Unitary Evolution Group, Resolvents \& Symmetric Operators

Homework Problems

16. Translation semigroup on $L^{2}([0,+\infty))$
(i) Show that for $t \geq 0$, the translation operator

$$
\left(T_{t} \psi\right)(x):= \begin{cases}0 & t \in[0, t) \\ \psi(x-t) & x \in[t,+\infty)\end{cases}
$$

preserves angles on $L^{2}([0,+\infty))$, i. e. $\left\langle T_{t} \psi, T_{t} \varphi\right\rangle=\langle\psi, \varphi\rangle$.
(ii) Compute the adjoint of T_{t}.
(iii) Show that $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ forms a semigroup, i. e. $T_{t_{1}} T_{t_{2}}=T_{t_{1}+t_{2}}$ holds for all $t_{1}, t_{2} \in[0,+\infty)$ and $T_{0}=\mathrm{id}$.
(iv) Find the generator of $\left\{T_{t}\right\}_{t \in[0,+\infty)}$.
(A formal computation ignoring domain questions suffices.)
(v) Is the generator of $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ symmetric on $\mathcal{C}_{c}^{\infty}([0,+\infty))$? Justify your answer.
(vi) Find a domain such that the generator of $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ is symmetric.
(vii) Can $\left\{T_{t}\right\}_{t \in[0,+\infty)}$ be extended to a unitary evolution group? Justify your answer.

17. Convergence of operators

Consider the following sequences $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ of operators on the Hilbert space

$$
\ell^{2}(\mathbb{N})=\left\{\left.a \equiv\left(a_{n}\right)_{n \in \mathbb{N}}\left|\sum_{n=1}^{\infty}\right| a_{n}\right|^{2}<\infty\right\}
$$

and investigate whether they converge in norm, strongly or weakly:
(i) $T_{n}(a):=\left(\frac{1}{n} a_{1}, \frac{1}{n} a_{2}, \ldots\right)$
(ii) $T_{n}(a):=(\underbrace{0, \ldots, 0}_{n \text { places }}, a_{n+1}, a_{n+2}, \ldots)$
(iii) $T_{n}(a):=(\underbrace{0, \ldots, 0}_{n \text { places }}, a_{1}, a_{2}, \ldots)$
18. The resolvent

Let $S, T \in \mathcal{B}(\mathcal{X})$ be operators on a Banach space \mathcal{X} with resolvent sets $\rho(S)$ and $\rho(T)$. On these sets, the resolvents $(T-z)^{-1}$ and $(S-z)^{-1}$ exist as bounded operators.
(i) Prove the first resolvent identity, i. e. that for any $z, z^{\prime} \in \rho(T)$ we have

$$
(T-z)^{-1}-\left(T-z^{\prime}\right)^{-1}=\left(z-z^{\prime}\right)(T-z)^{-1}\left(T-z^{\prime}\right)^{-1}
$$

(ii) Prove the second resolvent identity, i. e. that for any $z \in \rho(T) \cap \rho(S)$ we have

$$
(T-z)^{-1}-(S-z)^{-1}=(T-z)^{-1}(T-S)(S-z)^{-1}
$$

(iii) Prove that if $\|T\|<1$, then the geometric series $\sum_{n=0}^{\infty} T^{n}$ exists in $\mathcal{B}(\mathcal{X})$ and equals $(\mathrm{id}-T)^{-1}$.
(iv) Show that the resolvent set $\rho(T) \subseteq \mathbb{C}$ is open and the resolvent is $z \mapsto(T-z)^{-1}$ is analytic on $\rho(T)$, meaning locally there exists a power series expansion of $(T-z)^{-1}$ which converges in operator norm.
(v) Show that the spectrum $\sigma(T) \subseteq \mathbb{C}$ is closed.

19. Symmetric operators

Let $H=\frac{1}{2 m}\left(-\mathbf{i} \nabla_{x}\right)^{2}+V$ be a Hamilton operator with potential $V \in \mathcal{C}\left(\mathbb{R}^{3}, \mathbb{R}\right)$.
Define the smooth functions with compact support as

$$
\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right):=\left\{\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{C} \mid \varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}\right), \text { supp } \varphi \text { compact }\right\} .
$$

(i) Prove $\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right) \subset L^{2}\left(\mathbb{R}^{3}\right)$.
(ii) Show that H is symmetric on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, i. e. that

$$
\langle\varphi, H \psi\rangle=\langle H \varphi, \psi\rangle
$$

holds for all $\varphi, \psi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$.

