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20. Equivalent conditions for unitarity (19 points)
Prove the following statements:
(i) LetH be a Hilbert space overC andA ∈ B(H). If ⟨Aφ,φ⟩ = 0 holds for allφ ∈ H, thenA = 0.

Hint: Consider the linear combination λφ+ µψ for various values of λ, µ ∈ C.
(ii) LetH1 andH2 be two Hilbert spaces and U ∈ B(H1,H2). Then the following are equivalent:

(1) U is unitary, i. e. U∗ = U−1 ∈ B(H2,H1).
(2) UH1 = H2 and ⟨φ,ψ⟩H1

= ⟨Uφ,Uψ⟩H2
for all φ,ψ ∈ H1.

(3) UH1 = H2 and ∥Uφ∥H2
= ∥φ∥H1

for all φ ∈ H1.
(iii) Give an example of a map U ∈ B(H1,H2) which is not unitary even though ⟨φ,ψ⟩H1

=
⟨Uφ,Uψ⟩H2

is satisfied for all φ,ψ ∈ H1. Why does that example not contradict the equiva-
lences from (ii)?

Solution:

(i) By the assumption, we have

0
[1]
=

⟨
A
(
λφ+ µψ

)
,
(
λφ+ µψ

)⟩
− |λ|2 ⟨Aφ,φ⟩ − |µ|2 ⟨Aψ,ψ⟩

[1]
= λµ ⟨Aφ,ψ⟩+ λµ ⟨Aψ,φ⟩

for all values of λ, µ ∈ C. Setting λ = 1 = µ [1] yields

⟨Aφ,ψ⟩+ ⟨Aψ,φ⟩ [1]
= 0,

and choosing λ = i and µ = 1 [1] yields

i ⟨Aφ,ψ⟩ − i ⟨Aψ,φ⟩ [1]
= 0.

Therefore, we obtain two equations with two unknowns (⟨Aφ,ψ⟩ and ⟨Aψ,φ⟩), and solving
this system of equations yields ⟨Aφ,ψ⟩ = 0 for all φ,ψ ∈ H. This is the case if and only if
A = 0 [1].
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(ii) “(1)⇒ (2):” AssumeU is unitary. ThenU−1 ∈ B(H2,H1) immediately impliesUH1 = H2 [1],
and it follows from U∗ = U−1 that⟨

Uφ,Uψ
⟩
H2

[1]
=

⟨
U∗Uφ,ψ

⟩
H1

[1]
= ⟨φ,ψ⟩H1

,

and we have shown (2).
“(2)⇒ (3):” This is evident, just pick φ = ψ [1].
“(3)⇒ (1):” Suppose U satisfies UH1 = H2 and ∥Uφ∥H2

= ∥φ∥H1
for all φ ∈ H1. Then also

⟨
U∗Uφ,φ

⟩
H1

[1]
=

⟨
Uφ,Uφ

⟩
H2

[1]
= ⟨φ,φ⟩H1

holds true for all φ ∈ H1. Thus, we deduce U∗ U − idH1 = 0 with the help of (i) [1], and U is
unitary by definition [1].

(iii) Pick U = Tt, t > 0, on L2
(
[0,+∞)

)
as defined in problem 16 [1]. Then even though we

have
⟨
Ttφ, Ttψ

⟩
= ⟨φ,ψ⟩, the adjoint T ∗

t is not the inverse T−1
t [1]. However, this is not in

contradiction to (ii), because TtL2
(
[0,+∞)

)
⊊ L2

(
[0,+∞)

)
[1].
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21. Translations on the interval and its generator (17 points)
Consider the problem of translations on L2([0, 1]) and their generators from Chapter 4.3.2. We will
reuse all of the notation, e. g. Pmin is the operator−i∂x equipped with domain

Dmin :=
{
φ ∈ L2([0, 1]) | − i∂xφ ∈ L2([0, 1]), φ(0) = 0 = φ(1)

}
.

