

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Solutions 5 (2014.10.10)

Unitary Evolution Group, Resolvents & Symmetric Operators

Homework Problems

- 16. Translation semigroup on $L^2([0, +\infty))$ (24 points)
 - (i) Show that for $t \ge 0$, the translation operator

$$(T_t\psi)(x) := \begin{cases} 0 & t \in [0,t) \\ \psi(x-t) & x \in [t,+\infty) \end{cases}$$

preserves angles on $L^2([0, +\infty))$, i. e. $\langle T_t \psi, T_t \varphi \rangle = \langle \psi, \varphi \rangle$.

- (ii) Compute the adjoint of T_t .
- (iii) Show that $\{T_t\}_{t\in[0,+\infty)}$ forms a semigroup, i. e. $T_{t_1} T_{t_2} = T_{t_1+t_2}$ holds for all $t_1, t_2 \in [0,+\infty)$ and $T_0 = \text{id}$.
- (iv) Find the generator of $\{T_t\}_{t\in[0,+\infty)}$. (A formal computation ignoring domain questions suffices.)
- (v) Is the generator of $\{T_t\}_{t\in[0,+\infty)}$ symmetric on $\mathcal{C}^{\infty}_{c}([0,+\infty))$? Justify your answer.
- (vi) Find a domain such that the generator of $\{T_t\}_{t\in[0,+\infty)}$ is symmetric.
- (vii) Can $\{T_t\}_{t\in[0,+\infty)}$ be extended to a unitary evolution group? Justify your answer.

Solution:

(i) For $\psi, \varphi \in L^2([0, +\infty))$ we compute

$$\begin{split} \left\langle T_t \psi, T_t \varphi \right\rangle &\stackrel{[1]}{=} \int_0^{+\infty} \mathrm{d}x \, \overline{\left(T_t \psi \right)(x)} \left(T_t \varphi \right)(x) \stackrel{[1]}{=} \int_0^t \mathrm{d}x \, 0 + \int_t^{+\infty} \mathrm{d}x \, \overline{\psi(x-t)} \, \varphi(x-t) \\ &\stackrel{[1]}{=} \int_0^{+\infty} \mathrm{d}x \, \overline{\psi(x)} \, \varphi(x) \stackrel{[1]}{=} \langle \psi, \varphi \rangle. \end{split}$$

(ii) A quick computation reveals that the adjoint operator is $(T_y^*\psi)(x) = \psi(x+y)$ [1]:

$$\begin{array}{l} \left\langle T_t \psi, \varphi \right\rangle \stackrel{[1]}{=} \int_0^{+\infty} \mathrm{d}x \, \overline{\left(T_t \psi\right)(x)} \, \varphi(x) \\ & \stackrel{[1]}{=} \int_0^t \mathrm{d}x \, 0 + \int_t^{+\infty} \mathrm{d}x \, \overline{\psi(x-t)} \, \varphi(x) \\ & \stackrel{[1]}{=} \int_0^{+\infty} \mathrm{d}x \, \overline{\psi(x)} \, \varphi(x+t) \stackrel{[1]}{=} \left\langle \psi, T_t^* \varphi \right\rangle \end{array}$$

(iii) That $T_0 = \text{id}$ is clear from the definition. Pick $t_1, t_2 \in [0, +\infty)$ and $\psi \in L^2([0, +\infty))$. Then we get from the definition

$$(T_{t_1} T_{t_2} \psi)(x) \stackrel{[1]}{=} \begin{cases} 0 & x \in [0, t_1) \\ (T_{t_2} \psi)(x - t_1) & x \in [t_1, +\infty) \end{cases}$$

$$\stackrel{[1]}{=} \begin{cases} 0 & x \in [0, t_1) \\ 0 & x \in [t_1, t_2) \\ \psi(x - t_1 - t_2) & x \in [t_1, +\infty) \end{cases}$$

$$\stackrel{[1]}{=} (T_{t_1 + t_2} \psi)(x).$$

(iv) For the purpose of the computation we may assume x > 0. The formally, we obtain

$$\mathbf{i}\frac{\mathbf{d}}{\mathbf{d}t}(T_t\psi)(x)\Big|_{t=0} \stackrel{[\underline{1}]}{=} \mathbf{i}\partial_t(\psi(x-t))\Big|_{t=0} \stackrel{[\underline{1}]}{=} -\mathbf{i}\partial_x\psi(x-t)\Big|_{t=0}$$
$$\stackrel{[\underline{1}]}{=} -\mathbf{i}\partial_x\psi(x).$$

