Differential Equations of
 Mathematical Physics

(APM 351 Y)

The Heat Equation \& Hilbert Spaces

Homework Problems

19. The heat equation on a ring (17 points)

Assume a circular ring of radius r has been lying in a heat bath with temperature distribution $T\left(x_{1}, x_{2}\right)=T_{0} \frac{x_{1}}{r}, T_{0}>0$, for a very long time.
At time $t=0$, the ring is removed from the heat bath, and for $t>0$ the temperature distribution $u(t, s)$, s being the arc length, satisfies the heat equation

$$
\partial_{t} u=a^{2} \partial_{s}^{2} u, \quad a>0
$$

(i) Compute $u(t, s)$ for $t>0$ using separation of variables. (Hint: Use $u(t, s) \in \mathbb{R}$ to simplify your arguments.)

(ii) After what time has the maximal difference in temperature decreased to the $1 /$ eth fraction of that at time $t=0$?

Solution:

(i) We first rewrite the initial condition in terms of the arc length $s=r \varphi$:

$$
f(s)=T\left(r \cos \frac{s}{r}, r \sin \frac{s}{r}\right)=T_{0} \frac{r \cos \frac{s}{r}}{r} \stackrel{[1]}{=} T_{0} \cos \frac{s}{r}
$$

If we identify the circle of radius r with the interval $[0,2 \pi r]$, then the solutions need to satisfy periodic boundary conditions [1],

$$
u(t, 0)=u(t, 2 \pi r)
$$

Equivalently, we can think of periodic functions on \mathbb{R} where $u(t, s+2 \pi r)=u(t, s)$ holds. After plugging in the product ansatz $u(t, s)=\tau(t) \zeta(s)$ [1] into the heat equation,

$$
\dot{\tau}(t) \zeta(x) \stackrel{[1]}{=} a^{2} \tau(t) \zeta^{\prime \prime}(s)
$$

we obtain two coupled ODEs,

$$
\begin{equation*}
\frac{1}{a^{2}} \frac{\dot{\tau}(t)}{\tau(t)}=\frac{\zeta^{\prime \prime}(s)}{\zeta(s)}=\lambda \in \mathbb{R} \tag{1}
\end{equation*}
$$

Note that in this case, we may assume that λ is real instead of complex. Solving the equation for ζ yields

$$
\zeta_{\lambda}(s) \stackrel{[1]}{=} \begin{cases}a_{1}(\lambda) \sin \sqrt{|\lambda|} s+a_{2}(\lambda) \cos \sqrt{|\lambda|} s & \lambda<0 \\ a_{1}(0)+a_{2}(0) s & \lambda=0 \\ a_{1}(\lambda) \sinh \sqrt{|\lambda|} s+a_{2}(\lambda) \cosh \sqrt{|\lambda|} s & \lambda>0\end{cases}
$$

Imposing periodic boundary conditions eliminates the solutions for $\lambda<0$ [1] and the linear solution for $\lambda=0$ [1]. For $\lambda<0$, only those solutions are admissible which have $2 \pi r$-periodicity, i. e.

$$
\lambda \stackrel{[1]}{=}-\left(\frac{n}{r}\right)^{2}, \quad n \in \mathbb{N}_{0} .
$$

Now we can solve the second equation for those special λs,

$$
\tau_{n}(t) \stackrel{[1]}{=} \tau(0) \mathrm{e}^{-a^{2} \frac{n^{2}}{r^{2}} t}
$$

Hence, any solution is a linear combination of the form

$$
u(t, s) \stackrel{[1]}{=} \sum_{n=0}^{\infty} \mathrm{e}^{-a^{2} \frac{n^{2}}{r^{2}} t}\left(a_{1}(n) \sin \frac{n s}{r}+a_{2}(n) \cos \frac{n s}{r}\right)
$$

To satisfy the initial condition, $u(0, s)=f(s)$, we set all but one equal to 0 ,

$$
u(0, s) \stackrel{[1]}{=} \sum_{n=0}^{\infty}\left(a_{1}(n) \sin \frac{n s}{r}+a_{2}(n) \cos \frac{n s}{r}\right) \stackrel{!}{=} T_{0} \cos \frac{s}{r},
$$

and thus the solution is

$$
u(t, s) \stackrel{[1]}{=} T_{0} \mathrm{e}^{-\frac{a^{2}}{r^{2}} t} \cos \frac{s}{r} .
$$

