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15. Direct sum of Banach spaces (5 points)
Assume X and Y are Banach spaces with norms ∥·∥X and ∥·∥Y . Show that the direct sum X ⊕ Y
defined as the product space X × Y equipped with

∥(x, y)∥X⊕Y := ∥x∥X + ∥y∥Y

is a Banach space.

Solution:
First of all, we need to verify that ∥·∥X⊕Y is a norm. Let us start with definiteness: if

∥(x, y)∥X⊕Y = ∥x∥X + ∥y∥Y = 0 ,

then ∥x∥X = 0 and ∥y∥Y = 0 which implies x = 0 and y = 0, i. e. (x, y) = 0 ∈ X × Y [1].
If λ ∈ C is a scalar, then

∥λ(x, y)∥X⊕Y =
∥∥(λx, λy)∥∥X⊕Y

= ∥λx∥X + ∥λy∥Y
= λ ∥x∥X + λ ∥y∥Y
= λ ∥(x, y)∥X⊕Y . [1]

Lastly, the triangle equality for ∥·∥X⊕Y follows from the triangle inequalities for ∥·∥X and ∥·∥Y :∥∥(x, y) + (x′, y′)
∥∥
X⊕Y =

∥∥(x+ x′, y + y′
)∥∥

X⊕Y

=
∥∥x+ x′

∥∥
X +

∥∥y + y′
∥∥
Y

≤ ∥x∥X + ∥x′∥X + ∥y∥Y + ∥y′∥Y
= ∥(x, y)∥X⊕Y +

∥∥(x′, y′)∥∥X⊕Y [1]

To verify that X ⊕ Y is complete, let zn = (xn, yn) be a Cauchy sequence with respect to ∥·∥X⊕Y .
Then also (xn) and (yn) are Cauchy sequences in X and Y , respectively, which converge to x0 ∈ X
and y0 ∈ Y [1]. Hence, (xn, yn) converges to (x0, y0), andX ⊕Y is complete, hence, a Banach space
[1].
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16. The convolution on L1(Rn) (12 points)
Define the convolution of f and g to be

f ∗ g(x) :=
∫
Rn

dy f(x− y) g(y).

Prove the following statements:
(i) f, g ∈ L1(Rn)⇒ f ∗ g ∈ L1(Rn)

(ii) f ∗ g = g ∗ f
(iii) (f ∗ g) ∗ h = f ∗ (g ∗ h)

Solution:

(i) To show that a function is in L1(Rn), we need to show that its L1-norm is finite [1]:

∥f ∗ g∥1
[1]
=

∫
Rn

dx
∣∣(f ∗ g)(x)

∣∣
=

∫
Rn

dx
∣∣∣∣∫

Rn

dy f(x− y) g(y)

∣∣∣∣
[1]

≤
∫
Rn

dx
∫
Rn

dy
∣∣f(x− y) g(y)

∣∣
[1]
=

∫
Rn

dx′
∣∣f(x′)∣∣ ∫

Rn

dy
∣∣g(y)∣∣

[1]
= ∥f∥1 ∥g∥1 < ∞

Hence, f ∗ g is integrable [1].
(ii) This follows from a simple change of variables:

f ∗ g(x) [1]
=

∫
Rn

dy f(x− y) g(y)

[1]
=

∫
Rn

dy′ f(y′) g(x− y′) = g ∗ f(x)

(iii) This follows from plugging in the definition, a change of variables and the fact that under
these circumstances, we may change the order of integration:

(
(f ∗ g) ∗ h

)
(x)

[1]
=

∫
Rn

dz (f ∗ g)(x− z)h(z)

[1]
=

∫
Rn

dz
∫
Rn

dy f(x− y − z) g(y)h(z)

[1]
=

∫
Rn

dz
∫
Rn

dy′ f(x− y′) g(y′ − z)h(z)

[1]
=

∫
Rn

dy′f(x− y′) (g ∗ h)(y′) =
(
f ∗ (g ∗ h)

)
(x)
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17. Exchanging limits and integration (25 points)

(i) Let g ∈ C1
(
R, L1(Rn)

)
a parameter-dependent function with values in L1(Rn) so that there

exists h ∈ L1(Rn) with
∣∣∂λg(λ, x)∣∣ ≤ h(x) for almost all x ∈ Rn and all λ ∈ R. Show that

differentiation with respect to λ and integration commute, i. e.

∂

∂λ

∫
Rn

dx g(λ, x) =
∫
Rn

dx ∂λg(λ, x) .

