Classical Mechanics

Homework Problems

11. The Gaußian integral (4 points)

Show that

$$
\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-a x^{2}}=\sqrt{\frac{\pi}{a}}
$$

12. Angular momentum as generator of rotations (11 points)

Consider the angular momentum observable $L(q, p)=\left(L_{1}(q, p), L_{2}(q, p), L_{3}(q, p)\right):=q \times p$. Show that L generates rotations:
(i) Solve

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} q(\omega)=\left\{L_{1}, q(\omega)\right\}, \quad q(0)=q_{0} \in \mathbb{R}^{3}
$$

explicitly.
(ii) Give the solution to

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} p(\omega)=\left\{L_{1}, p(\omega)\right\}, \quad p(0)=p_{0} \in \mathbb{R}^{3}
$$

explicitly. (You need not calculate the same thing twice.)
(iii) Give the flow Ψ to the ODE

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega}\binom{q}{p}=\binom{\left\{L_{1}, q\right\}}{\left\{L_{1}, p\right\}}
$$

Does Ψ exist for all $\omega \in \mathbb{R}$?
13. Averages with respect to states \& the spectrum of observables (20 points)
(i) Show that the Gaußian measure

$$
\mu_{a, b}(A):=\frac{1}{\pi a b} \int_{A} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}}, \quad A \subset \mathbb{R}^{2} \text { Borel set }
$$

localized around a point in phase space $\left(q_{0}, p_{0}\right) \in \mathbb{R}^{2}$ of widths $a, b>0$ is a classical state in the sense of Definition 3.1.1. (You need not prove that $\mu_{a, b}$ is a Borel measure.)
(ii) Compute the energy average

$$
\mathbb{E}_{\mu_{a, b}}(H)=\frac{1}{\pi a b} \int_{\mathbb{R}^{2}} \mathrm{~d} q \mathrm{~d} p \mathrm{e}^{-\frac{\left(q-q_{0}\right)^{2}}{a^{2}}} \mathrm{e}^{-\frac{\left(p-p_{0}\right)^{2}}{b^{2}}} H(q, p)
$$

for the one-dimensional harmonic oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$ with respect to the Gaußian state $\mu_{a, b}$.
(iii) Show that $\lim _{a, b \rightarrow 0} \mathbb{E}_{\mu_{a, b}}(H)=H\left(q_{0}, p_{0}\right)$.
(iv) Now consider the case where phase space is $\mathbb{R}^{6}=\mathbb{R}^{3} \times \mathbb{R}^{3}$. Show that the each of the three components of angular momentum $L(q, p)=q \times p$ are constants of motion for the threedimensional harmonic oscillator dynamics generated by $H_{\mathbb{R}^{3}}(q, p):=\sum_{j=1}^{3} H\left(q_{j}, p_{j}\right)$.
(v) Give the spectrum for the observables q_{1}, p_{1}, L_{1} and H.

14. Magnetic classical systems (17 points)

Consider the equations of motion of a non-relativistic particle in three dimensions which is subjected to an electromagnetic field where $\mathbf{E}=-\nabla_{q} V$ is the electric field and $\mathbf{B}=\left(\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}\right)$. In other words, we are considering the Hamilton function H and the magnetic version of Hamilton's equations of motion

$$
\left(\begin{array}{cc}
B & -\mathrm{id}_{\mathbb{R}^{3}} \tag{1}\\
+\mathrm{id}_{\mathbb{R}^{3}} & 0
\end{array}\right)\binom{\dot{q}}{\dot{p}}=\binom{\nabla_{q} H}{\nabla_{p} H}
$$

where the magnetic field matrix

$$
B(q)=\left(\begin{array}{ccc}
0 & +\mathbf{B}_{3} & -\mathbf{B}_{2} \\
-\mathbf{B}_{3} & 0 & +\mathbf{B}_{1} \\
+\mathbf{B}_{2} & -\mathbf{B}_{1} & 0
\end{array}\right)
$$

is defined in terms of the components of \mathbf{B}. We denote the corresponding Hamiltonian flow with Φ. Moreover, we define the magnetic Poisson bracket

$$
\{f, g\}_{B}:=\sum_{j=1}^{3}\left(\partial_{p_{j}} f \partial_{q_{j}} g-\partial_{q_{j}} f \partial_{p_{j}} g\right)-\sum_{j, k=1}^{3} B_{j k} \partial_{p_{j}} f \partial_{p_{k}} g .
$$

(i) Show that $\{\cdot, \cdot\}_{B}$ generates equations (1).
(Hint: Consider the equations of motion generated by H for q and p in the Heisenberg picture.)
(ii) Show that \mathbf{B} is source-free, i. e. $\nabla_{q} \cdot \mathbf{B}=0$.
(Hint: Rewrite the magnetic field $\mathbf{B}=\nabla_{q} \times \mathbf{A}$ as the curl of a vector potential A.)
(iii) Show that $\{f, g\}_{B}$ is antisymmetric and has the derivation property (cf. Proposition 3.3.4).
(iv) Show that energy is a constant of motion by computing the time-derivative of $H(t):=H \circ \Phi_{t}$.

