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Homework Problems

16. Translation semigroup on L2
(
[0,+∞)

)
(24 points)

(i) Show that for t ≥ 0, the translation operator

(
Ttψ

)
(x) :=

{
0 t ∈ [0, t)

ψ(x− t) x ∈ [t,+∞)

preserves angles on L2
(
[0,+∞)

)
, i. e.

⟨
Ttψ, Ttφ

⟩
= ⟨ψ,φ⟩.

(ii) Compute the adjoint of Tt.
(iii) Show that {Tt}t∈[0,+∞) forms a semigroup, i. e. Tt1 Tt2 = Tt1+t2 holds for all t1, t2 ∈ [0,+∞)

and T0 = id.
(iv) Find the generator of {Tt}t∈[0,+∞).

(A formal computation ignoring domain questions suffices.)
(v) Is the generator of {Tt}t∈[0,+∞) symmetric on C∞

c
(
[0,+∞)

)
? Justify your answer.

(vi) Find a domain such that the generator of {Tt}t∈[0,+∞) is symmetric.
(vii) Can {Tt}t∈[0,+∞) be extended to a unitary evolution group? Justify your answer.

Solution:

(i) For ψ,φ ∈ L2
(
[0,+∞)

)
we compute

⟨
Ttψ, Ttφ

⟩ [1]
=

∫ +∞

0
dx
(
Ttψ

)
(x)
(
Ttφ
)
(x)

[1]
=

∫ t

0
dx 0 +

∫ +∞

t
dxψ(x− t)φ(x− t)

[1]
=

∫ +∞

0
dxψ(x)φ(x) [1]

= ⟨ψ,φ⟩.

(ii) A quick computation reveals that the adjoint operator is (T ∗
yψ)(x) = ψ(x+ y) [1]:

⟨
Ttψ,φ

⟩ [1]
=

∫ +∞

0
dx
(
Ttψ

)
(x)φ(x)

[1]
=

∫ t

0
dx 0 +

∫ +∞

t
dxψ(x− t)φ(x)

[1]
=

∫ +∞

0
dxψ(x)φ(x+ t)

[1]
=
⟨
ψ, T ∗

t φ
⟩
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(iii) That T0 = id is clear from the definition. Pick t1, t2 ∈ [0,+∞) and ψ ∈ L2
(
[0,+∞)

)
. Then

we get from the definition

(
Tt1 Tt2ψ

)
(x)

[1]
=

{
0 x ∈ [0, t1)(
Tt2ψ

)
(x− t1) x ∈ [t1,+∞)

[1]
=


0 x ∈ [0, t1)

0 x ∈ [t1, t2)

ψ(x− t1 − t2) x ∈ [t1,+∞)

[1]
=
(
Tt1+t2ψ

)
(x).

(iv) For the purpose of the computation we may assume x > 0. The formally, we obtain

i ddt
(
Ttψ

)
(x)

∣∣∣∣
t=0

[1]
= i∂t

(
ψ(x− t)

)∣∣
t=0

[1]
= −i∂xψ(x− t)

∣∣
t=0

[1]
= −i∂xψ(x).

(v) The generator −i∂x is not symmetric on C∞
c
(
[0,+∞)

)
, because the boundary terms do not

vanish [1]:

⟨
−i∂xψ,φ

⟩ [1]
= +i

∫ +∞

0
dx ∂xψ(x)φ(x)

[1]
= +i

[
ψ(x)φ(x)

]+∞

0
− i
∫ +∞

0
dxψ(x) ∂xφ(x)

[1]
= −iψ(0)φ(0) +

⟨
ψ,−i∂xφ

⟩
(vi) We need to ensure ψ(0) = 0 [1], soD :=

{
ψ ∈ C∞

c
(
[0,+∞)

)
| ψ(0) = 0

}
will do [1].

(vii) No, the adjoint (T ∗
t ψ) = ψ(x+ t) is not norm-preserving [1], and hence, not unitary [1]. (For

instance, if we fix t > 0 and pick 0 ̸= φ ∈ L2
(
[0,+∞)

)
so that φ(x) is 0 almost everywhere as

long as x ≥ t, then T ∗
t φ = 0.) Thus, {Tt}t∈[0,+∞) cannot be extended to a unitary evolution

group [1].
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17. Convergence of operators (20 points)
Consider the following sequences {Tn}n∈N of operators on the Hilbert space

ℓ2(N) =
{
a ≡ (an)n∈N

∣∣ ∑∞
n=1|an|

2 <∞
}

and investigate whether they converge in norm, strongly or weakly:
(i) Tn(a) :=

(
1
na1,

1
na2, . . .

