

Differential Equations of Mathematical Physics (APM 351 Y)

2013-2014 Solutions 6 (2013.10.17)

The Heat Equation & Hilbert Spaces

Homework Problems

19. The heat equation on a ring (17 points)

Assume a circular ring of radius r has been lying in a heat bath with temperature distribution $T(x_1, x_2) = T_0 \frac{x_1}{r}$, $T_0 > 0$, for a very long time.

At time t = 0, the ring is removed from the heat bath, and for t > 0 the temperature distribution u(t, s), s being the arc length, satisfies the heat equation

$$\partial_t u = a^2 \,\partial_s^2 u \,, \qquad \qquad a > 0 \,.$$

- (i) Compute u(t,s) for t > 0 using separation of variables. (Hint: Use $u(t,s) \in \mathbb{R}$ to simplify your arguments.)
- (ii) After what time has the maximal difference in temperature decreased to the 1/eth fraction of that at time t = 0?

Solution:

(i) We first rewrite the initial condition in terms of the arc length $s = r\varphi$:

$$f(s) = T\left(r\cos\frac{s}{r}, r\sin\frac{s}{r}\right) = T_0 \frac{r\cos\frac{s}{r}}{r} \stackrel{[1]}{=} T_0 \cos\frac{s}{r}$$

If we identify the circle of radius r with the interval $[0, 2\pi r]$, then the solutions need to satisfy *periodic boundary conditions* [1],

$$u(t,0) = u(t,2\pi r).$$

Equivalently, we can think of periodic functions on \mathbb{R} where $u(t, s + 2\pi r) = u(t, s)$ holds. After plugging in the product ansatz $u(t, s) = \tau(t) \zeta(s)$ [1] into the heat equation,

$$\dot{\tau}(t)\,\zeta(x)\stackrel{[1]}{=}a^2\,\tau(t)\,\zeta''(s)\,,$$

we obtain two coupled ODEs,

$$\frac{1}{a^2}\frac{\dot{\tau}(t)}{\tau(t)} = \frac{\zeta''(s)}{\zeta(s)} = \lambda \in \mathbb{R}.$$
[1]

Note that in this case, we may assume that λ is real instead of complex. Solving the equation for ζ yields

$$\zeta_{\lambda}(s) \stackrel{[1]}{=} \begin{cases} a_1(\lambda) \sin \sqrt{|\lambda|}s + a_2(\lambda) \cos \sqrt{|\lambda|}s & \lambda < 0\\ a_1(0) + a_2(0) s & \lambda = 0\\ a_1(\lambda) \sinh \sqrt{|\lambda|}s + a_2(\lambda) \cosh \sqrt{|\lambda|}s & \lambda > 0 \end{cases}$$

Imposing periodic boundary conditions eliminates the solutions for $\lambda < 0$ [1] and the linear solution for $\lambda = 0$ [1]. For $\lambda < 0$, only those solutions are admissible which have $2\pi r$ -periodicity, i. e.

$$\lambda \stackrel{[1]}{=} - \left(\frac{n}{r}\right)^2 \,, \qquad \qquad n \in \mathbb{N}_0 \,.$$

Now we can solve the second equation for those special λ s,

$$\tau_n(t) \stackrel{[1]}{=} \tau(0) \operatorname{e}^{-a^2 \frac{n^2}{r^2} t}.$$

Hence, any solution is a linear combination of the form

$$u(t,s) \stackrel{[1]}{=} \sum_{n=0}^{\infty} e^{-a^2 \frac{n^2}{r^2} t} \left(a_1(n) \sin \frac{ns}{r} + a_2(n) \cos \frac{ns}{r} \right)$$

To satisfy the initial condition, u(0,s) = f(s), we set all but one equal to 0,

$$u(0,s) \stackrel{[1]}{=} \sum_{n=0}^{\infty} \left(a_1(n) \sin \frac{ns}{r} + a_2(n) \cos \frac{ns}{r} \right) \stackrel{!}{=} T_0 \cos \frac{s}{r} \,,$$

and thus the solution is

$$u(t,s) \stackrel{[1]}{=} T_0 e^{-\frac{a^2}{r^2}t} \cos \frac{s}{r}.$$

(ii) The maximal temperature difference is

$$\Delta u(t) :\stackrel{[1]}{=} \max_{s \in [0, 2\pi r]} u(t, s) - \min_{s \in [0, 2\pi r]} u(t, s)$$
$$= T_0 \, \mathrm{e}^{-\frac{a^2}{r^2}t} \big(1 - (-1) \big) \stackrel{[1]}{=} 2T_0 \, \mathrm{e}^{-\frac{a^2}{r^2}t} \,.$$

