

# Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 5 (2014.10.10)

## Unitary Evolution Group, Resolvents & Symmetric Operators

### **Homework Problems**

### 16. Translation semigroup on $L^2([0,+\infty))$

(i) Show that for  $t \ge 0$ , the translation operator

$$(T_t\psi)(x) := \begin{cases} 0 & t \in [0,t) \\ \psi(x-t) & x \in [t,+\infty) \end{cases}$$

preserves angles on  $L^2([0, +\infty))$ , i. e.  $\langle T_t \psi, T_t \varphi \rangle = \langle \psi, \varphi \rangle$ .

- (ii) Compute the adjoint of  $T_t$ .
- (iii) Show that  $\{T_t\}_{t\in[0,+\infty)}$  forms a semigroup, i. e.  $T_{t_1}T_{t_2} = T_{t_1+t_2}$  holds for all  $t_1, t_2 \in [0,+\infty)$ and  $T_0 = \text{id}$ .
- (iv) Find the generator of  $\{T_t\}_{t\in[0,+\infty)}$ . (A formal computation ignoring domain questions suffices.)
- (v) Is the generator of  $\{T_t\}_{t\in[0,+\infty)}$  symmetric on  $\mathcal{C}^{\infty}_{c}([0,+\infty))$ ? Justify your answer.
- (vi) Find a domain such that the generator of  $\{T_t\}_{t\in[0,+\infty)}$  is symmetric.
- (vii) Can  $\{T_t\}_{t \in [0,+\infty)}$  be extended to a unitary evolution group? Justify your answer.

### 17. Convergence of operators

Consider the following sequences  $\{T_n\}_{n\in\mathbb{N}}$  of operators on the Hilbert space

$$\ell^2(\mathbb{N}) = \left\{ a \equiv (a_n)_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\}$$

and investigate whether they converge in norm, strongly or weakly:

(i) 
$$T_n(a) := \left(\frac{1}{n}a_1, \frac{1}{n}a_2, \ldots\right)$$
  
(ii)  $T_n(a) := \left(\underbrace{0, \ldots, 0}_{n \text{ places}}, a_{n+1}, a_{n+2}, \ldots\right)$   
(iii)  $T_n(a) := \left(\underbrace{0, \ldots, 0}_{n \text{ places}}, a_1, a_2, \ldots\right)$ 

### 18. The resolvent

Let  $S, T \in \mathcal{B}(\mathcal{X})$  be operators on a Banach space  $\mathcal{X}$  with resolvent sets  $\rho(S)$  and  $\rho(T)$ . On these sets, the *resolvents*  $(T-z)^{-1}$  and  $(S-z)^{-1}$  exist as bounded operators.

(i) Prove the first resolvent identity, i. e. that for any  $z, z' \in \rho(T)$  we have

$$(T-z)^{-1} - (T-z')^{-1} = (z-z')(T-z)^{-1}(T-z')^{-1}$$

(ii) Prove the second resolvent identity, i. e. that for any  $z \in \rho(T) \cap \rho(S)$  we have

$$(T-z)^{-1} - (S-z)^{-1} = (T-z)^{-1} (T-S) (S-z)^{-1}$$

- (iii) Prove that if ||T|| < 1, then the geometric series  $\sum_{n=0}^{\infty} T^n$  exists in  $\mathcal{B}(\mathcal{X})$  and equals  $(\mathrm{id}-T)^{-1}$ .
- (iv) Show that the resolvent set  $\rho(T) \subseteq \mathbb{C}$  is open and the resolvent is  $z \mapsto (T-z)^{-1}$  is analytic on  $\rho(T)$ , meaning locally there exists a power series expansion of  $(T-z)^{-1}$  which converges in operator norm.
- (v) Show that the spectrum  $\sigma(T) \subseteq \mathbb{C}$  is closed.

### **19.** Symmetric operators

Let  $H = \frac{1}{2m}(-i\nabla_x)^2 + V$  be a Hamilton operator with potential  $V \in \mathcal{C}(\mathbb{R}^3, \mathbb{R})$ . Define the smooth functions with compact support as

$$\mathcal{C}^\infty_{\rm c}(\mathbb{R}^3) := \big\{ \varphi : \mathbb{R}^3 \longrightarrow \mathbb{C} \mid \varphi \in \mathcal{C}^\infty(\mathbb{R}^3), \text{ supp } \varphi \text{ compact} \big\}.$$

- (i) Prove  $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{3}) \subset L^{2}(\mathbb{R}^{3})$ .
- (ii) Show that *H* is *symmetric* on  $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$ , i. e. that

$$\left\langle \varphi, H\psi \right\rangle = \left\langle H\varphi, \psi \right\rangle$$

holds for all  $\varphi, \psi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$ .

Hand in home work on: Friday, 17 October 2014, before class