(v) The generator $-i\partial_x$ is not symmetric on $C_c^{\infty}([0, +\infty))$, because the boundary terms do not vanish [1]:

- (vi) We need to ensure $\psi(0) = 0$ [1], so $\mathcal{D} := \left\{ \psi \in \mathcal{C}^{\infty}_{\mathsf{c}}([0, +\infty)) \mid \psi(0) = 0 \right\}$ will do [1].
- (vii) No, the adjoint $(T_t^*\psi) = \psi(x+t)$ is not norm-preserving [1], and hence, not unitary [1]. (For instance, if we fix t > 0 and pick $0 \neq \varphi \in L^2([0, +\infty))$ so that $\varphi(x)$ is 0 almost everywhere as long as $x \ge t$, then $T_t^*\varphi = 0$.) Thus, $\{T_t\}_{t \in [0, +\infty)}$ cannot be extended to a unitary evolution group [1].

17. Convergence of operators (20 points)

Consider the following sequences $\{T_n\}_{n\in\mathbb{N}}$ of operators on the Hilbert space

$$\ell^{2}(\mathbb{N}) = \left\{ a \equiv (a_{n})_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} |a_{n}|^{2} < \infty \right\}$$

and investigate whether they converge in norm, strongly or weakly:

(i)
$$T_n(a) := \left(\frac{1}{n}a_1, \frac{1}{n}a_2, \ldots\right)$$

(ii) $T_n(a) := \left(\underbrace{0, \ldots, 0}_{n \text{ places}}, a_{n+1}, a_{n+2}, \ldots\right)$
(iii) $T_n(a) := \left(\underbrace{0, \ldots, 0}_{n, a_1, a_2, \ldots}\right)$

$$n$$
 places

Solution:

(i) The sequence T_n converges in norm/uniformly to $0 \in \mathcal{B}(\ell^2(\mathbb{N}))$ [1], because

$$\left\|T_n(a)\right\|_{\ell^2(\mathbb{N})} = \frac{1}{n} \left\|a\right\|_{\ell^2(\mathbb{N})} \xrightarrow{n \to \infty} 0, \qquad [1]$$

and thus $||T_n||_{\mathcal{B}(\ell^2(\mathbb{N}))} = 1/n$. The above equation also implies that T_n converges to 0 also strongly and weakly [2], because

$$\left|\left\langle a, T_n(b)\right\rangle_{\ell^2(\mathbb{N})}\right| \le \left\|a\right\|_{\ell^2(\mathbb{N})} \left\|T_n(b)\right\|_{\ell^2(\mathbb{N})} \xrightarrow{n \to \infty} 0.$$

$$[1]$$

(ii) For a fixed $a \in \ell^2(\mathbb{N})$, we have

$$\left\|T_n(a)\right\|_{\ell^2(\mathbb{N})} \stackrel{[1]}{=} \sum_{j=1}^{\infty} \left|\left(T_n(a)\right)_j\right|^2 = \sum_{j=n+1}^{\infty} |a_j| \xrightarrow{n \to \infty} 0, \qquad [1]$$

and thus T_n converges strongly (and weakly) to $0 \in \mathcal{B}(\ell^2(\mathbb{N}))$ [2]. However, if $e_n := (\delta_{jn})_{j \in \mathbb{N}} = (0, \ldots, 0, 1, 0, \ldots)$, we see that