(ii) The maximal temperature difference is

$$
\begin{aligned}
& \Delta u(t):[1] \\
& \max _{s \in[0,2 \pi r]} u(t, s)-\min _{s \in[0,2 \pi r]} u(t, s) \\
&=T_{0} \mathrm{e}^{-\frac{a^{2}}{r^{2}} t}(1-(-1)) \stackrel{[1]}{=} 2 T_{0} \mathrm{e}^{-\frac{a^{2}}{r^{2}} t} .
\end{aligned}
$$

Now if we require that at t_{*}, the difference is $1 /$ eth of the initial maximal temperature difference,

$$
\frac{\Delta u\left(t_{*}\right)}{\Delta u(0)} \stackrel{!}{=} \frac{1}{\mathrm{e}} \stackrel{[1]}{=} \mathrm{e}^{-\frac{a^{2}}{r^{2}} t_{*}},
$$

we obtain $t_{*}=\frac{r^{2}}{a^{2}}[1]$.
20. The Fourier basis on $L^{2}([-\pi,+\pi])$ (19 points)

Consider the Hilbert space of square integrable functions $L^{2}([-\pi,+\pi])$ endowed with the scalar product

$$
\langle f, g\rangle_{L^{2}}:=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \overline{f(x)} g(x)
$$

(i) Show that $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system.
(ii) Show that $\{1\} \cup\{\sqrt{2} \sin n x, \sqrt{2} \cos n x\}_{n \in \mathbb{N}}$ is an orthonormal system.

The orthonormal system $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is also an orthonormal basis of $L^{2}([-\pi,+\pi])$. Moreover, let $\ell^{2}(\mathbb{Z})$ be the Hilbert space of square summable sequences with scalar product

$$
\langle a, b\rangle_{\ell^{2}}:=\sum_{n \in \mathbb{Z}} \overline{a_{n}} b_{n}, \quad a=\left(a_{n}\right)_{n \in \mathbb{Z}}, b=\left(b_{n}\right)_{n \in \mathbb{Z}}
$$

(iii) Show that for any $f \in L^{2}([-\pi,+\pi])$ we have $\sum_{n \in \mathbb{Z}}\left|\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle\right|_{L^{2}}^{2}<\infty$.
(iv) Show that the map

$$
\mathcal{F}: L^{2}([-\pi,+\pi]) \longrightarrow \ell^{2}(\mathbb{Z}), f \mapsto \mathcal{F} f:=\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}}
$$

is norm-preserving, i. e. $\|f\|_{L^{2}}=\|\mathcal{F} f\|_{\ell^{2}}$ holds for any $f \in L^{2}([-\pi,+\pi])$.
(v) Show that \mathcal{F} is linear, i. e. for all $f, g \in L^{2}([-\pi,+\pi])$ and $\alpha \in \mathbb{C}$ we have

$$
\mathcal{F}(\alpha f+g)=\alpha \mathcal{F} f+\mathcal{F} g
$$

(vi) Show that \mathcal{F} is bijective.

Solution:

(i) The vectors $\mathrm{e}^{+\mathrm{i} n x}$ are normalized:

$$
\begin{equation*}
\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} n x}\right\rangle_{L^{2}}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \overline{\mathrm{e}^{+\mathrm{i} n x}} \mathrm{e}^{+\mathrm{i} n x}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x=1 \tag{1}
\end{equation*}
$$

For $n \neq k$, the vectors are orthogonal:

$$
\begin{aligned}
&\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}\right\rangle_{L^{2}}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \overline{\mathrm{e}^{+\mathrm{i} n x}} \mathrm{e}^{+\mathrm{i} k x}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \mathrm{e}^{+\mathrm{i}(k-n) x} \\
& \stackrel{[1]}{=}\left[\frac{1}{2 \pi} \frac{1}{\mathrm{i}(k-n)} \mathrm{e}^{+\mathrm{i}(k-n) x}\right]_{-\pi}^{+\pi}=\frac{\mathrm{e}^{+\mathrm{i}(k-n) \pi}-\mathrm{e}^{-\mathrm{i}(k-n) \pi}}{\mathrm{i} 2 \pi(k-n)} \\
&=\frac{(-1)^{k-n}-(-1)^{k-n}}{\mathrm{i} 2 \pi(k-n)} \stackrel{[1]}{=} 0 .
\end{aligned}
$$

