Foundations of
 Quantum Mechanics
 (APM 421 H)

Selfadjoint Operators

Homework Problems

20. Equivalent conditions for unitarity (19 points)

Prove the following statements:
(i) Let \mathcal{H} be a Hilbert space over \mathbb{C} and $A \in \mathcal{B}(\mathcal{H})$. If $\langle A \varphi, \varphi\rangle=0$ holds for all $\varphi \in \mathcal{H}$, then $A=0$.

Hint: Consider the linear combination $\lambda \varphi+\mu \psi$ for various values of $\lambda, \mu \in \mathbb{C}$.
(ii) Let \mathcal{H}_{1} and \mathcal{H}_{2} be two Hilbert spaces and $U \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$. Then the following are equivalent:
(1) U is unitary, i. e. $U^{*}=U^{-1} \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$.
(2) $U \mathcal{H}_{1}=\mathcal{H}_{2}$ and $\langle\varphi, \psi\rangle_{\mathcal{H}_{1}}=\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}}$ for all $\varphi, \psi \in \mathcal{H}_{1}$.
(3) $U \mathcal{H}_{1}=\mathcal{H}_{2}$ and $\|U \varphi\|_{\mathcal{H}_{2}}=\|\varphi\|_{\mathcal{H}_{1}}$ for all $\varphi \in \mathcal{H}_{1}$.
(iii) Give an example of a map $U \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ which is not unitary even though $\langle\varphi, \psi\rangle_{\mathcal{H}_{1}}=$ $\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}}$ is satisfied for all $\varphi, \psi \in \mathcal{H}_{1}$. Why does that example not contradict the equivalences from (ii)?

Solution:

(i) By the assumption, we have

$$
\begin{aligned}
0 & \stackrel{[1]}{=}\langle A(\lambda \varphi+\mu \psi),(\lambda \varphi+\mu \psi)\rangle-|\lambda|^{2}\langle A \varphi, \varphi\rangle-|\mu|^{2}\langle A \psi, \psi\rangle \\
& \stackrel{[1]}{=} \bar{\lambda} \mu\langle A \varphi, \psi\rangle+\lambda \bar{\mu}\langle A \psi, \varphi\rangle
\end{aligned}
$$

for all values of $\lambda, \mu \in \mathbb{C}$. Setting $\lambda=1=\mu$ [1] yields

$$
\langle A \varphi, \psi\rangle+\langle A \psi, \varphi\rangle \stackrel{[1]}{=} 0
$$

and choosing $\lambda=\mathrm{i}$ and $\mu=1$ [1] yields

$$
\mathrm{i}\langle A \varphi, \psi\rangle-\mathrm{i}\langle A \psi, \varphi\rangle \stackrel{[1]}{=} 0
$$

Therefore, we obtain two equations with two unknowns $(\langle A \varphi, \psi\rangle$ and $\langle A \psi, \varphi\rangle)$, and solving this system of equations yields $\langle A \varphi, \psi\rangle=0$ for all $\varphi, \psi \in \mathcal{H}$. This is the case if and only if $A=0$ [1].
(ii) "(1) \Rightarrow (2):" Assume U is unitary. Then $U^{-1} \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ immediately implies $U \mathcal{H}_{1}=\mathcal{H}_{2}$ [1], and it follows from $U^{*}=U^{-1}$ that

$$
\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}} \stackrel{[1]}{=}\left\langle U^{*} U \varphi, \psi\right\rangle_{\mathcal{H}_{1}} \stackrel{[1]}{=}\langle\varphi, \psi\rangle_{\mathcal{H}_{1}}
$$

and we have shown (2).
" 2) $\Rightarrow(3):$: This is evident, just pick $\varphi=\psi[1]$.
"(3) $\Rightarrow(1)$:" Suppose U satisfies $U \mathcal{H}_{1}=\mathcal{H}_{2}$ and $\|U \varphi\|_{\mathcal{H}_{2}}=\|\varphi\|_{\mathcal{H}_{1}}$ for all $\varphi \in \mathcal{H}_{1}$. Then also

$$
\left\langle U^{*} U \varphi, \varphi\right\rangle_{\mathcal{H}_{1}} \stackrel{[1]}{=}\langle U \varphi, U \varphi\rangle_{\mathcal{H}_{2}} \stackrel{[1]}{=}\langle\varphi, \varphi\rangle_{\mathcal{H}_{1}}
$$

holds true for all $\varphi \in \mathcal{H}_{1}$. Thus, we deduce $U^{*} U-\mathrm{id}_{\mathcal{H}_{1}}=0$ with the help of (i) [1], and U is unitary by definition [1].
(iii) Pick $U=T_{t}, t>0$, on $L^{2}([0,+\infty))$ as defined in problem 16 [1]. Then even though we have $\left\langle T_{t} \varphi, T_{t} \psi\right\rangle=\langle\varphi, \psi\rangle$, the adjoint T_{t}^{*} is not the inverse T_{t}^{-1} [1]. However, this is not in contradiction to (ii), because $T_{t} L^{2}([0,+\infty)) \subsetneq L^{2}([0,+\infty))$ [1].

