# Foundations of <br> Quantum Mechanics <br> (APM 421 H) 

## Unitary Evolution Group, Resolvents \& Symmetric Operators

## Homework Problems

16. Translation semigroup on $L^{2}([0,+\infty))$ (24 points)
(i) Show that for $t \geq 0$, the translation operator

$$
\left(T_{t} \psi\right)(x):= \begin{cases}0 & t \in[0, t) \\ \psi(x-t) & x \in[t,+\infty)\end{cases}
$$

preserves angles on $L^{2}([0,+\infty))$, i. e. $\left\langle T_{t} \psi, T_{t} \varphi\right\rangle=\langle\psi, \varphi\rangle$.
(ii) Compute the adjoint of $T_{t}$.
(iii) Show that $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ forms a semigroup, i. e. $T_{t_{1}} T_{t_{2}}=T_{t_{1}+t_{2}}$ holds for all $t_{1}, t_{2} \in[0,+\infty)$ and $T_{0}=\mathrm{id}$.
(iv) Find the generator of $\left\{T_{t}\right\}_{t \in[0,+\infty)}$.
(A formal computation ignoring domain questions suffices.)
(v) Is the generator of $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ symmetric on $\mathcal{C}_{c}^{\infty}([0,+\infty))$ ? Justify your answer.
(vi) Find a domain such that the generator of $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ is symmetric.
(vii) Can $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ be extended to a unitary evolution group? Justify your answer.

## Solution:

(i) For $\psi, \varphi \in L^{2}([0,+\infty))$ we compute

$$
\begin{aligned}
\left\langle T_{t} \psi, T_{t} \varphi\right\rangle & \stackrel{[1]}{=} \int_{0}^{+\infty} \mathrm{d} x \overline{\left(T_{t} \psi\right)(x)}\left(T_{t} \varphi\right)(x) \stackrel{[1]}{=} \int_{0}^{t} \mathrm{~d} x 0+\int_{t}^{+\infty} \mathrm{d} x \overline{\psi(x-t)} \varphi(x-t) \\
& \stackrel{[1]}{=} \int_{0}^{+\infty} \mathrm{d} x \overline{\psi(x)} \varphi(x) \stackrel{[1]}{=}\langle\psi, \varphi\rangle .
\end{aligned}
$$

(ii) A quick computation reveals that the adjoint operator is $\left(T_{y}^{*} \psi\right)(x)=\psi(x+y)$ [1]:

$$
\begin{aligned}
\left\langle T_{t} \psi, \varphi\right\rangle & \stackrel{[1]}{=} \int_{0}^{+\infty} \mathrm{d} x \overline{\left(T_{t} \psi\right)(x)} \varphi(x) \\
& \stackrel{[1]}{=} \int_{0}^{t} \mathrm{~d} x 0+\int_{t}^{+\infty} \mathrm{d} x \overline{\psi(x-t)} \varphi(x) \\
& \stackrel{[1]}{=} \int_{0}^{+\infty} \mathrm{d} x \overline{\psi(x)} \varphi(x+t) \stackrel{[1]}{=}\left\langle\psi, T_{t}^{*} \varphi\right\rangle
\end{aligned}
$$

(iii) That $T_{0}=\mathrm{id}$ is clear from the definition. Pick $t_{1}, t_{2} \in[0,+\infty)$ and $\psi \in L^{2}([0,+\infty))$. Then we get from the definition

$$
\begin{aligned}
\left(T_{t_{1}} T_{t_{2}} \psi\right)(x) & \stackrel{[1]}{=} \begin{cases}0 & x \in\left[0, t_{1}\right) \\
\left(T_{t_{2}} \psi\right)\left(x-t_{1}\right) & x \in\left[t_{1},+\infty\right)\end{cases} \\
& \stackrel{[1]}{=} \begin{cases}0 & x \in\left[0, t_{1}\right) \\
0 & x \in\left[t_{1}, t_{2}\right) \\
\psi\left(x-t_{1}-t_{2}\right) & x \in\left[t_{1},+\infty\right)\end{cases} \\
& \stackrel{[1]}{=}\left(T_{t_{1}+t_{2}} \psi\right)(x) .
\end{aligned}
$$