Hence, $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system.
(ii) We write $\sin n x$ and $\cos n x$ are real and imaginary part of $\mathrm{e}^{+\mathrm{i} n x}$ and use $1=\mathrm{e}^{0}$ as well as (i):

$$
\begin{aligned}
& \langle 1, \sqrt{2} \cos n x\rangle_{L^{2}} \stackrel{[1]}{=} \frac{1}{\sqrt{2}}\left(\left\langle 1, \mathrm{e}^{+\mathrm{i} n x}\right\rangle_{L^{2}}+\left\langle 1, \mathrm{e}^{-\mathrm{i} n x}\right\rangle_{L^{2}}\right)=0 \\
& \langle 1, \sqrt{2} \sin n x\rangle_{L^{2}}=\frac{1}{\mathrm{i} \sqrt{2}}\left(\left\langle 1, \mathrm{e}^{+\mathrm{i} n x}\right\rangle_{L^{2}}-\left\langle 1, \mathrm{e}^{-\mathrm{i} n x}\right\rangle_{L^{2}}\right)=0
\end{aligned}
$$

Now let us verify that the $\cos n x, n \geq 1$, functions are orthonormal:

$$
\begin{aligned}
\langle\sqrt{2} \cos n x, \sqrt{2} \cos k x\rangle_{L^{2}}= & \frac{2}{4}\left\langle\mathrm{e}^{+\mathrm{i} n x}+\mathrm{e}^{-\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}+\mathrm{e}^{-\mathrm{i} k x}\right\rangle_{L^{2}} \\
= & \frac{1}{2}\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}\right\rangle_{L^{2}}+\left\langle\mathrm{e}^{-\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}\right\rangle_{L^{2}}+\right. \\
& \left.+\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{-\mathrm{i} k x}\right\rangle_{L^{2}}+\left\langle\mathrm{e}^{-\mathrm{i} n x}, \mathrm{e}^{-\mathrm{i} k x}\right\rangle_{L^{2}}\right) \\
= & \frac{1}{2}\left(\delta_{n, k}+\delta_{-n,-k}\right) \stackrel{[1]}{=} \delta_{n, k}
\end{aligned}
$$

Similarly, we show that $\sin n x, n \geq 1$, are orthonormal [1].
Moreover, $\cos n x$ and $\sin k x$ are always orthogonal:

$$
\begin{aligned}
\langle\sqrt{2} \cos n x, \sqrt{2} \sin k x\rangle_{L^{2}}= & \frac{2}{\mathrm{i} 4}\left\langle\mathrm{e}^{+\mathrm{i} n x}+\mathrm{e}^{-\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}-\mathrm{e}^{-\mathrm{i} k x}\right\rangle_{L^{2}} \\
= & \frac{1}{2}\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}\right\rangle_{L^{2}}+\left\langle\mathrm{e}^{-\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}\right\rangle_{L^{2}}+\right. \\
& \left.\quad-\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{-\mathrm{i} k x}\right\rangle_{L^{2}}-\left\langle\mathrm{e}^{-\mathrm{i} n x}, \mathrm{e}^{-\mathrm{i} k x}\right\rangle_{L^{2}}\right) \\
= & \frac{1}{2}\left(\delta_{n, k}-\delta_{-n,-k}\right) \stackrel{[1]}{=} 0
\end{aligned}
$$