21. Translations on the interval and its generator (17 points)

Consider the problem of translations on $L^{2}([0,1])$ and their generators from Chapter 4.3.2. We will reuse all of the notation, e. g. $P_{\min }$ is the operator $-\mathrm{i} \partial_{x}$ equipped with domain

$$
\mathcal{D}_{\min }:=\left\{\varphi \in L^{2}([0,1]) \mid-\mathbf{i} \partial_{x} \varphi \in L^{2}([0,1]), \varphi(0)=0=\varphi(1)\right\} .
$$

(i) Show that $P_{\min }^{*}=P_{\max }$.
(ii) Compute the deficiency indices for $P_{\min }$.
(iii) Show that $P_{\vartheta}=P_{\vartheta}^{*}$ is selfadjoint.

Solution:

(i) Clearly, $P_{\min }^{*} \subseteq P_{\max }$, because $-\mathrm{i} \partial_{x} \varphi \in L^{2}([0,1])$ is a necessary condition [1]. Now let $\psi \in$ $\mathcal{D}_{\text {min }}$ and $\varphi \in \mathcal{D}_{\text {max }}$. Then a quick computation reveals

$$
\begin{aligned}
\left\langle\varphi, P_{\min } \psi\right\rangle & \stackrel{[1]}{=} \int_{0}^{1} \mathrm{~d} x \overline{\varphi(x)}\left(-\mathrm{i} \partial_{x} \psi\right)(x) \\
& \stackrel{[1]}{=}-\mathrm{i}[\overline{\varphi(x)} \psi(x)]_{0}^{1}+\int_{0}^{1} \mathrm{~d} x \overline{\left(-\mathrm{i} \partial_{x} \varphi\right)(x)} \psi(x) \\
& \stackrel{[1]}{=}\left\langle-\mathrm{i} \partial_{x} \varphi, \psi\right\rangle \stackrel{[1]}{=}\left\langle P_{\max } \varphi, \psi\right\rangle
\end{aligned}
$$

and $\psi \in \mathcal{D}_{\text {min }}$ suffices to make the boundary terms vanish. Consequently, we have shown $P_{\text {min }}^{*}=P_{\text {max }}[1]$.
(ii) It is clear that $-\mathrm{i} \partial_{x} \mathrm{e}^{ \pm x}=\mp \mathrm{i}^{ \pm \varphi}$ are the only two solutions (up to scalar multiples, of course) [1], and that $\mathrm{e}^{ \pm x} \in L^{2}([0,1])$ [1]. Moreover, $\varphi_{ \pm} \in \mathcal{D}_{\max }$ because their derivative are again L^{2} [1]. That means $N_{ \pm}\left(P_{\min }\right)=1 \neq 0$ and $\operatorname{ker}\left(P_{\min } \pm \mathbf{i}\right) \neq\{0\}$ is non-trivial [1].
(iii) Clearly, as a symmetric operator, P_{ϑ}^{*} is densely defined, and $P_{\vartheta}^{*} \subseteq P_{\max }$ for the same reasons as in (i) [1]. A computation analogous to that in (i) [1] reveals that $\mathcal{D}\left(P_{\vartheta}^{*}\right)$ must consist of vectors so that

$$
\begin{equation*}
\overline{\varphi(0)} \psi(0)=\overline{\varphi(1)} \psi(1)=\overline{\varphi(1)} \mathrm{e}^{+\mathrm{i} \vartheta} \psi(0) \tag{1}
\end{equation*}
$$

holds for all $\psi \in \mathcal{D}_{\vartheta}$ [1]. Solving for the boundary condition of φ, we obtain $\varphi(0)=\mathrm{e}^{-\mathrm{i} \vartheta} \varphi(1)$ [1], and hence, $\varphi \in \mathcal{D}_{\vartheta}$ [1]. That means $\mathcal{D}\left(P_{\vartheta}^{*}\right)=\mathcal{D}_{\vartheta}$, and we have shown the selfadjointness of $P_{\vartheta}^{*}=P_{\vartheta}$ [1].