Now if we require that at t_* , the difference is 1/eth of the initial maximal temperature difference,

$$\frac{\Delta u(t_*)}{\Delta u(0)} \stackrel{!}{=} \frac{1}{\mathbf{e}} \stackrel{[1]}{=} \mathbf{e}^{-\frac{a^2}{r^2}t_*},$$

we obtain $t_* = \frac{r^2}{a^2}$ [1].

20. The Fourier basis on $L^2([-\pi, +\pi])$ (19 points)

Consider the Hilbert space of square integrable functions $L^2([-\pi,+\pi])$ endowed with the scalar product

$$\langle f,g\rangle_{L^2}:=\frac{1}{2\pi}\int_{-\pi}^{+\pi}\mathrm{d}x\,\overline{f(x)}\,g(x)\,.$$

- (i) Show that $\{e^{+inx}\}_{n\in\mathbb{Z}}$ is an orthonormal system.
- (ii) Show that $\{1\} \cup \{\sqrt{2} \sin nx, \sqrt{2} \cos nx\}_{n \in \mathbb{N}}$ is an orthonormal system.

The orthonormal system $\{e^{+inx}\}_{n\in\mathbb{Z}}$ is also an orthonormal *basis* of $L^2([-\pi, +\pi])$. Moreover, let $\ell^2(\mathbb{Z})$ be the Hilbert space of square summable sequences with scalar product

$$\langle a,b \rangle_{\ell^2} := \sum_{n \in \mathbb{Z}} \overline{a_n} \ b_n , \qquad \qquad a = (a_n)_{n \in \mathbb{Z}}, \ b = (b_n)_{n \in \mathbb{Z}}.$$

- (iii) Show that for any $f \in L^2([-\pi, +\pi])$ we have $\sum_{n \in \mathbb{Z}} \left| \left\langle e^{+inx}, f \right\rangle \right|_{L^2}^2 < \infty$.
- (iv) Show that the map

$$\mathcal{F}: L^2([-\pi, +\pi]) \longrightarrow \ell^2(\mathbb{Z}), \ f \mapsto \mathcal{F}f := \left(\left\langle \mathbf{e}^{+\mathrm{i}nx}, f \right\rangle_{L^2} \right)_{n \in \mathbb{Z}}$$

is norm-preserving, i. e. $\|f\|_{L^2} = \|\mathcal{F}f\|_{\ell^2}$ holds for any $f \in L^2([-\pi, +\pi])$.

(v) Show that \mathcal{F} is linear, i. e. for all $f,g\in L^2([-\pi,+\pi])$ and $\alpha\in\mathbb{C}$ we have

$$\mathcal{F}(\alpha f + g) = \alpha \mathcal{F}f + \mathcal{F}g.$$

(vi) Show that \mathcal{F} is bijective.

Solution:

(i) The vectors e^{+inx} are normalized:

$$\langle \mathbf{e}^{+\mathrm{i}nx}, \mathbf{e}^{+\mathrm{i}nx} \rangle_{L^2} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \mathrm{d}x \,\overline{\mathbf{e}^{+\mathrm{i}nx}} \,\mathbf{e}^{+\mathrm{i}nx} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \mathrm{d}x = 1.$$
 [1]

For $n \neq k$, the vectors are orthogonal:

Hence, $\{e^{+inx}\}_{n\in\mathbb{Z}}$ is an orthonormal system.

(ii) We write sin nx and cos nx are real and imaginary part of e^{+inx} and use $1 = e^0$ as well as (i):

$$\left\langle 1, \sqrt{2} \cos nx \right\rangle_{L^2} \stackrel{[1]}{=} \frac{1}{\sqrt{2}} \left(\left\langle 1, e^{+inx} \right\rangle_{L^2} + \left\langle 1, e^{-inx} \right\rangle_{L^2} \right) = 0$$
$$\left\langle 1, \sqrt{2} \sin nx \right\rangle_{L^2} = \frac{1}{i\sqrt{2}} \left(\left\langle 1, e^{+inx} \right\rangle_{L^2} - \left\langle 1, e^{-inx} \right\rangle_{L^2} \right) = 0$$