(iv) For the purpose of the computation we may assume $x>0$. The formally, we obtain

$$
\begin{aligned}
&\left.\left.\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(T_{t} \psi\right)(x)\right|_{t=0} \stackrel{[1]}{=} \partial_{t}(\psi(x-t))\right|_{t=0} \stackrel{[1]}{=}-\left.\mathbf{i} \partial_{x} \psi(x-t)\right|_{t=0} \\
& \stackrel{[1]}{=}-\mathbf{i} \partial_{x} \psi(x) .
\end{aligned}
$$

(v) The generator $-\mathrm{i} \partial_{x}$ is not symmetric on $\mathcal{C}_{c}^{\infty}([0,+\infty))$, because the boundary terms do not vanish [1]:

$$
\begin{aligned}
\left\langle-\mathrm{i} \partial_{x} \psi, \varphi\right\rangle & \stackrel{[1]}{=}+\mathrm{i} \int_{0}^{+\infty} \mathrm{d} x \overline{\partial_{x} \psi(x)} \varphi(x) \\
& \stackrel{[1]}{=}+\mathrm{i}[\overline{\psi(x)} \varphi(x)]_{0}^{+\infty}-\mathrm{i} \int_{0}^{+\infty} \mathrm{d} x \overline{\psi(x)} \partial_{x} \varphi(x) \\
& \stackrel{[1]}{=}-\mathrm{i} \overline{\psi(0)} \varphi(0)+\left\langle\psi,-\mathrm{i} \partial_{x} \varphi\right\rangle
\end{aligned}
$$

(vi) We need to ensure $\psi(0)=0[1]$, so $\mathcal{D}:=\left\{\psi \in \mathcal{C}_{c}^{\infty}([0,+\infty)) \mid \psi(0)=0\right\}$ will do [1].
(vii) No, the adjoint $\left(T_{t}^{*} \psi\right)=\psi(x+t)$ is not norm-preserving [1], and hence, not unitary [1]. (For instance, if we fix $t>0$ and pick $0 \neq \varphi \in L^{2}([0,+\infty))$ so that $\varphi(x)$ is 0 almost everywhere as long as $x \geq t$, then $T_{t}^{*} \varphi=0$.) Thus, $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ cannot be extended to a unitary evolution group [1].

## 17. Convergence of operators ( 20 points)

Consider the following sequences $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ of operators on the Hilbert space

$$
\ell^{2}(\mathbb{N})=\left\{\left.a \equiv\left(a_{n}\right)_{n \in \mathbb{N}}\left|\sum_{n=1}^{\infty}\right| a_{n}\right|^{2}<\infty\right\}
$$

and investigate whether they converge in norm, strongly or weakly:
(i) $T_{n}(a):=\left(\frac{1}{n} a_{1}, \frac{1}{n} a_{2}, \ldots\right)$
(ii) $T_{n}(a):=(\underbrace{0, \ldots, 0}_{n \text { places }}, a_{n+1}, a_{n+2}, \ldots)$
(iii) $T_{n}(a):=(\underbrace{0, \ldots, 0}_{n \text { places }}, a_{1}, a_{2}, \ldots)$

## Solution:

(i) The sequence $T_{n}$ converges in norm/uniformly to $0 \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ [1], because

$$
\begin{equation*}
\left\|T_{n}(a)\right\|_{\ell^{2}(\mathbb{N})}=\frac{1}{n}\|a\|_{\ell^{2}(\mathbb{N})} \xrightarrow{n \rightarrow \infty} 0 \tag{1}
\end{equation*}
$$

and thus $\left\|T_{n}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}=1 / n$. The above equation also implies that $T_{n}$ converges to 0 also strongly and weakly [2], because

$$
\begin{equation*}
\left|\left\langle a, T_{n}(b)\right\rangle_{\ell^{2}(\mathbb{N})}\right| \leq\|a\|_{\ell^{2}(\mathbb{N})}\left\|T_{n}(b)\right\|_{\ell^{2}(\mathbb{N})} \xrightarrow{n \rightarrow \infty} 0 \tag{1}
\end{equation*}
$$