(i) Show that P ∗
min = Pmax.

(ii) Compute the deficiency indices for Pmin.
(iii) Show that Pϑ = P ∗

ϑ is selfadjoint.

Solution:

(i) Clearly, P ∗
min ⊆ Pmax, because −i∂xφ ∈ L2([0, 1]) is a necessary condition [1]. Now let ψ ∈

Dmin and φ ∈ Dmax. Then a quick computation reveals

⟨
φ,Pminψ

⟩ [1]
=

∫ 1

0
dxφ(x)

(
−i∂xψ

)
(x)

[1]
= −i

[
φ(x)ψ(x)

]1
0
+

∫ 1

0
dx

(
−i∂xφ

)
(x)ψ(x)

[1]
=

⟨
−i∂xφ,ψ

⟩ [1]
=

⟨
Pmaxφ,ψ

⟩
,

and ψ ∈ Dmin suffices to make the boundary terms vanish. Consequently, we have shown
P ∗
min = Pmax [1].

(ii) It is clear that−i∂xe±x = ∓ie±φ are the only two solutions (up to scalar multiples, of course)
[1], and that e±x ∈ L2([0, 1]) [1]. Moreover, φ± ∈ Dmax because their derivative are again L2

[1]. That meansN±(Pmin) = 1 ̸= 0 and ker
(
Pmin ± i

)
̸= {0} is non-trivial [1].

(iii) Clearly, as a symmetric operator, P ∗
ϑ is densely defined, and P ∗

ϑ ⊆ Pmax for the same reasons
as in (i) [1]. A computation analogous to that in (i) [1] reveals that D(P ∗

ϑ) must consist of
vectors so that

φ(0)ψ(0) = φ(1)ψ(1) = φ(1) e+iϑψ(0) [1]

holds for all ψ ∈ Dϑ [1]. Solving for the boundary condition of φ, we obtain φ(0) = e−iϑφ(1)
[1], and hence, φ ∈ Dϑ [1]. That means D(P ∗

ϑ) = Dϑ, and we have shown the selfadjointness
of P ∗

ϑ = Pϑ [1].
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22. Translations on the half line (18 points)
Consider the Hilbert space L2

(
[0,+∞)

)
.

(i) Show that there exists no selfadjoint extension ofP = −i∂xwithdomainD(P ) = C∞
c
(
(0,+∞)

)
.

(ii) Why does (i) imply that there cannot be a unitary evolution group associated to translations
on L2

(
[0,+∞)

)
?

Solution:

(i) We need to compute the deficiency indices: as before, the equation

−i∂xφ± = ∓iφ± [1]

has φ±(x) = e±x as its only non-trivial solution (up to a scalar multiple) [1]. However, only
φ−(x) = e−x ∈ L2

(
[0,+∞)

)
is square-integrable [1], so we already know ker

(
P ∗ + i

)
= {0}

andN+(P ) = 0 [1].
Now we need to check whether φ− ∈ D(P ∗) [1]: the domain of the adjoint is surely contained
in

Dmax
[1]
=

{
φ ∈ L2

(
[0,+∞)

) ∣∣ − i∂xφ ∈ L2
(
[0,+∞)

)}
.

A short computation reveals that this is indeed enough, andD(P ∗) = Dmax: let φ ∈ D(P ∗) =
Dmax and φ ∈ D(P ), then partial integration yields

⟨
φ,Pψ

⟩ [1]
=

∫ +∞

0
dxφ(x)

(
−i∂xψ

)
(x)

[1]
= −i

[
φ(x)ψ(x)

]1
0
+

∫ +∞

0
dx

(
−i∂xφ

)
(x)ψ(x)

[1]
=

⟨
−i∂xφ,ψ

⟩ [1]
=

⟨
P ∗φ,ψ

⟩
,

becauseψ(0) = 0 for all smooth functions whose compact support lies in the open set (0,+∞)
[1]. That means φ− ∈ D(P ∗) [1] andN−(P ) = dimker

(
P ∗ − i

)
= 1 [1].