Now let us verify that the $\cos nx$, $n \ge 1$, functions are orthonormal:

$$\begin{split} \left\langle \sqrt{2} \cos nx, \sqrt{2} \cos kx \right\rangle_{L^2} &= \frac{2}{4} \left\langle \mathbf{e}^{+\mathrm{i}nx} + \mathbf{e}^{-\mathrm{i}nx}, \mathbf{e}^{+\mathrm{i}kx} + \mathbf{e}^{-\mathrm{i}kx} \right\rangle_{L^2} \\ &= \frac{1}{2} \Big(\left\langle \mathbf{e}^{+\mathrm{i}nx}, \mathbf{e}^{+\mathrm{i}kx} \right\rangle_{L^2} + \left\langle \mathbf{e}^{-\mathrm{i}nx}, \mathbf{e}^{+\mathrm{i}kx} \right\rangle_{L^2} + \\ &+ \left\langle \mathbf{e}^{+\mathrm{i}nx}, \mathbf{e}^{-\mathrm{i}kx} \right\rangle_{L^2} + \left\langle \mathbf{e}^{-\mathrm{i}nx}, \mathbf{e}^{-\mathrm{i}kx} \right\rangle_{L^2} \Big) \\ &= \frac{1}{2} \Big(\delta_{n,k} + \delta_{-n,-k} \Big) \stackrel{[1]}{=} \delta_{n,k} \end{split}$$

Similarly, we show that $\sin nx$, $n \ge 1$, are orthonormal [1]. Moreover, $\cos nx$ and $\sin kx$ are always orthogonal:

$$\begin{split} \left\langle \sqrt{2} \cos nx, \sqrt{2} \sin kx \right\rangle_{L^2} &= \frac{2}{\mathbf{i}4} \left\langle \mathbf{e}^{+\mathbf{i}nx} + \mathbf{e}^{-\mathbf{i}nx}, \mathbf{e}^{+\mathbf{i}kx} - \mathbf{e}^{-\mathbf{i}kx} \right\rangle_{L^2} \\ &= \frac{1}{2} \Big(\left\langle \mathbf{e}^{+\mathbf{i}nx}, \mathbf{e}^{+\mathbf{i}kx} \right\rangle_{L^2} + \left\langle \mathbf{e}^{-\mathbf{i}nx}, \mathbf{e}^{+\mathbf{i}kx} \right\rangle_{L^2} + \\ &- \left\langle \mathbf{e}^{+\mathbf{i}nx}, \mathbf{e}^{-\mathbf{i}kx} \right\rangle_{L^2} - \left\langle \mathbf{e}^{-\mathbf{i}nx}, \mathbf{e}^{-\mathbf{i}kx} \right\rangle_{L^2} \Big) \\ &= \frac{1}{2} \Big(\delta_{n,k} - \delta_{-n,-k} \Big) \stackrel{[1]}{=} 0 \end{split}$$

Hence, $\{1\} \cup \{\sin nx, \cos nx\}_{n \in \mathbb{N}}$ is an orthonormal set.

(iii) We now use that $\{e^{+inx}\}_{n\in\mathbb{Z}}$ is an orthonormal *basis*, i. e. any $f \in L^2([-\pi, +\pi])$ can be written as Fourier series,

$$f = \sum_{n \in \mathbb{Z}} \left\langle \mathsf{e}^{+\mathsf{i}nx}, f \right\rangle_{L^2} \mathsf{e}^{+\mathsf{i}nx},$$

where the right-hand side converges in the L^2 -sense, i. e. $f_N := \sum_{|n| \le N} \langle e^{+inx}, f \rangle_{L^2} e^{+inx}$ converges to f as $N \to \infty$,