(ii) For a fixed $a \in \ell^{2}(\mathbb{N})$, we have

$$
\begin{equation*}
\left\|T_{n}(a)\right\|_{\ell^{2}(\mathbb{N})} \stackrel{[1]}{=} \sum_{j=1}^{\infty}\left|\left(T_{n}(a)\right)_{j}\right|^{2}=\sum_{j=n+1}^{\infty}\left|a_{j}\right| \xrightarrow{n \rightarrow \infty} 0 \tag{1}
\end{equation*}
$$

and thus $T_{n}$ converges strongly (and weakly) to $0 \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ [2]. However, if $e_{n}:=\left(\delta_{j n}\right)_{j \in \mathbb{N}}=$ $(0, \ldots, 0,1,0, \ldots)$, we see that

$$
\left\|T_{n} e_{n+1}\right\|_{\ell^{2}(\mathbb{N})} \stackrel{[1]}{=} 1
$$

and thus $T_{n}$ does not converge to 0 in norm [1], because $\left\|T_{n}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \geq 1$ [1].
(iii) $T_{n}$ converges weakly to 0 [1]:

$$
\begin{aligned}
&\left|\left\langle a, T_{n}(b)\right\rangle_{\ell^{2}(\mathbb{N})}\right| \stackrel{[1]}{=}\left|\sum_{j=1}^{\infty} \overline{b_{j}}\left(T_{n}(a)\right)_{j}\right| \stackrel{[1]}{=}\left|\sum_{j=n+1}^{\infty} \overline{b_{j}} a_{j-n}\right| \\
& \stackrel{[1]}{\leq}\left(\sum_{j=n+1}^{\infty}\left|b_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=n+1}^{\infty}\left|a_{j-n}\right|^{2}\right)^{1 / 2} \stackrel{[1]}{=}\left(\sum_{j=n+1}^{\infty}\left|b_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\right)^{1 / 2} \\
& \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

However, it does not converge strongly or in norm, because

$$
\left\|T_{n}(a)\right\|_{\ell^{2}(\mathbb{N})}^{2} \stackrel{[1]}{=} \sum_{j=n+1}^{\infty}\left|a_{j-n}\right|^{2} \stackrel{[1]}{=} \sum_{j=1}^{\infty}\left|a_{j}\right|^{2} \stackrel{[1]}{=}\|a\|_{\ell^{2}(\mathbb{N})}
$$

## 18. The resolvent (27 points)

Let $S, T \in \mathcal{B}(\mathcal{X})$ be operators on a Banach space $\mathcal{X}$ with resolvent sets $\rho(S)$ and $\rho(T)$. On these sets, the resolvents $(T-z)^{-1}$ and $(S-z)^{-1}$ exist as bounded operators.
(i) Prove the first resolvent identity, i. e. that for any $z, z^{\prime} \in \rho(T)$ we have

$$
(T-z)^{-1}-\left(T-z^{\prime}\right)^{-1}=\left(z-z^{\prime}\right)(T-z)^{-1}\left(T-z^{\prime}\right)^{-1} .
$$

(ii) Prove the second resolvent identity, i. e. that for any $z \in \rho(T) \cap \rho(S)$ we have

$$
(T-z)^{-1}-(S-z)^{-1}=(T-z)^{-1}(T-S)(S-z)^{-1} .
$$

(iii) Prove that if $\|T\|<1$, then the geometric series $\sum_{n=0}^{\infty} T^{n}$ exists in $\mathcal{B}(\mathcal{X})$ and equals $(\mathrm{id}-T)^{-1}$.
(iv) Show that the resolvent set $\rho(T) \subseteq \mathbb{C}$ is open and the resolvent is $z \mapsto(T-z)^{-1}$ is analytic on $\rho(T)$, meaning locally there exists a power series expansion of $(T-z)^{-1}$ which converges in operator norm.
(v) Show that the spectrum $\sigma(T) \subseteq \mathbb{C}$ is closed.