)
(ii) Tn(a) :=

(
0, . . . , 0︸ ︷︷ ︸
n places

, an+1, an+2, . . .
)

(iii) Tn(a) :=
(
0, . . . , 0︸ ︷︷ ︸
n places

, a1, a2, . . .
)

Solution:

(i) The sequence Tn converges in norm/uniformly to 0 ∈ B
(
ℓ2(N)

)
[1], because∥∥Tn(a)∥∥ℓ2(N) = 1

n ∥a∥ℓ2(N)
n→∞−−−→ 0, [1]

and thus
∥∥Tn∥∥B(ℓ2(N)) = 1/n. The above equation also implies that Tn converges to 0 also

strongly and weakly [2], because∣∣⟨a, Tn(b)⟩ℓ2(N)∣∣ ≤ ∥∥a∥∥ℓ2(N) ∥∥Tn(b)∥∥ℓ2(N) n→∞−−−→ 0 . [1]

(ii) For a fixed a ∈ ℓ2(N), we have

∥∥Tn(a)∥∥ℓ2(N) [1]
=

∞∑
j=1

∣∣(Tn(a))j∣∣2 = ∞∑
j=n+1

|aj |
n→∞−−−→ 0 , [1]

and thusTn converges strongly (andweakly) to 0 ∈ B
(
ℓ2(N)

)
[2]. However, if en := (δjn)j∈N =(

0, . . . , 0, 1, 0, . . .
)
, we see that ∥∥Tnen+1

∥∥
ℓ2(N)

[1]
= 1 ,

and thus Tn does not converge to 0 in norm [1], because ∥Tn∥B(ℓ2(N)) ≥ 1 [1].
(iii) Tn converges weakly to 0 [1]:∣∣∣⟨a, Tn(b)⟩ℓ2(N)∣∣∣ [1]=

∣∣∣∣∣
∞∑
j=1

bj
(
Tn(a)

)
j

∣∣∣∣∣ [1]=
∣∣∣∣∣

∞∑
j=n+1

bj aj−n

∣∣∣∣∣
[1]

≤

( ∞∑
j=n+1

|bj |2
)1/2( ∞∑

j=n+1

∣∣aj−n

∣∣2)1/2
[1]
=

( ∞∑
j=n+1

|bj |2
)1/2( ∞∑

j=1

|aj |2
)1/2

n→∞−−−→ 0. [1]

However, it does not converge strongly or in norm, because

∥∥Tn(a)∥∥2ℓ2(N) [1]
=

∞∑
j=n+1

∣∣aj−n

∣∣2 [1]
=

∞∑
j=1

|aj |2
[1]
= ∥a∥ℓ2(N) .
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18. The resolvent (27 points)
Let S, T ∈ B(X ) be operators on a Banach space X with resolvent sets ρ(S) and ρ(T ). On these
sets, the resolvents (T − z)−1 and (S − z)−1 exist as bounded operators.
(i) Prove the first resolvent identity, i. e. that for any z, z′ ∈ ρ(T ) we have

(T − z)−1 − (T − z′)−1 = (z − z′) (T − z)−1 (T − z′)−1.

(ii) Prove the second resolvent identity, i. e. that for any z ∈ ρ(T ) ∩ ρ(S) we have

(T − z)−1 − (S − z)−1 = (T − z)−1 (T − S) (S − z)−1.

(iii) Prove that if ∥T∥ < 1, then the geometric series
∑∞

n=0 T
n exists inB(X ) and equals (id−T )−1.

(iv) Show that the resolvent set ρ(T ) ⊆ C is open and the resolvent is z 7→ (T − z)−1 is analytic
on ρ(T ), meaning locally there exists a power series expansion of (T − z)−1 which converges
in operator norm.

(v) Show that the spectrum σ(T ) ⊆ C is closed.

Solution:

(i) If we multiply the left-hand side with T − z from the left and T − z′ from the right [1], we get

(T − z)
(
(T − z)−1 − (T − z′)−1

)
(T − z′)

[1]
= (T − z′)− (T − z)

[1]
= z − z′.

Evidently, this is equivalent to the first resolvent identity.
(ii) We again multiply with T − z from the left and S − z from the right [1], and obtain

(T − z)
(
(T − z)−1 − (S − z)−1

)
(S − z)

[1]
= (S − z)− (T − z)

[1]
= S − T.

(iii) First of all, the sequence of partial sums SN :=
∑N

n=0 T
n is Cauchy [1], because forN > M

∥∥SN − SM
∥∥ =

∥∥∥∥∥
N∑

n=M+1

Tn

∥∥∥∥∥ [1]

≤
N∑

n=M+1

∥T∥n

and the right-hand side is finite since ∥T∥ < 1 [1], and goes to 0 as N,M → ∞ [1]. By the
completeness of B(X ) (Proposition 4.1.4) [1], the sequence of partial sums SN converges to
some S ∈ B(X ) [1]. To show S = (id− T )−1, we compute

(id− T )S
[1]
= lim

N→∞
(id− T )

N∑
n=0

Tn

[1]
= lim

N→∞
(id− TN+1)

[1]
= id.