$$\lim_{N \to \infty} \|f - f_N\|_{L^2}^2 = 0.$$

Thus, $\|f\|_{L^2}^2 < \infty$ can be written as

$$\begin{split} \|f\|_{L^{2}}^{2} &= \langle f, f \rangle_{L^{2}} \\ \stackrel{[1]}{=} \left\langle \sum_{n \in \mathbb{Z}} \langle \mathbf{e}^{+\mathrm{i}nx}, f \rangle_{L^{2}} \, \mathbf{e}^{+\mathrm{i}nx}, \sum_{k \in \mathbb{Z}} \langle \mathbf{e}^{+\mathrm{i}kx}, f \rangle_{L^{2}} \, \mathbf{e}^{+\mathrm{i}kx} \right\rangle_{L^{2}} \\ \stackrel{[1]}{=} \sum_{n,k \in \mathbb{Z}} \overline{\langle \mathbf{e}^{+\mathrm{i}nx}, f \rangle} \, \langle \mathbf{e}^{+\mathrm{i}kx}, f \rangle \underbrace{\langle \mathbf{e}^{+\mathrm{i}nx}, \mathbf{e}^{+\mathrm{i}kx} \rangle}_{=\delta_{n,k}} \\ \stackrel{[1]}{=} \sum_{n \in \mathbb{Z}} \left| \langle \mathbf{e}^{+\mathrm{i}nx}, f \rangle \right|^{2} < \infty \, . \end{split}$$

The right-hand side is finite as $f \in L^2([-\pi, +\pi])$ and thus, by definition $||f|| < \infty$. (iv) For any $f \in L^2([-\pi, +\pi])$, we compute

$$\begin{aligned} \left\| \mathcal{F}f \right\|_{\ell^{2}}^{2} &\stackrel{[1]}{=} \left\| \left(\left\langle \mathbf{e}^{+\mathrm{i}nx}, f \right\rangle_{L^{2}} \right)_{n \in \mathbb{Z}} \right\|_{\ell^{2}} \\ &\stackrel{[1]}{=} \sum_{n \in \mathbb{Z}} \left| \left\langle \mathbf{e}^{+\mathrm{i}nx}, f \right\rangle \right|^{2} \stackrel{(iv)}{=} \left\| f \right\|_{L^{2}}^{2} . \end{aligned}$$

$$\tag{1}$$

The right-hand side is finite, because it coincides with $\|f\|_{L^2} < \infty.$

(v) Pick any $f,g\in L^2([-\pi,+\pi])$ and $\alpha\in\mathbb{C}.$ Then we have:

$$\begin{split} \mathcal{F}(\alpha f + g) &\stackrel{[1]}{=} \left(\left\langle \mathbf{e}^{+\mathrm{i}nx}, \alpha f + g \right\rangle_{L^2} \right)_{n \in \mathbb{Z}} \stackrel{*}{=} \left(\alpha \left\langle \mathbf{e}^{+\mathrm{i}nx}, f \right\rangle_{L^2} + \left\langle \mathbf{e}^{+\mathrm{i}nx}, g \right\rangle_{L^2} \right)_{n \in \mathbb{Z}} \\ &= \alpha \left(\left\langle \mathbf{e}^{+\mathrm{i}nx}, f \right\rangle_{L^2} \right)_{n \in \mathbb{Z}} + \left(\left\langle \mathbf{e}^{+\mathrm{i}nx}, g \right\rangle_{L^2} \right)_{n \in \mathbb{Z}} \\ & \stackrel{[1]}{=} \alpha \,\mathcal{F}f + \mathcal{F}g \,. \end{split}$$

In the step marked with *, we have used the linearity of the scalar product in the second argument.

(vi) Injectivity: $\mathcal{F}f = 0$ implies f = 0, because \mathcal{F} is norm-preserving. Hence, \mathcal{F} is injective [1]. Surjectivity: Pick any $c \in \ell^2(\mathbb{Z})$; thus $||c||_{\ell^2}^2 = \sum_{n \in \mathbb{Z}} |c_n|^2 < \infty$. Define the function

$$f_c := \sum_{n \in \mathbb{Z}} c_n \, \mathrm{e}^{+\mathrm{i} n x} \, .$$

By definition, $\mathcal{F}f_c = c \in \ell^2(\mathbb{Z})$ holds [1], and thus the norm-preserving property (iv) yields that $f_c \in L^2([-\pi, +\pi])$,

$$\|f_c\|_{L^2}^2 = \|\mathcal{F}f_c\|_{\ell^2}^2 = \|c\|_{\ell^2}^2 < \infty.$$
^[1]

This means \mathcal{F} is also surjective, and hence, bijective [1].

21. Orthogonal subspaces and projections onto subspaces (16 points)

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an orthonormal basis (ONB) of a Hilbert space \mathcal{H} and $N\in\mathbb{N}$.