## Solution:

(i) If we multiply the left-hand side with $T-z$ from the left and $T-z^{\prime}$ from the right [1], we get

$$
(T-z)\left((T-z)^{-1}-\left(T-z^{\prime}\right)^{-1}\right)\left(T-z^{\prime}\right) \stackrel{[1]}{=}\left(T-z^{\prime}\right)-(T-z) \stackrel{[1]}{=} z-z^{\prime}
$$

Evidently, this is equivalent to the first resolvent identity.
(ii) We again multiply with $T-z$ from the left and $S-z$ from the right [1], and obtain

$$
(T-z)\left((T-z)^{-1}-(S-z)^{-1}\right)(S-z) \stackrel{[1]}{=}(S-z)-(T-z) \stackrel{[1]}{=} S-T .
$$

(iii) First of all, the sequence of partial sums $S_{N}:=\sum_{n=0}^{N} T^{n}$ is Cauchy [1], because for $N>M$

$$
\left\|S_{N}-S_{M}\right\|=\left\|\sum_{n=M+1}^{N} T^{n}\right\|\left\|^{[1]} \sum_{n=M+1}^{N}\right\| T \|^{n}
$$

and the right-hand side is finite since $\|T\|<1$ [1], and goes to 0 as $N, M \rightarrow \infty$ [1]. By the completeness of $\mathcal{B}(\mathcal{X})$ (Proposition 4.1.4) [1], the sequence of partial sums $S_{N}$ converges to some $S \in \mathcal{B}(\mathcal{X})[1]$. To show $S=(\mathrm{id}-T)^{-1}$, we compute

$$
\begin{aligned}
(\mathrm{id}-T) S & \stackrel{[1]}{=} \lim _{N \rightarrow \infty}(\mathrm{id}-T) \sum_{n=0}^{N} T^{n} \\
& \stackrel{[1]}{=} \lim _{N \rightarrow \infty}\left(\mathrm{id}-T^{N+1}\right) \stackrel{[1]}{=} \mathrm{id.}
\end{aligned}
$$

(iv) Let $z_{0} \in \rho(T)$. We first show that there exists an $\varepsilon>0$ such that $\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|<\varepsilon\right\} \subseteq \rho(T)\right.$. Pick $0<\varepsilon<\left\|\left(T-z_{0}\right)^{-1}\right\|^{-1}[1]$. Then

$$
(T-z) \stackrel{[1]}{=}\left(T-z_{0}\right)\left(\mathrm{id}-\left(z-z_{0}\right)\left(T-z_{0}\right)^{-1}\right)
$$

is invertible [1], because $\left(T-z_{0}\right)^{-1}$ exists and in view of

$$
\left\|\left(z-z_{0}\right)\left(T-z_{0}\right)^{-1}\right\|<\varepsilon\left\|\left(T-z_{0}\right)^{-1}\right\| \stackrel{[1]}{<} 1
$$

(iii) tells us that also the second term in the product is invertible [1]. That means $\rho(T)$ is open [1].
(iii) also gives us an explicit expression for the power series of the resolvent in this neighborhood,

$$
(T-z)^{-1} \stackrel{[1]}{=}\left(\mathrm{id}-\left(z-z_{0}\right)\left(T-z_{0}\right)^{-1}\right)^{-1}\left(T-z_{0}\right)^{-1} \stackrel{[1]}{=} \sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}\left(T-z_{0}\right)^{-(n+1)}
$$

Hence, $(T-z)^{-1}$ is analytic in a vicinity of $z_{0}$ [1], and since the point was chosen arbitrarily, the resolvent is in fact analytic on all of $\rho(T)$ [1].
(v) Since $\rho(T)$ is open by (iv) [1], its complement in $\mathbb{C}$, the spectrum $\sigma(T)$, is closed [1].

## 19. Symmetric operators (17 points)

Let $H=\frac{1}{2 m}\left(-\mathrm{i} \nabla_{x}\right)^{2}+V$ be a Hamilton operator with potential $V \in \mathcal{C}\left(\mathbb{R}^{3}, \mathbb{R}\right)$.
Define the smooth functions with compact support as

$$
\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right):=\left\{\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{C} \mid \varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}\right), \text { supp } \varphi \text { compact }\right\} .
$$

(i) Prove $\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right) \subset L^{2}\left(\mathbb{R}^{3}\right)$.
(ii) Show that $H$ is symmetric on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, i. e. that

$$
\langle\varphi, H \psi\rangle=\langle H \varphi, \psi\rangle
$$

holds for all $\varphi, \psi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$.

