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Unitary Evolution Group, Resolvents & Symmetric Operators

Homework Problems
16. Translation semigroup on L?*([0, +-00)) (24 points)

(i) Show that for ¢ > 0, the translation operator

0 t€10,t)
(x—t) x€lt,+00)

(Ti) () = {

preserves angles on L?([0, +00)), i. e. (Ty0), Typ) = (1, ).
(ii) Compute the adjoint of 7.

(iii) Show that {T}}c[o 4oc) forms a semigroup, i. e. Ty, Ty, = Ty, 1+, holds for all t1,t5 € [0, +00)
and To =id.

(iv) Find the generator of {T}};c(o,+o00)-

(A formal computation ignoring domain questions suffices.)
(v) Is the generator of {T} },c[o, +o0) symmetric on C¢° ([0, +-00))? Justify your answer.
(vi) Find a domain such that the generator of {7 },c(y 1) is symmetric.

(vii) Can {T}};c(0,+o0) be extended to a unitary evolution group? Justify your answer.

Solution:

(i) For ), ¢ € L*([0, +00)) we compute

(Tp, Typ) ]/+°O () (@) /d 0+/+°° do $(@ — 1) oz — 1)

(ii) A quick computation reveals that the adjoint operator is (7,;¢)(z) = ¥ (z +y) [1]:

>[=<w>

“+o0
(T, o) U /0 dz (T,0) (x) o (x)
B ' X o X T — X
—/0d0+/t dr oz — 1) ()

+o0 .
d /0 do P(@) oz + 1) & (v, Ty




(iii) That Ty = id is clear from the definition. Pick ¢yt € [0, +00) and ¢ € L?([0,+00)). Then
we get from the definition

w [0 z €[0,t1)
(Tt1 Tt2w> (z) = {(me) (x —t1) x € [t1,+00)
[0 z € [0,t1)
=1 x € [t1,t2)
[

Y (T ) (a).

(iv) For the purpose of the computation we may assume = > 0. The formally, we obtain

d

. (1]

0 =04~ )],y = —0le 1],
t=
U _io,0(@).

(v) The generator —id, is not symmetric on C°([0, +00)), because the boundary terms do not
vanish [1]:

(0, ) & +i/+oo dz 0, () ()
0

_ ) oo
W [¢($) gp(az)}; —i /0 dz ¢ () Orp(x)
2 i90) (0) + (4, ~i0, )
(vi) We need to ensure ¢(0) = 0[1],s0 D := {1 € C2°([0,+00)) | ¥(0) =0} will do [1].

(vii) No, the adjoint (7)) = v(z + t) is not norm-preserving [1], and hence, not unitary [1]. (For
instance, if we fix ¢ > 0 and pick 0 # ¢ € L?([0, +00)) so that () is 0 almost everywhere as
long as > ¢, then Ty = 0.) Thus, {7} };c[0,4) cannot be extended to a unitary evolution

group [1].



17. Convergence of operators (20 points)

Consider the following sequences {7}, },,cn of operators on the Hilbert space

2O = {a= (@nnen | 2 Janf? < o0}

and investigate whether they converge in norm, strongly or weakly:

(i) Tn(a):= (%al, %ag, . )

(i) Tn(a):= (O, e 0,an41, anao, . )
——
n places
(iii) T, (a) := (0,...,0,a1,az,...)
——
n places
Solution:

(i) The sequence T,, converges in norm/uniformly to 0 € B(¢*(N)) [1], because

HTn(a)HEQ(N) = % Ha’HZ?(N) n_>—00> 07 [1]

and thus HT HB en) = = 1/n. The above equation also implies that T}, converges to 0 also
strongly and weakly [2], because

‘<“?Tn(b)>z2(N)‘ = HCLHW(N) HTn(b)Hﬁ(N)

n—oo

—0. [1]

(ii) For a fixed a € ¢?(N), we have

170(@)| oy = 3 (Tal@), = 37 Jag| =20, 1]

7j=1 j=n+1

and thus T}, converges strongly (and weakly) to 0 € B(¢?(N)) [2]. However, ife,, := (d;)jen =
(0,...,0,1,0,...), we see that

HTnen-i-al( @

and thus T, does not converge to 0 in norm [1], because || T, || Bem) = 1 [1].

(iii) 7;, converges weakly to 0 [1]:

1

bj Y biajn

b] (Tn(G,))j
J= Jj=n+1

1/2 00 1/2 /2 00 1/2
(z|b (S hek) () ()
Jj=n+1 Jj=n+1 Jj=n+1 j=1

‘(a, T (b ’ [1]

) e (N)

However, it does not converge strongly or in norm, because

1@ LS Jasal? ”Zm“ lalle

j=n+1



18. The resolvent (27 points)

Let S,T € B(X) be operators on a Banach space X with resolvent sets p(S) and p(T"). On these
sets, the resolvents (T — z)~! and (S — z)~! exist as bounded operators.