$$||T_n e_{n+1}||_{\ell^2(\mathbb{N})} \stackrel{[1]}{=} 1,$$

and thus T_n does not converge to 0 in norm [1], because $||T_n||_{\mathcal{B}(\ell^2(\mathbb{N}))} \ge 1$ [1]. (iii) T_n converges weakly to 0 [1]:

$$\begin{aligned} \left| \left\langle a, T_n(b) \right\rangle_{\ell^2(\mathbb{N})} \right| \stackrel{[1]}{=} \left| \sum_{j=1}^{\infty} \overline{b_j} \left(T_n(a) \right)_j \right| \stackrel{[1]}{=} \left| \sum_{j=n+1}^{\infty} \overline{b_j} \, a_{j-n} \right| \\ \stackrel{[1]}{\leq} \left(\sum_{j=n+1}^{\infty} |b_j|^2 \right)^{1/2} \left(\sum_{j=n+1}^{\infty} |a_{j-n}|^2 \right)^{1/2} \stackrel{[1]}{=} \left(\sum_{j=n+1}^{\infty} |b_j|^2 \right)^{1/2} \left(\sum_{j=1}^{\infty} |a_j|^2 \right)^{1/2} \\ \stackrel{n \to \infty}{\longrightarrow} 0. \end{aligned}$$

However, it does not converge strongly or in norm, because

$$||T_n(a)||^2_{\ell^2(\mathbb{N})} \stackrel{[1]}{=} \sum_{j=n+1}^{\infty} |a_{j-n}|^2 \stackrel{[1]}{=} \sum_{j=1}^{\infty} |a_j|^2 \stackrel{[1]}{=} ||a||_{\ell^2(\mathbb{N})}.$$

18. The resolvent (27 points)

Let $S, T \in \mathcal{B}(\mathcal{X})$ be operators on a Banach space \mathcal{X} with resolvent sets $\rho(S)$ and $\rho(T)$. On these sets, the *resolvents* $(T-z)^{-1}$ and $(S-z)^{-1}$ exist as bounded operators.

(i) Prove the first resolvent identity, i. e. that for any $z, z' \in \rho(T)$ we have

$$(T-z)^{-1} - (T-z')^{-1} = (z-z')(T-z)^{-1}(T-z')^{-1}$$

(ii) Prove the second resolvent identity, i. e. that for any $z \in \rho(T) \cap \rho(S)$ we have

$$(T-z)^{-1} - (S-z)^{-1} = (T-z)^{-1} (T-S) (S-z)^{-1}.$$

- (iii) Prove that if ||T|| < 1, then the geometric series $\sum_{n=0}^{\infty} T^n$ exists in $\mathcal{B}(\mathcal{X})$ and equals $(\mathrm{id}-T)^{-1}$.
- (iv) Show that the resolvent set $\rho(T) \subseteq \mathbb{C}$ is open and the resolvent is $z \mapsto (T-z)^{-1}$ is analytic on $\rho(T)$, meaning locally there exists a power series expansion of $(T-z)^{-1}$ which converges in operator norm.
- (v) Show that the spectrum $\sigma(T) \subseteq \mathbb{C}$ is closed.

Solution:

(i) If we multiply the left-hand side with T - z from the left and T - z' from the right [1], we get

$$(T-z)\left((T-z)^{-1} - (T-z')^{-1}\right)(T-z') \stackrel{[1]}{=} (T-z') - (T-z) \stackrel{[1]}{=} z-z'.$$

Evidently, this is equivalent to the first resolvent identity.

(ii) We again multiply with T - z from the left and S - z from the right [1], and obtain

$$(T-z)\left((T-z)^{-1} - (S-z)^{-1}\right)(S-z) \stackrel{[1]}{=} (S-z) - (T-z) \stackrel{[1]}{=} S - T.$$