Hence, $\{1\} \cup\{\sin n x, \cos n x\}_{n \in \mathbb{N}}$ is an orthonormal set.
(iii) We now use that $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal basis, i. e. any $f \in L^{2}([-\pi,+\pi])$ can be written as Fourier series,

$$
f=\sum_{n \in \mathbb{Z}}\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}} \mathrm{e}^{+\mathrm{i} n x}
$$

where the right-hand side converges in the L^{2}-sense, i. e. $f_{N}:=\sum_{|n| \leq N}\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}} \mathrm{e}^{+\mathrm{i} n x}$ converges to f as $N \rightarrow \infty$,

$$
\lim _{N \rightarrow \infty}\left\|f-f_{N}\right\|_{L^{2}}^{2}=0
$$

Thus, $\|f\|_{L^{2}}^{2}<\infty$ can be written as

$$
\begin{aligned}
\|f\|_{L^{2}}^{2} & =\langle f, f\rangle_{L^{2}} \\
& \stackrel{[1]}{=}\left\langle\sum_{n \in \mathbb{Z}}\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}} \mathrm{e}^{+\mathrm{i} n x}, \sum_{k \in \mathbb{Z}}\left\langle\mathrm{e}^{+\mathrm{i} k x}, f\right\rangle_{L^{2}} \mathrm{e}^{+\mathrm{i} k x}\right\rangle_{L^{2}} \\
& \stackrel{[1]}{=} \sum_{n, k \in \mathbb{Z}} \overline{\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle}\left\langle\mathrm{e}^{+\mathrm{i} k x}, f\right\rangle \underbrace{\left\langle\mathrm{e}^{+\mathrm{i} n x}, \mathrm{e}^{+\mathrm{i} k x}\right\rangle}_{=\delta_{n, k}} \\
& \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}}\left|\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle\right|^{2}<\infty
\end{aligned}
$$

The right-hand side is finite as $f \in L^{2}([-\pi,+\pi])$ and thus, by definition $\|f\|<\infty$.
(iv) For any $f \in L^{2}([-\pi,+\pi])$, we compute

$$
\begin{align*}
\|\mathcal{F} f\|_{\ell^{2}}^{2} & \stackrel{[1]}{=}\left\|\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}}\right\|_{\ell^{2}} \\
& \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}}\left|\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle\right|^{2} \stackrel{(i v)}{=}\|f\|_{L^{2}}^{2} . \tag{1}
\end{align*}
$$

The right-hand side is finite, because it coincides with $\|f\|_{L^{2}}<\infty$.
(v) Pick any $f, g \in L^{2}([-\pi,+\pi])$ and $\alpha \in \mathbb{C}$. Then we have:

$$
\begin{aligned}
\mathcal{F}(\alpha f+g) & \stackrel{[1]}{=}\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, \alpha f+g\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}} \stackrel{*}{=}\left(\alpha\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}}+\left\langle\mathrm{e}^{+\mathrm{i} n x}, g\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}} \\
& =\alpha\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}}+\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, g\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}} \\
& \stackrel{[1]}{=} \alpha \mathcal{F} f+\mathcal{F} g .
\end{aligned}
$$

In the step marked with $*$, we have used the linearity of the scalar product in the second argument.
(vi) Injectivity: $\mathcal{F} f=0$ implies $f=0$, because \mathcal{F} is norm-preserving. Hence, \mathcal{F} is injective [1]. Surjectivity: Pick any $c \in \ell^{2}(\mathbb{Z})$; thus $\|c\|_{\ell^{2}}^{2}=\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{2}<\infty$. Define the function

$$
f_{c}:=\sum_{n \in \mathbb{Z}} c_{n} \mathrm{e}^{+\mathrm{i} n x} .
$$

By definition, $\mathcal{F} f_{c}=c \in \ell^{2}(\mathbb{Z})$ holds [1], and thus the norm-preserving property (iv) yields that $f_{c} \in L^{2}([-\pi,+\pi])$,

$$
\begin{equation*}
\left\|f_{c}\right\|_{L^{2}}^{2}=\left\|\mathcal{F} f_{c}\right\|_{\ell^{2}}^{2}=\|c\|_{\ell^{2}}^{2}<\infty . \tag{1}
\end{equation*}
$$

This means \mathcal{F} is also surjective, and hence, bijective [1].

21. Orthogonal subspaces and projections onto subspaces (16 points)

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis (ONB) of a Hilbert space \mathcal{H} and $N \in \mathbb{N}$.
(i) Prove that $E:=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$ is a sub vector space.
(ii) Give an ONB for the subspace $E=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$.
(iii) Show that $\left(\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}\right)^{\perp}=E^{\perp}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$.