(ii) In addition to f ∈ L1(Rn) assume ∥x1 f∥1 < ∞. Then show that

(
i∂ξ1Ff

)
(ξ) =

1

(2π)n/2

∫
Rn

dx e−ix·ξ x1 f(x)

holds.
(iii) In addition to f, g ∈ L1(Rn) assume ∂x1f, ∂x1g ∈ L∞(Rn). Then show that

∂x1(f ∗ g) = ∂x1f ∗ g = f ∗ ∂x1g

holds.

Solution:

(i) The derivative of the integral can be written as differential quotient [1]: for λ ∈ R we have

∂λ

∫
Rn

dx g(λ, x) = lim
ε→0

1

ε

(∫
Rn

dx g(λ+ ε, x)−
∫
Rn

dx g(λ, x)
)

[1]
= lim

ε→0

∫
Rn

dx 1
ε

(
g(λ+ ε, x)− g(λ, x)

)
.

Using the Mean Value Theorem [1], we can estimate 1
ε

(
g(λ+ ε, x)− g(λ, x)

)
by the function

h. For almost all values of x, there exists λ0 ∈
(
λ− |ε| , λ+ |ε|

)
with

∣∣∣1ε(g(λ+ ε, x)− g(λ, x)
)∣∣∣ [1]

=
∣∣∂λg(λ0, x)

∣∣ [1]

≤ sup
λ∈R

∣∣∂λg(λ, x)∣∣ [1]

≤ h(x).

The upper bound h is independent of λ. Thus, the prerequisites of the Dominated Convergence
Theorem are satisfied [1], and we can exchange limit and integration,

lim
ε→0

∫
Rn

dx 1
ε

(
g(λ+ ε, x)− g(λ, x)

) [1]
=

∫
Rn

dx lim
ε→0

1
ε

(
g(λ+ ε, x)− g(λ, x)

)
[1]
=

∫
Rn

dx ∂λg(λ, x).

(ii) This is only a special case of (i): here, the dominating function is
∣∣x1 f(x)∣∣ (which is integrable

by assumption), ∣∣∣i∂ξ1(e−ix·ξ f(x)
)∣∣∣ [1]

=
∣∣x1 e−ix·ξ f(x)

∣∣ [1]

≤
∣∣x1 f(x)∣∣ ,
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and the bound is independent of ξ. Thus, by (i) ξ 7→ (Ff)(ξ) is continuously differentiable,
and we may interchange differentiation with respect to ξ and integration [1],

(
i∂ξ1Ff

)
(ξ)

[1]
= i∂ξ1

1

(2π)n/2

∫
Rn

dx e−ix·ξ f(x)

[1]
=

1

(2π)n/2

∫
Rn

dx i∂ξ1
(
e−ix·ξ f(x)

)
[1]
=

1

(2π)n/2

∫
Rn

dx e−ix·ξ x1 f(x)

=
(
F(x1 f)

)
(ξ) .

(iii) Pick an arbitrary x ∈ R. Writing the derivative as a limit,

d
dx(f ∗ g)(x) [1]

= lim
δ→0

(f ∗ g)(x+ δe1)− (f ∗ g)(x)
δ

[1]
= lim

δ→0

∫
R
dy 1

δ

(
f(x+ δe1 − y)− f(x− y)

)
g(y)

we see that we need to estimate 1
δ

(
f(x+ δe1 − y)− f(x− y)

)
the integrand [1]. Assume for

simplicity that δ > 0. Then the mean value theorem states that there exits x0 ∈ (x, x + δ)
with ∣∣∣1δ (f(x+ δe1 − y)− f(x− y)

)∣∣∣ [1]
=

∣∣f ′(x0 − y)
∣∣

[1]

≤ sup
x0∈Rn

∣∣f ′(x0 − y)
∣∣ = C < ∞.

Hence, we can estimate the integrand by a constant times the integrable function g [1],

∣∣1
δ

(
f(x+ δe1 − y)− f(x− y)

)
g(y)

∣∣ [1]

≤ sup
x∈Rn

∣∣f ′(x)
∣∣ ∣∣g(y)∣∣ = C

∣∣g(y)∣∣.
Thus, Dominated Convergence applies and we can interchange the limit and differentiation
[1],

lim
δ→0

∫
R
dy 1

δ

(
f(x+ δe1 − y)− f(x− y)

)
g(y) =

[1]
=

∫
R
dy lim

δ→0

1
δ

(
f(x+ δe1 − y)− f(x− y)

)
g(y)

[1]
=

∫
R
dy ∂x1f(x− y) g(y) =

(
∂x1f ∗ g

)
(x).