(iii) First of all, the sequence of partial sums $S_N := \sum_{n=0}^N T^n$ is Cauchy [1], because for N > M

$$||S_N - S_M|| = \left\|\sum_{n=M+1}^N T^n\right\| \le \sum_{n=M+1}^N ||T||^n$$

and the right-hand side is finite since ||T|| < 1 [1], and goes to 0 as $N, M \to \infty$ [1]. By the completeness of $\mathcal{B}(\mathcal{X})$ (Proposition 4.1.4) [1], the sequence of partial sums S_N converges to some $S \in \mathcal{B}(\mathcal{X})$ [1]. To show $S = (\mathrm{id} - T)^{-1}$, we compute

$$(\mathrm{id} - T) S \stackrel{[1]}{=} \lim_{N \to \infty} (\mathrm{id} - T) \sum_{n=0}^{N} T^{n}$$
$$\stackrel{[1]}{=} \lim_{N \to \infty} (\mathrm{id} - T^{N+1}) \stackrel{[1]}{=} \mathrm{id}.$$

(iv) Let $z_0 \in \rho(T)$. We first show that there exists an $\varepsilon > 0$ such that $\{z \in \mathbb{C} \mid |z-z_0| < \varepsilon\} \subseteq \rho(T)$. Pick $0 < \varepsilon < ||(T-z_0)^{-1}||^{-1}$ [1]. Then

$$(T-z) \stackrel{[1]}{=} (T-z_0) \left(\operatorname{id} - (z-z_0) (T-z_0)^{-1} \right)$$

is invertible [1], because $(T-z_0)^{-1}$ exists and in view of

$$\left\| (z-z_0) (T-z_0)^{-1} \right\| < \varepsilon \left\| (T-z_0)^{-1} \right\| \stackrel{[1]}{\leq} 1$$

(iii) tells us that also the second term in the product is invertible [1]. That means $\rho(T)$ is open [1].

(iii) also gives us an explicit expression for the power series of the resolvent in this neighborhood,

$$(T-z)^{-1} \stackrel{[1]}{=} \left(\mathsf{id} - (z-z_0) \, (T-z_0)^{-1} \right)^{-1} (T-z_0)^{-1} \stackrel{[1]}{=} \sum_{n=0}^{\infty} (z-z_0)^n \, (T-z_0)^{-(n+1)}.$$

Hence, $(T - z)^{-1}$ is analytic in a vicinity of z_0 [1], and since the point was chosen arbitrarily, the resolvent is in fact analytic on all of $\rho(T)$ [1].

(v) Since $\rho(T)$ is open by (iv) [1], its complement in \mathbb{C} , the spectrum $\sigma(T)$, is closed [1].

19. Symmetric operators (17 points)

Let $H = \frac{1}{2m}(-i\nabla_x)^2 + V$ be a Hamilton operator with potential $V \in \mathcal{C}(\mathbb{R}^3, \mathbb{R})$. Define the smooth functions with compact support as

$$\mathcal{C}^\infty_{\rm c}(\mathbb{R}^3) := \big\{ \varphi : \mathbb{R}^3 \longrightarrow \mathbb{C} \mid \varphi \in \mathcal{C}^\infty(\mathbb{R}^3), \text{ supp } \varphi \text{ compact} \big\}.$$

- (i) Prove $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{3}) \subset L^{2}(\mathbb{R}^{3})$.
- (ii) Show that *H* is *symmetric* on $C^{\infty}_{c}(\mathbb{R}^{3})$, i. e. that

$$\langle \varphi, H\psi \rangle = \langle H\varphi, \psi \rangle$$

holds for all $\varphi, \psi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$.

Solution:

(i) Every smooth function with compact support is square-integrable: let $\varphi \in C_c^{\infty}(\mathbb{R}^3)$, then there exists a compact subset $K \subset \mathbb{R}^3$, so that

$$\operatorname{supp} \varphi = \overline{\left\{ x \in \mathbb{R}^3 \mid \varphi(x) \neq 0 \right\}} \subseteq K.$$
^[1]

Since φ is also continuous, we can estimate the supremum from above by

$$\left\|\varphi\right\|_{\infty} = \sup_{x \in \mathbb{R}^3} |\varphi(x)| = \sup_{x \in K} |\varphi(x)| < \infty \,. \tag{1}$$