Moreover, define the map

$$
P: \mathcal{H} \longrightarrow \mathcal{H}, P \psi:=\sum_{n=1}^{N}\left\langle\varphi_{n}, \psi\right\rangle \varphi_{n} .
$$

(iv) Show that P is linear, i. e. for any $\varphi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have $P(\alpha \varphi+\psi)=\alpha P \varphi+P \psi$.
(v) Show that P is a projection, i. e. $P^{2}=P$.
(vi) Show that P is bounded, i. e. $\|P \varphi\| \leq\|\varphi\|$ holds for any $\varphi \in \mathcal{H}$.

Solution:

(i) The orthogonal complement is defined as

$$
E \stackrel{[1]}{=}\left\{\psi \in \mathcal{H} \mid\left\langle\varphi_{j}, \psi\right\rangle=0, j=1, \ldots, N\right\} .
$$

For any $\phi, \psi \in E$ and $\alpha \in \mathbb{C}$, also the vector $\alpha \phi+\psi$ is an element of $E[1]$: for all $j=1, \ldots, N$

$$
\left\langle\varphi_{j}, \alpha \phi+\psi\right\rangle=\alpha\left\langle\varphi_{j}, \phi\right\rangle+\left\langle\varphi_{j}, \psi\right\rangle \stackrel{[1]}{=} 0
$$

is satisfied. Hence, E is a linear subspace of \mathcal{H}.
(ii) $\left\{\varphi_{j}\right\}_{j=N+1}^{\infty}[1]$
(iii) Then $\varphi_{j} \in E^{\perp}$, because by definition of E

$$
\left\langle\varphi_{j}, \psi\right\rangle \stackrel{[1]}{=} 0
$$

holds for all $\psi \in \mathcal{H}$. Thus, $\varphi_{j} \in E^{\perp}$ for all $j=1, \ldots, N$. By (i), E is a linear sub space [1].
Now assume that there exists a $\psi \in E^{\perp}$ which is not a linear combination of $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ [1]. Since $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis of \mathcal{H}, we can express ψ as

$$
\begin{equation*}
\psi=\sum_{j=1}^{\infty} c_{j} \varphi_{j} . \tag{1}
\end{equation*}
$$

By assumption, there exists a $n \geq N+1$ for which $c_{n} \neq 0$ [1]. But then

$$
\left\langle\varphi_{n}, \psi\right\rangle=c_{n} \neq 0
$$

and ψ cannot be an element of E^{\perp}, contradiction [1].
Hence, $E^{\perp}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$.
(iv) The linearity of P follows from the linearity of the scalar product in the first argument: for all $\phi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have

$$
\begin{aligned}
P(\alpha \phi+\psi) & \stackrel{[1]}{=} \sum_{j=1}^{N}\left\langle\varphi_{j}, \alpha \phi+\psi\right\rangle \varphi_{j}=\alpha \sum_{j=1}^{N}\left\langle\varphi_{j}, \phi\right\rangle \varphi_{j}+\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j} \\
& \stackrel{[1]}{=} \alpha P \phi+P \psi .
\end{aligned}
$$

Hence, P is linear.
(v) For any $\psi \in \mathcal{H}$, we deduce using the linearity of P :

$$
\begin{aligned}
P^{2} \psi & =P\left(\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j}\right) \stackrel{[1]}{=} \sum_{k=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle P \varphi_{j} \\
& =\sum_{k, j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \underbrace{\left\langle\varphi_{k}, \varphi_{j}\right\rangle}_{=\delta_{k, j}} \varphi_{k}=\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j} \stackrel{[1]}{=} P \psi
\end{aligned}
$$

Hence, P is a projection.
(vi) With the help of Bessel's inequality [1], we obtain the claim:

$$
\|P \psi\|=\left\|\sum_{j=1}^{N}\left\langle\varphi_{j}, \psi\right\rangle \varphi_{j}\right\|\left\|\begin{array}{l}
{[1]} \\
\leq
\end{array} \psi\right\|
$$