Since N−(P ) = 1 ̸= 0 = N+(P ) [1], we deduce form Theorem 5.2.7 that there exists no
selfadjoint extension of P [1].

(ii) By Stone’s Theorem, unitary evolution groups are in one-to-one correspondence with selfad-
joint operators [1]. And since there exists no selfadjoint extension of P , one cannot define a
unitary evolution group of translations either [1].
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23. The radial part of the Laplace operator in d = 3 (19 points)
Consider the radial part of−∆x on L2(R3), the operator

Hrad = −1
2∂

2
r − 1

r∂r,

with domain C∞
c
(
(0,+∞)

)
on the Hilbert space L2

(
[0,+∞)

)
endowed with the scalar product

⟨φ,ψ⟩ =
∫ +∞

0
dr r2 φ(r)ψ(r).

(The factor r2 stems from
∫
R3

dx =

∫ 2π

0
dφ

∫ +π

−π
dϑ

∫ +∞

0
dr r2 sinϑ in spherical coordinates.)

(i) Show thatHrad is symmetric.
(ii) Find out whetherHrad is essentially selfadjoint.

Solution:

(i) All of the boundary terms in the following computation vanish [1], becauseφ,ψ ∈ C∞
c
(
(0,+∞)

)
are smooth, and their supports are compact and do not contain 0. Moreover, all the integrals
below exist. Then partially integrating twice yields

⟨
φ,Hradψ

⟩ [1]
= −1

2

∫ +∞

0
dr r2 φ(r)

(
∂2rψ(r) + 2r−1 ∂rψ(r)

)
[1]
= −1

2

[
r2 φ(r) ∂rψ(r) + 2r φ(r)ψ(r)

]+∞

0
+

+
1

2

∫ +∞

0
dr

(
∂r
(
r2 φ(r)

)
∂rψ(r) + ∂r

(
2r φ(r)

)
ψ(r)

)
[1]
=

1

2

∫ +∞

0
dr

(
2r φ(r) ∂rψ(r) + r2 ∂rφ(r) ∂rψ(r) + 2φ(r)ψ(r) + 2r ∂rφ(r)ψ(r)

)
[1]
=

1

2

[
2r φ(r)ψ(r) + r2 ∂rφ(r)ψ(r)

]+∞

0
+

− 1

2

∫ +∞

0
dr

(
∂r
(
2r φ(r)

)
+ ∂r

(
r2 ∂rφ(r)

)
− 2φ(r)− 2r ∂rφ(r)

)
ψ(r)

[1]
= −1

2

∫ +∞

0
dr r2

(
∂2rφ(r) + 2r−1 ∂rφ(r)

)
ψ(r)

[1]
=

⟨
Hradφ,ψ

⟩
.

Hence,Hrad is symmetric [1].
(ii) By the Fundamental Criterion, wehavehave to checkwhether the deficiency indicesN±(Hrad) =

0 are zero [1], i. e. we need to solve

−1
2∂

2
rφ± − r−1 ∂rφ± = ∓iφ±. [1]

These equations have the non-zero solutions

φ±(r)
[2]
=

e−(1∓i)r

r

which decay exponentially towards +∞ for both choices of sign [1]. Moreover, the 1/r sin-
gularity at r = 0 is neutralized by the factor r2 in the measure [1], and we deduce φ± ∈
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L2
(
[0,+∞)

)
[1]. It remains to show that φ± ∈ D(H∗

rad) [1]: a quick inspection of the calcula-
tion in (i) confirms that ψ ∈ C∞

c
(
(0,+∞)

)
is enough to make the boundary terms vanish [1],

and hence, φ± ∈ D(H∗
rad) holds.

That means N±(Hrad) ≥ 1 [1], and Hrad is not essentially selfadjoint by the Fundamental
criterion [1].

6