22. Translations on the half line (18 points)

Consider the Hilbert space $L^{2}([0,+\infty))$.
(i) Show that there exists no selfadjoint extension of $P=-\mathrm{i} \partial_{x}$ with domain $\mathcal{D}(P)=\mathcal{C}_{\mathrm{c}}^{\infty}((0,+\infty))$.
(ii) Why does (i) imply that there cannot be a unitary evolution group associated to translations on $L^{2}([0,+\infty))$?

Solution:

(i) We need to compute the deficiency indices: as before, the equation

$$
\begin{equation*}
-\mathbf{i} \partial_{x} \varphi_{ \pm}=\mp \mathbf{i} \varphi_{ \pm} \tag{1}
\end{equation*}
$$

has $\varphi_{ \pm}(x)=\mathrm{e}^{ \pm x}$ as its only non-trivial solution (up to a scalar multiple) [1]. However, only $\varphi_{-}(x)=\mathrm{e}^{-x} \in L^{2}([0,+\infty))$ is square-integrable [1], so we already know $\operatorname{ker}\left(P^{*}+\mathrm{i}\right)=\{0\}$ and $N_{+}(P)=0$ [1].
Now we need to check whether $\varphi_{-} \in \mathcal{D}\left(P^{*}\right)$ [1]: the domain of the adjoint is surely contained in

$$
\mathcal{D}_{\max } \stackrel{[1]}{=}\left\{\varphi \in L^{2}([0,+\infty)) \mid-\mathrm{i} \partial_{x} \varphi \in L^{2}([0,+\infty))\right\} .
$$

A short computation reveals that this is indeed enough, and $\mathcal{D}\left(P^{*}\right)=\mathcal{D}_{\text {max }}$: let $\varphi \in \mathcal{D}\left(P^{*}\right)=$ $\mathcal{D}_{\text {max }}$ and $\varphi \in \mathcal{D}(P)$, then partial integration yields

$$
\begin{aligned}
\langle\varphi, P \psi\rangle & \stackrel{[1]}{=} \int_{0}^{+\infty} \mathrm{d} x \overline{\varphi(x)}\left(-\mathbf{i} \partial_{x} \psi\right)(x) \\
& \stackrel{[1]}{=}-\mathbf{i}[\overline{\varphi(x)} \psi(x)]_{0}^{1}+\int_{0}^{+\infty} \mathrm{d} x \overline{\left(-\mathbf{i} \partial_{x} \varphi\right)(x)} \psi(x) \\
& \stackrel{[1]}{=}\left\langle-\mathbf{i} \partial_{x} \varphi, \psi\right\rangle \stackrel{[1]}{=}\left\langle P^{*} \varphi, \psi\right\rangle
\end{aligned}
$$

because $\psi(0)=0$ for all smooth functions whose compact support lies in the open set $(0,+\infty)$ [1]. That means $\varphi_{-} \in \mathcal{D}\left(P^{*}\right)$ [1] and $N_{-}(P)=\operatorname{dim} \operatorname{ker}\left(P^{*}-\mathrm{i}\right)=1$ [1].
Since $N_{-}(P)=1 \neq 0=N_{+}(P)$ [1], we deduce form Theorem 5.2.7 that there exists no selfadjoint extension of P [1].
(ii) By Stone's Theorem, unitary evolution groups are in one-to-one correspondence with selfadjoint operators [1]. And since there exists no selfadjoint extension of P, one cannot define a unitary evolution group of translations either [1].
23. The radial part of the Laplace operator in $d=3$ (19 points)

Consider the radial part of $-\Delta_{x}$ on $L^{2}\left(\mathbb{R}^{3}\right)$, the operator

$$
H_{\mathrm{rad}}=-\frac{1}{2} \partial_{r}^{2}-\frac{1}{r} \partial_{r}
$$

with domain $\mathcal{C}_{c}^{\infty}((0,+\infty))$ on the Hilbert space $L^{2}([0,+\infty))$ endowed with the scalar product

$$
\langle\varphi, \psi\rangle=\int_{0}^{+\infty} \mathrm{d} r r^{2} \overline{\varphi(r)} \psi(r)
$$

(The factor r^{2} stems from $\int_{\mathbb{R}^{3}} \mathrm{~d} x=\int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{-\pi}^{+\pi} \mathrm{d} \vartheta \int_{0}^{+\infty} \mathrm{d} r r^{2} \sin \vartheta$ in spherical coordinates.)
(i) Show that $H_{\text {rad }}$ is symmetric.
(ii) Find out whether $H_{\text {rad }}$ is essentially selfadjoint.