Hence, we obtain

$$\|\varphi\|^2 = \int_{\mathbb{R}^3} \mathrm{d}x \, |\varphi(x)|^2 \stackrel{[1]}{=} \int_K \mathrm{d}x \, |\varphi(x)|^2 \stackrel{[1]}{\leq} |K| \, \left(\sup_{x \in K} |\varphi(x)|\right)^2 < \infty.$$

(ii) We will treat kinetic and potential energy separately: clearly, derivatives map $C_c^{\infty}(\mathbb{R}^3)$ into itself, and thus $(-i\nabla_x)^2 \varphi \in L^2(\mathbb{R}^3)$ [1]. Fix $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^3)$. Then there exists a compact set $K \subset \mathbb{R}^3$ whose *interior* contains supp φ and supp ψ [1]. Then we compute using repeated partial integration

$$\begin{split} \left\langle \varphi, \frac{1}{2m} (-\mathbf{i} \nabla_x)^2 \psi \right\rangle &= \sum_{j=1}^3 \frac{1}{2m} \left\langle \varphi, (-\mathbf{i} \partial_{x_j})^2 \psi \right\rangle \stackrel{[1]}{=} \sum_{j=1}^3 \frac{1}{2m} \int_{\mathbb{R}^3} \mathbf{d} x \, \overline{\varphi(x)} \left((-\mathbf{i} \partial_{x_j})^2 \psi \right) (x) \\ &\stackrel{[1]}{=} \sum_{j=1}^3 \frac{1}{2m} \int_K \mathbf{d} x \, \overline{\varphi(x)} \left((-\mathbf{i} \partial_{x_j})^2 \psi \right) (x) \\ &\stackrel{[1]}{=} \sum_{j=1}^3 \frac{1}{2m} \int_{\partial K} \mathbf{d} S(x) \, \overline{\varphi(x)} \left((-\mathbf{i})^2 \partial_{x_j} \psi \right) (x) + \\ &\quad -\sum_{j=1}^3 \frac{1}{2m} \int_K \mathbf{d} x \, \overline{\partial_{x_j} \varphi(x)} \left((-\mathbf{i})^2 \partial_{x_j} \psi \right) (x) \\ &\stackrel{[1]}{=} 0 - \sum_{j=1}^3 \frac{1}{2m} (-\mathbf{i})^2 \int_{\partial K} \mathbf{d} S(x) \, \overline{\partial_{x_j} \varphi(x)} \, \psi(x) + \\ &\quad + \sum_{j=1}^3 \frac{1}{2m} (-\mathbf{i})^2 \int_K \mathbf{d} x \, \overline{\partial_{x_j}^2 \varphi(x)} \, \psi(x) \end{split}$$

$$\stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2m} \int_{K} \mathrm{d}x \,\overline{\left((-\mathrm{i}\partial_{x_{j}})^{2}\varphi\right)(x)} \,\psi(x)$$

$$\stackrel{[1]}{=} \left\langle \frac{1}{2m} (-\mathrm{i}\nabla_{x})^{2}\varphi, \psi \right\rangle$$

Here, dS(x) is the surface measure on ∂K . The boundary terms vanish, because φ and ψ as well as their derivatives vanish on ∂K .

Now to the potential energy: since V is continuous, it is bounded on compact subsets. Choose any $\varphi, \psi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$. Then $V\varphi \in L^{2}(\mathbb{R}^{3})$ [1] and hence,

$$\begin{split} \left\langle \varphi, V\psi \right\rangle &\stackrel{[1]}{=} \int_{\mathbb{R}^3} \mathrm{d}x \,\overline{\varphi(x)} \left(V\psi \right)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^3} \mathrm{d}x \,\overline{\varphi(x)} \, V(x) \,\psi(x) \\ &\stackrel{[1]}{=} \int_{\mathbb{R}^3} \mathrm{d}x \,\overline{(V\varphi)(x)} \,\psi(x) \stackrel{[1]}{=} \left\langle V\varphi, \psi \right\rangle \end{split}$$

holds.