(iv) Let z0 ∈ ρ(T ). We first show that there exists an ε > 0 such that
{
z ∈ C | |z−z0| < ε

}
⊆ ρ(T ).

Pick 0 < ε <
∥∥(T − z0)

−1
∥∥−1 [1]. Then

(T − z)
[1]
= (T − z0)

(
id− (z − z0) (T − z0)

−1
)
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is invertible [1], because (T − z0)
−1 exists and in view of∥∥∥(z − z0) (T − z0)

−1
∥∥∥ < ε

∥∥(T − z0)
−1
∥∥ [1]
< 1

(iii) tells us that also the second term in the product is invertible [1]. That means ρ(T ) is open
[1].
(iii) also gives us an explicit expression for the power series of the resolvent in this neighbor-
hood,

(T − z)−1 [1]
=
(
id− (z − z0) (T − z0)

−1
)−1

(T − z0)
−1 [1]

=

∞∑
n=0

(z − z0)
n (T − z0)

−(n+1).

Hence, (T − z)−1 is analytic in a vicinity of z0 [1], and since the point was chosen arbitrarily,
the resolvent is in fact analytic on all of ρ(T ) [1].

(v) Since ρ(T ) is open by (iv) [1], its complement in C, the spectrum σ(T ), is closed [1].

5



19. Symmetric operators (17 points)
LetH = 1

2m(−i∇x)
2 + V be a Hamilton operator with potential V ∈ C(R3,R).

Define the smooth functions with compact support as

C∞
c (R3) :=

{
φ : R3 −→ C | φ ∈ C∞(R3), suppφ compact

}
.

(i) Prove C∞
c (R3) ⊂ L2(R3).

(ii) Show thatH is symmetric on C∞
c (R3), i. e. that⟨

φ,Hψ
⟩
=
⟨
Hφ,ψ

⟩
holds for all φ,ψ ∈ C∞

c (R3).

Solution:

(i) Every smooth functionwith compact support is square-integrable: letφ ∈ C∞
c (R3), then there

exists a compact subsetK ⊂ R3, so that

suppφ =
{
x ∈ R3 | φ(x) ̸= 0

}
⊆ K . [1]

Since φ is also continuous, we can estimate the supremum from above by

∥φ∥∞ = sup
x∈R3

|φ(x)| = sup
x∈K

|φ(x)| <∞ . [1]

Hence, we obtain

∥φ∥2 =
∫
R3

dx |φ(x)|2 [1]
=

∫
K
dx |φ(x)|2

[1]

≤ |K|
(
sup
x∈K

|φ(x)|
)2
<∞.

(ii) We will treat kinetic and potential energy separately: clearly, derivatives map C∞
c (R3) into

itself, and thus (−i∇x)
2φ ∈ L2(R3) [1]. Fix φ,ψ ∈ C∞

c (R3). Then there exists a compact
setK ⊂ R3 whose interior contains suppφ and suppψ [1]. Then we compute using repeated
partial integration

⟨
φ, 1

2m(−i∇x)
2ψ
⟩
=

3∑
j=1

1

2m

⟨
φ, (−i∂xj )

2ψ
⟩ [1]
=

3∑
j=1

1

2m

∫
R3

dxφ(x)
(
(−i∂xj )

2ψ
)
(x)

[1]
=

3∑
j=1

1

2m

∫
K
dxφ(x)

(
(−i∂xj )

2ψ
)
(x)

[1]
=

3∑
j=1

1

2m

∫
∂K

dS(x)φ(x)
(
(−i)2∂xjψ

)
(x)+

−
3∑

j=1

1

2m

∫
K
dx ∂xjφ(x)

(
(−i)2∂xjψ

)
(x)

[1]
= 0−

3∑
j=1

1

2m
(−i)2

∫
∂K

dS(x) ∂xjφ(x)ψ(x)+

+

3∑
j=1

1

2m
(−i)2

∫
K
dx ∂2xj

φ(x)ψ(x)

6



[1]
=

3∑
j=1

1

2m

∫
K
dx
(
(−i∂xj )

2φ
)
(x)ψ(x)

[1]
=
⟨

1
2m(−i∇x)

2φ,ψ
⟩

Here, dS(x) is the surface measure on ∂K. The boundary terms vanish, because φ and ψ as
well as their derivatives vanish on ∂K.
Now to the potential energy: since V is continuous, it is bounded on compact subsets. Choose
any φ,ψ ∈ C∞

c (R3). Then V φ ∈ L2(R3) [1] and hence,

⟨
φ, V ψ

⟩ [1]
=

∫
R3

dxφ(x)
(
V ψ
)
(x)

[1]
=

∫
R3

dxφ(x)V (x)ψ(x)

[1]
=

∫
R3

dx
(
V φ
)
(x)ψ(x)

[1]
=
⟨
V φ, ψ

⟩
holds.
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