1 rove the 1irst resolvent identity, 1. e. that for any z, z° € p we have
(@ P the first lvent identity, i. e. that f y 2,2 T h

(T—2)' = (T -t =E-2) (T2 (T2

(ii) Prove the second resolvent identity, i. e. that for any 2z € p(T') N p(S) we have

(T—2)"'=(S—2)'=(T—2)""(T-8)(S—2)""

(iii) Provethatif||7'|| < 1, thenthe geometricseries > o , 7™ exists in B(X) and equals (id—7") !

(iv) Show that the resolvent set p(T') C C is open and the resolvent is z + (T — z)~! is analytic
on p(T'), meaning locally there exists a power series expansion of (T — z)~! which converges
in operator norm.

(v) Show that the spectrum o (7T') C C is closed.
Solution:

(i) If we multiply the left-hand side with T' — 2 from the left and T — 2’ from the right [1], we get

(T—2) (T2 =@y T-H T @y =@ —2) YDz 2,

Evidently, this is equivalent to the first resolvent identity.

(ii) We again multiply with T — 2z from the left and S — z from the right [1], and obtain
T—2)(T-2" (S-S -nTs-2)-T-nUs-1
(iii) First of all, the sequence of partial sums Sy := ZZIV:O T™ is Cauchy [1], because for N > M

N
2, T

n=M+1

N

gl
< > 7y

n=M+1

155 = Sul| =

and the right-hand side is finite since || T|| < 1 [1], and goes to 0 as N, M — oo [1]. By the
completeness of B(X) (Proposition 4.1.4) [1], the sequence of partial sums Sy converges to
some S € B(X)[1]. Toshow S = (id — T")~!, we compute

N
d-7)5Y lim (id - T) d o
n=0

N—o0

U fim (id — 7+ Zid.

N—o0

(iv) Letzy € p(T). Wefirst show that there existsane > Osuchthat {z € C | [z—2o| < e} C p(T).
Pick0 < e < H(T - zo)_lH_l [1]. Then

1

(T - 2)

(T — zo) (id — (2 — 20) (T — zo)_l)



is invertible [1], because (T — zy) ! exists and in view of
(1]
H(z — 20) (T - zo)—lH <e||(m-2)7Y <1

(iii) tells us that also the second term in the product is invertible [1]. That means p(T) is open
[1].

(iii) also gives us an explicit expression for the power series of the resolvent in this neighbor-
hood,

-1

@ -2 E (a2 = 20) (T —20) ") (T = 20) " E Y (e = 20)" (T — 20) "+,
n=0

Hence, (T — z)~! is analytic in a vicinity of zq [1], and since the point was chosen arbitrarily,
the resolvent is in fact analytic on all of p(7T') [1].

(v) Since p(T') is open by (iv) [1], its complement in C, the spectrum o (T), is closed [1].



19. Symmetric operators (17 points)
Let H = 5= (—iV,)? + V be a Hamilton operator with potential V € C(R?, R).

Define the smooth functions with compact support as
CE(R?) :={p:R* — C | ¢ € C™(R?), supp ¢ compact}.
(i) Prove C*(R3) C L?(R3).
(ii) Show that H is symmetric on C>°(R3), i. e. that
(0. Hy) = (Hep,9)
holds for all ¢, 1) € C°(R3).

Solution:

(i) Everysmooth function with compact support is square-integrable: let p € C°(R?), then there
exists a compact subset K C R?, so that

suppp = {z € R3 | p(z) #0} C K . 1]

Since ¢ is also continuous, we can estimate the supremum from above by

[¢lloo = sup [¢(z)| = sup |p(z)] < oo. [1]
z€R3 zeK

Hence, we obtain

Il = [ do ol Y [ o] 29 1K| (sup [o(@)])? < .

zeK

(ii) We will treat kinetic and potential energy separately: clearly, derivatives map C°(R?) into
itself, and thus (—iV,)%¢ € L?(R3) [1]. Fix p,v € C°(R?). Then there exists a compact
set K C R? whose interior contains supp ¢ and supp ¢ [1]. Then we compute using repeated
partial integration

3
(o (92 =3 5 ) U3 5 [ a5 (-, P
7j=1
B QL dz p(z) ((—i0,,)%0) (x)
j=1 =K
1] 1
23 dS(x) p(z) ((—1)%0,%) (z)+
=1 <M Jok
3
— Z 7m / dx 8x390(x> ((_1)26$Jw) (x)
j=1
i] _ L 12 €T X Xz
20 ;Qm( ) 8KdS( ) O, () P (2)+
i 12 x T T
+;2m< P [ B i)

()}
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Here, dS(z) is the surface measure on OK. The boundary terms vanish, because ¢ and 1 as
well as their derivatives vanish on K.

Now to the potential energy: since V' is continuous, it is bounded on compact subsets. Choose
any ¢, € C°(R3). Then Vp € L?(R?) [1] and hence,

W”/d Y (Vi) ”/d ) % ()
B

U [ 42 (V) (@) v(a)

R3

(Veo,v)

holds.