Using f ∗ g = g ∗ f , we may exchange the roles of f and g so that also ∂x1f ∗ g = f ∗ ∂x1g [1].
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18. Solving the heat equation using the convolution (22 points)
Consider the heat equation

∂tu(t, x) = D∂2
xu(t, x), u(0, x) = f(x), (1)

on R forD > 0. We will always assume f ∈ L1(R). For t > 0, define the function

G(t, x) :=
1√
4πDt

e−
x2

4Dt .

(i) Show that u(t) is integrable, i. e. u(t) ∈ L1(R) holds for all t ∈ R.
(ii) Show that the function u(t) := G(t) ∗ f solves (1).

(You may use lim
t↘0

G(t) ∗ f = f for all f ∈ L1(Rn) without proof.)

(iii) Show that for any t > 0, the solution u(t) is smooth in x.
(iv) Show that for any x ∈ R, lim

t→∞
u(t, x) = 0.

Solution:

(i) From problem 11 on sheet 4, we know that

∥G(t)∥1 =
∫
R
dx 1√

4πDt
e−

x2

4Dt = 1 [1]

for all t > 0 so that G(t) ∈ L1(R) [1]. Hence, by problem 16 (i) and f ∈ L1(R), the function
u(t) = G(t) ∗ f ∈ L1(R) is integrable as the convolution of two L1-functions [1].

(ii) From problem 15 and 16, we know that

∂tu(t)
[1]
=

(
∂tG(t)

)
∗ f

and

∂2
x

(
G(t) ∗ f

) [1]
=

(
∂2
xG(t)

)
∗ f

hold. Thus, all we need to compute are derivatives of G(t). Let us start with the time deriva-
tive:

∂tG(t, x) =
1√
4πD

(
−1

2
t−

3/2 + t−
1/2

(
− x2

4D

) (
−t−2

))
e−

x2

4Dt

[1]
=

1√
4πDt

(
− 1

2t
+

x2

4Dt2

)
e−

x2

4Dt

Computing the second derivative with respect to x is straight-forward, too:

∂xG(t, x)
[1]
= − 1√

4πDt

x

2Dt
e−

x2

4Dt

∂2
xG(t, x) =

∂

∂x

(
− 1√

4πDt

x

2Dt
e−

x2

4Dt

)
= − 1√

4πDt

1

2Dt
e−

x2

4Dt +
1√
4πDt

( x

2Dt

)2
e−

x2

4Dt

[1]
=

1√
4πDt

(
− 1

2Dt
+

x2

4D2t2

)
e−

x2

4Dt
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Hence, we compare the two and find that, up to a factor ofD,

∂tG(t) = D∂2
xG(t) .

Consequently, u(t) = G(t) ∗ f solves the heat equation,

∂tu(t, x) = ∂t
(
G(t) ∗ f

)
(x)

[1]
=

(
∂tG(t) ∗ f

)
(x)

[1]
= D

(
∂2
xG(t) ∗ f

)
(x)

[1]
= D∂2

xu(t, x).

Moreover, it satisfies the initial condition as

u(0) = lim
t↘0

u(t) = lim
t↘0

G(t) ∗ f = f. [1]

(iii) Seeing asG(t) is smooth in x [1] and all derivatives are bounded, because they are of the form

∂n
x = pn(x) e−

x2

4Dt

where pn is a polynomial in x [1]. Hence, by problem 16, ∂n
xG(t) ∗ f exists in L1(R) [1] and

u(t) is smooth in x for any t > 0 [1].
(iv) We note that the integrand of

u(t, x) =
(
G(t) ∗ f

)
(x) =

∫
R
dy 1√

4πDt
e−

(x−y)2

4Dt f(y)

is bounded by ∣∣∣∣ 1√
4πDt

e−
(x−y)2

4Dt f(y)

∣∣∣∣ [1]

≤ 1√
4πDt

∣∣f(y)∣∣ [1]

≤ 1√
4πDT

∣∣f(y)∣∣.
This estimate is independent of x and t as long as t > T . The right-hand side is integrable for
all t > 0 and goes to 0 pointwise as t → ∞ [1]. Thus, Dominated Convergence yields [1]

lim
t→∞

u(t, x) = lim
t→∞

∫
R
dy 1√

4πDt
e−

(x−y)2

4Dt f(y)

[1]
=

∫
R
dy lim

t→∞

1√
4πDt

e−
(x−y)2

4Dt f(y)
[1]
= 0.
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