- (i) Prove that $E := \{\varphi_1, \ldots, \varphi_N\}^{\perp}$ is a sub vector space.
- (ii) Give an ONB for the subspace $E = \{\varphi_1, \dots, \varphi_N\}^{\perp}$.
- (iii) Show that $(\{\varphi_1, \ldots, \varphi_N\}^{\perp})^{\perp} = E^{\perp} = \operatorname{span}\{\varphi_1, \ldots, \varphi_N\}.$

Moreover, define the map

$$P: \mathcal{H} \longrightarrow \mathcal{H}, \ P\psi := \sum_{n=1}^{N} \langle \varphi_n, \psi \rangle \ \varphi_n \,.$$

- (iv) Show that P is linear, i. e. for any $\varphi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have $P(\alpha \varphi + \psi) = \alpha P \varphi + P \psi$.
- (v) Show that *P* is a projection, i. e. $P^2 = P$.
- (vi) Show that *P* is bounded, i. e. $||P\varphi|| \le ||\varphi||$ holds for any $\varphi \in \mathcal{H}$.

Solution:

(i) The orthogonal complement is defined as

$$E \stackrel{[1]}{=} \left\{ \psi \in \mathcal{H} \mid \langle \varphi_j, \psi \rangle = 0, \ j = 1, \dots, N \right\}.$$

For any $\phi, \psi \in E$ and $\alpha \in \mathbb{C}$, also the vector $\alpha \phi + \psi$ is an element of E [1]: for all $j = 1, \dots, N$

$$\langle \varphi_i, \alpha \phi + \psi \rangle = \alpha \langle \varphi_i, \phi \rangle + \langle \varphi_i, \psi \rangle \stackrel{[1]}{=} 0$$

is satisfied. Hence, E is a linear subspace of \mathcal{H} .

- (ii) $\{\varphi_j\}_{j=N+1}^{\infty}$ [1]
- (iii) Then $\varphi_j \in E^{\perp}$, because by definition of E

$$\langle \varphi_j, \psi \rangle \stackrel{[1]}{=} 0$$

holds for all $\psi \in \mathcal{H}$. Thus, $\varphi_j \in E^{\perp}$ for all $j = 1, \ldots, N$. By (i), E is a linear sub space [1]. Now assume that there exists a $\psi \in E^{\perp}$ which is *not* a linear combination of $\{\varphi_1, \ldots, \varphi_N\}$ [1]. Since $\{\varphi_j\}_{j \in \mathbb{N}}$ is an orthonormal basis of \mathcal{H} , we can express ψ as

$$\psi = \sum_{j=1}^{\infty} c_j \,\varphi_j \,. \tag{1}$$

By assumption, there exists a $n \ge N + 1$ for which $c_n \ne 0$ [1]. But then

$$\langle \varphi_n, \psi \rangle = c_n \neq 0$$

and ψ cannot be an element of E^{\perp} , contradiction [1]. Hence, $E^{\perp} = \operatorname{span}\{\varphi_1, \dots, \varphi_N\}$. (iv) The linearity of P follows from the linearity of the scalar product in the first argument: for all $\phi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have

$$P(\alpha \phi + \psi) \stackrel{[1]}{=} \sum_{j=1}^{N} \langle \varphi_j, \alpha \phi + \psi \rangle \varphi_j = \alpha \sum_{j=1}^{N} \langle \varphi_j, \phi \rangle \varphi_j + \sum_{j=1}^{N} \langle \varphi_j, \psi \rangle \varphi_j$$
$$\stackrel{[1]}{=} \alpha P \phi + P \psi.$$

Hence, P is linear.

(v) For any $\psi\in\mathcal{H},$ we deduce using the linearity of $P{:}$

$$P^{2}\psi = P\left(\sum_{j=1}^{N} \langle \varphi_{j}, \psi \rangle \varphi_{j}\right) \stackrel{[1]}{=} \sum_{k=1}^{N} \langle \varphi_{j}, \psi \rangle P\varphi_{j}$$
$$= \sum_{k,j=1}^{N} \langle \varphi_{j}, \psi \rangle \underbrace{\langle \varphi_{k}, \varphi_{j} \rangle}_{=\delta_{k,j}} \varphi_{k} = \sum_{j=1}^{N} \langle \varphi_{j}, \psi \rangle \varphi_{j} \stackrel{[1]}{=} P\psi$$

Hence, P is a projection.

(vi) With the help of Bessel's inequality [1], we obtain the claim:

$$\left\|P\psi\right\| = \left\|\sum_{j=1}^{N} \left\langle\varphi_{j}, \psi\right\rangle \varphi_{j}\right\| \stackrel{[1]}{\leq} \left\|\psi\right\|$$