Solution:

(i) All of the boundary terms in the following computation vanish [1], because $\varphi, \psi \in \mathcal{C}_{\mathrm{c}}^{\infty}((0,+\infty))$ are smooth, and their supports are compact and do not contain 0 . Moreover, all the integrals below exist. Then partially integrating twice yields

$$
\begin{aligned}
&\left\langle\varphi, H_{\mathrm{rad}} \psi\right\rangle \stackrel{[1]}{=}- \frac{1}{2} \int_{0}^{+\infty} \mathrm{d} r r^{2} \overline{\varphi(r)}\left(\partial_{r}^{2} \psi(r)+2 r^{-1} \partial_{r} \psi(r)\right) \\
& \stackrel{[1]}{=}-\frac{1}{2}\left[r^{2} \overline{\varphi(r)} \partial_{r} \psi(r)+2 r \overline{\varphi(r)} \psi(r)\right]_{0}^{+\infty}+ \\
&+\frac{1}{2} \int_{0}^{+\infty} \mathrm{d} r\left(\partial_{r}\left(r^{2} \overline{\varphi(r)}\right) \partial_{r} \psi(r)+\partial_{r}(2 r \overline{\varphi(r)}) \psi(r)\right) \\
& \stackrel{[1]}{=} \frac{1}{2} \int_{0}^{+\infty} \mathrm{d} r\left(2 r \overline{\varphi(r)} \partial_{r} \psi(r)+r^{2} \overline{\partial_{r} \varphi(r)} \partial_{r} \psi(r)+2 \overline{\varphi(r)} \psi(r)+2 r \overline{\partial_{r} \varphi(r)} \psi(r)\right) \\
& \stackrel{[1]}{=} \frac{1}{2}\left[2 r \overline{\varphi(r)} \psi(r)+r^{2} \overline{\partial_{r} \varphi(r)} \psi(r)\right]_{0}^{+\infty}+ \\
&-\frac{1}{2} \int_{0}^{+\infty} \mathrm{d} r\left(\partial_{r}(2 r \overline{\varphi(r)})+\partial_{r}\left(r^{2} \overline{\partial_{r} \varphi(r)}\right)-2 \overline{\varphi(r)}-2 r \overline{\partial_{r} \varphi(r)}\right) \psi(r) \\
& \stackrel{[1]}{=}-\frac{1}{2} \int_{0}^{+\infty} \mathrm{d} r r^{2}\left(\overline{\partial_{r}^{2} \varphi(r)}+2 r^{-1} \overline{\partial_{r} \varphi(r)}\right) \psi(r) \\
& \stackrel{[1]}{=}\langle \left.H_{\mathrm{rad}} \varphi, \psi\right\rangle .
\end{aligned}
$$

Hence, $H_{\text {rad }}$ is symmetric [1].
(ii) By the Fundamental Criterion, we have have to check whether the deficiency indices $N_{ \pm}\left(H_{\text {rad }}\right)=$ 0 are zero [1], i. e. we need to solve

$$
\begin{equation*}
-\frac{1}{2} \partial_{r}^{2} \varphi_{ \pm}-r^{-1} \partial_{r} \varphi_{ \pm}=\mp \mathbf{i} \varphi_{ \pm} \tag{1}
\end{equation*}
$$

These equations have the non-zero solutions

$$
\varphi_{ \pm}(r) \stackrel{[2]}{=} \frac{\mathrm{e}^{-(1 \mp \mathrm{i}) r}}{r}
$$

which decay exponentially towards $+\infty$ for both choices of sign [1]. Moreover, the $1 / r \sin -$ gularity at $r=0$ is neutralized by the factor r^{2} in the measure [1], and we deduce $\varphi_{ \pm} \in$
$L^{2}([0,+\infty))$ [1]. It remains to show that $\varphi_{ \pm} \in \mathcal{D}\left(H_{\text {rad }}^{*}\right)$ [1]: a quick inspection of the calculation in (i) confirms that $\psi \in \mathcal{C}_{c}^{\infty}((0,+\infty))$ is enough to make the boundary terms vanish [1], and hence, $\varphi_{ \pm} \in \mathcal{D}\left(H_{\text {rad }}^{*}\right)$ holds.
That means $N_{ \pm}\left(H_{\mathrm{rad}}\right) \geq 1$ [1], and $H_{\text {rad }}$ is not essentially selfadjoint by the Fundamental criterion [1].

