ps| —a- | —a3 | = (p2p3s —p3p2) — (—2 a3 + 43 02)
—p2 +q2

o

The other components are computed similarly.

—P3 +4q3 ]
{Hps,Lo}=p-| 0 | —¢q¢-| 0 | =0
+p1 —q1
+p2 —q2 ]
{Hgs,Ls} =p- | -m | —q¢- |+ | =
0 0

(v) The spectrum of the observable is the image of the function (cf. Definition 3.1.3):

specqr = imq 2 R

specp; = imp; Pﬁ] R
spec L1 =im L Pﬁ] R
. (/2]
specH =imH = [0, +0o0)



14. Magnetic classical systems (17 points)

Consider the equations of motion of a non-relativistic particle in three dimensions which is sub-
jected to an electromagnetic field where E = —V,V is the electric field and B = (Bl, Bo, B3). In
other words, we are considering the Hamilton function H and the magnetic version of Hamilton’s

equations of motion
B —idgs (4\  (VH W
Fidgs 0 p) ~ \V,H

where the magnetic field matrix

0 +B; —Bo
B(q) = | —Bs 0 +B1
+B, —B; 0

is defined in terms of the components of B. We denote the corresponding Hamiltonian flow with &.
Moreover, we define the magnetic Poisson bracket

3

3
{f,g}B = Z(apjf 04,9 — Og; f apjg) - Z Bk Op; f Op,9.

j=1 3,k=1
(i) Show that {-,-} p generates equations (1).
(Hint: Consider the equations of motion generated by H for ¢ and p in the Heisenberg picture.)
(ii) Show that B is source-free,i.e. V, - B = 0.
(Hint: Rewrite the magnetic field B = V,, x A as the curl of a vector potential A.)
(iii)) Show that {f, g} is antisymmetric and has the derivation property (cf. Proposition 3.3.4).

(iv) Show that energy is a constant of motion by computing the time-derivative of H (t) := H o ®.

Solution:

(i) First, let us start with the equations of motion for position:

3
. 1
G = {H,q;}p = {H,q5} - > Bi Oy H 8y,
Lk=1
E 817_7H

The equations of motion for p contain a magnetic contribution:

3
. 1]
pj={H,q;}s = {H,p;} = Y B0 H pp;
k=1
1 ’ 1 ’
= 9y, H — ZBU O H = 0y, H + ZBﬂ qj
=1 =1

If we collect these equations for the components of ¢ and p, then we recover (1):
q\ _ +V,H
p) T \-V,H+Bg
=
B —idgs) (4 v, H
tidgs 0 P V,H

1=



(i) Let us denote the trajectory starting at (go, po) with (¢(¢),p(t)) = ®+(g0, po). Then we com-
pute:

d d

a(H(t))(QmPo) = d*H(Q(t%p(t))

o~

= > (0, H (a(0), (1)) d5(8) + By, H (a(2), p(8)) 5 (1))

1=
w
/N
IS

<.
I
—

1=
-M“

(%H(Q(t)ap(t)) Op, H (q(t),p(t)) + O, H (a(t), p(t))

1

J

3
: <_8qu(Q(t)7p(t)) + Z Bjk (Q(t)) apkH(Q(t)ap(t))>>
k=1
= V,H (q(t),p(t)) - B(q(t)) VpH (q(t), p(t))
29,1 (a(0), p(1)) - (Vo (at), (1)) x Bat))) Zo

Since the above holds for any choice of (go, po), we deduce that energy is conserved [1].

(iii) Any magnetic field B = V, x A can be written as the curl of a vector potential A, and thus,
using the standard equality V, - V, x A = 0 [2], we deduce B is source-free:

Vg B=Vy- (Vg xA)
= ath (aQ2A3 - 8413A2) + afh (aq3A1 - 8(11A3) + a% (8Q1A2 - 8(12A1)
= ath aq2A3 - 8qzaqlA3 - 8111 aq3A2 + 8‘138(11A2 + 8q2 8(13A1 - aqs 8(12A1
=0

(iv) Antisymmetry: Bjj, = —By,; implies

3
{f,9Y8=1{f9}— > Bjr0p,fOpyg

j,k=1
1) :
= {9, f}+ Y Brj0p, f Opg
j.k=1
1
Q _{ga f}B

Derivation property:

3
{fg.h}g={fg,h} = > Bjxy,(f9) Oph

J,k=1

3
u flg.ht+g{f h} - Z By, (apjfg+fapjg) Op o

Jk=1

Ut {g.ms+g{f k)5