## Solution:

(i) Every smooth function with compact support is square-integrable: let $\varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, then there exists a compact subset $K \subset \mathbb{R}^{3}$, so that

$$
\begin{equation*}
\operatorname{supp} \varphi=\overline{\left\{x \in \mathbb{R}^{3} \mid \varphi(x) \neq 0\right\}} \subseteq K \tag{1}
\end{equation*}
$$

Since $\varphi$ is also continuous, we can estimate the supremum from above by

$$
\begin{equation*}
\|\varphi\|_{\infty}=\sup _{x \in \mathbb{R}^{3}}|\varphi(x)|=\sup _{x \in K}|\varphi(x)|<\infty \tag{1}
\end{equation*}
$$

Hence, we obtain

$$
\|\varphi\|^{2}=\int_{\mathbb{R}^{3}} \mathrm{~d} x|\varphi(x)|^{2} \stackrel{[1]}{=} \int_{K} \mathrm{~d} x|\varphi(x)|^{2} \stackrel{[1]}{\leq}|K|\left(\sup _{x \in K}|\varphi(x)|^{2}<\infty .\right.
$$

(ii) We will treat kinetic and potential energy separately: clearly, derivatives map $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ into itself, and thus $\left(-\mathrm{i} \nabla_{x}\right)^{2} \varphi \in L^{2}\left(\mathbb{R}^{3}\right)[1]$. Fix $\varphi, \psi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$. Then there exists a compact set $K \subset \mathbb{R}^{3}$ whose interior contains $\operatorname{supp} \varphi$ and $\operatorname{supp} \psi[1]$. Then we compute using repeated partial integration

$$
\begin{aligned}
&\left\langle\varphi, \frac{1}{2 m}\left(-\mathrm{i} \nabla_{x}\right)^{2} \psi\right\rangle=\sum_{j=1}^{3} \frac{1}{2 m}\left\langle\varphi,\left(-\mathrm{i} \partial_{x_{j}}\right)^{2} \psi\right\rangle \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)}\left(\left(-\mathrm{i} \partial_{x_{j}}\right)^{2} \psi\right)(x) \\
& \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{K} \mathrm{~d} x \overline{\varphi(x)}\left(\left(-\mathrm{i} \partial_{x_{j}}\right)^{2} \psi\right)(x) \\
& \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{\partial K} \mathrm{~d} S(x) \overline{\varphi(x)}\left((-\mathbf{i})^{2} \partial_{x_{j}} \psi\right)(x)+ \\
& \stackrel{-}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{K} \mathrm{~d} x \overline{\partial_{x_{j}} \varphi(x)}\left((-\mathbf{i})^{2} \partial_{x_{j}} \psi\right)(x) \\
& 0-\sum_{j=1}^{3} \frac{1}{2 m}(-\mathbf{i})^{2} \int_{\partial K} \mathrm{~d} S(x) \overline{\partial_{x_{j}} \varphi(x)} \psi(x)+ \\
&+\sum_{j=1}^{3} \frac{1}{2 m}(-\mathbf{i})^{2} \int_{K} \mathrm{~d} x \overline{\partial_{x_{j}}^{2} \varphi(x)} \psi(x)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{K} \mathrm{~d} x \overline{\left(\left(-\mathbf{i} \partial_{x_{j}}\right)^{2} \varphi\right)(x)} \psi(x) \\
& \stackrel{[1]}{=}\left\langle\frac{1}{2 m}\left(-\mathbf{i} \nabla_{x}\right)^{2} \varphi, \psi\right\rangle
\end{aligned}
$$

Here, $\mathrm{d} S(x)$ is the surface measure on $\partial K$. The boundary terms vanish, because $\varphi$ and $\psi$ as well as their derivatives vanish on $\partial K$.
Now to the potential energy: since $V$ is continuous, it is bounded on compact subsets. Choose any $\varphi, \psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. Then $V \varphi \in L^{2}\left(\mathbb{R}^{3}\right)[1]$ and hence,

$$
\begin{aligned}
&\langle\varphi, V \psi\rangle \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)}(V \psi)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)} V(x) \psi(x) \\
& \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{(V \varphi)(x)} \psi(x) \stackrel{[1]}{=}\langle V \varphi, \psi\rangle
\end{aligned}
$$

holds.

