
Differential Equations of
Mathematical Physics

(APM 351 Y)

2013–2014
Solutions 6
(2013.10.17)

The Heat Equation & Hilbert Spaces

Homework Problems

19. The heat equation on a ring (17 points)
Assume a circular ring of radius r has been lying in a heat bath
with temperature distribution T (x1, x2) = T0

x1
r , T0 > 0, for

a very long time.
At time t = 0, the ring is removed from the heat bath, and
for t > 0 the temperature distribution u(t, s), s being the arc
length, satisfies the heat equation

∂tu = a2 ∂2su , a > 0 .

(i) Compute u(t, s) for t > 0 using separation of variables.
(Hint: Use u(t, s) ∈ R to simplify your arguments.)

(ii) After what time has the maximal difference in tempera-
ture decreased to the 1/eth fraction of that at time t = 0?

x1

x2

r

Solution:

(i) We first rewrite the initial condition in terms of the arc length s = rφ:

f(s) = T
(
r cos s

r , r sin
s
r

)
= T0

r cos s
r

r

[1]
= T0 cos s

r

If we identify the circle of radius r with the interval [0, 2πr], then the solutions need to satisfy
periodic boundary conditions [1],

u(t, 0) = u(t, 2πr) .

Equivalently, we can think of periodic functions on R where u(t, s+ 2πr) = u(t, s) holds.
After plugging in the product ansatz u(t, s) = τ(t) ζ(s) [1] into the heat equation,

τ̇(t) ζ(x)
[1]
= a2 τ(t) ζ ′′(s) ,

we obtain two coupled ODEs,

1

a2
τ̇(t)

τ(t)
=
ζ ′′(s)

ζ(s)
= λ ∈ R . [1]
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Note that in this case, we may assume that λ is real instead of complex. Solving the equation
for ζ yields

ζλ(s)
[1]
=


a1(λ) sin

√
|λ|s+ a2(λ) cos

√
|λ|s λ < 0

a1(0) + a2(0) s λ = 0

a1(λ) sinh
√

|λ|s+ a2(λ) cosh
√

|λ|s λ > 0

Imposing periodic boundary conditions eliminates the solutions forλ < 0 [1] and the linear so-
lution forλ = 0 [1]. Forλ < 0, only those solutions are admissiblewhich have 2πr-periodicity,
i. e.

λ
[1]
= −

(n
r

)2
, n ∈ N0 .

Now we can solve the second equation for those special λs,

τn(t)
[1]
= τ(0) e−a2 n2

r2
t .

Hence, any solution is a linear combination of the form

u(t, s)
[1]
=

∞∑
n=0

e−a2 n2

r2
t (a1(n) sin ns

r + a2(n) cos ns
r

)
To satisfy the initial condition, u(0, s) = f(s), we set all but one equal to 0,

u(0, s)
[1]
=

∞∑
n=0

(
a1(n) sin ns

r + a2(n) cos ns
r

) !
= T0 cos s

r ,

and thus the solution is

u(t, s)
[1]
= T0 e−

a2

r2
t cos s

r .

(ii) The maximal temperature difference is

∆u(t) :
[1]
= max

s∈[0,2πr]
u(t, s)− min

s∈[0,2πr]
u(t, s)

= T0 e−
a2

r2
t(1− (−1)

) [1]
= 2T0 e−

a2

r2
t .

Now if we require that at t∗, the difference is 1/eth of the initial maximal temperature differ-
ence,

∆u(t∗)

∆u(0)

!
=

1

e
[1]
= e−

a2

r2
t∗ ,

we obtain t∗ = r2

a2
[1].
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20. The Fourier basis on L2([−π,+π]) (19 points)
Consider the Hilbert space of square integrable functions L2([−π,+π]) endowed with the scalar
product

⟨f, g⟩L2 :=
1

2π

∫ +π

−π
dx f(x) g(x) .

(i) Show that {e+inx}n∈Z is an orthonormal system.
(ii) Show that {1} ∪

{√
2 sinnx ,

√
2 cosnx

}
n∈N is an orthonormal system.

The orthonormal system {e+inx}n∈Z is also an orthonormal basis of L2([−π,+π]). Moreover, let
ℓ2(Z) be the Hilbert space of square summable sequences with scalar product

⟨a, b⟩ℓ2 :=
∑
n∈Z

an bn , a = (an)n∈Z, b = (bn)n∈Z .

(iii) Show that for any f ∈ L2([−π,+π]) we have
∑

n∈Z
∣∣⟨e+inx, f

⟩∣∣2
L2 <∞.

(iv) Show that the map

F : L2([−π,+π]) −→ ℓ2(Z), f 7→ Ff :=
(⟨

e+inx, f
⟩
L2

)
n∈Z

is norm-preserving, i. e. ∥f∥L2 = ∥Ff∥ℓ2 holds for any f ∈ L2([−π,+π]).
(v) Show that F is linear, i. e. for all f, g ∈ L2([−π,+π]) and α ∈ C we have

F
(
αf + g

)
= αFf + Fg .

(vi) Show that F is bijective.

Solution:

(i) The vectors e+inx are normalized:⟨
e+inx, e+inx⟩

L2 =
1

2π

∫ +π

−π
dx e+inx e+inx =

1

2π

∫ +π

−π
dx = 1. [1]

For n ̸= k, the vectors are orthogonal:⟨
e+inx, e+ikx

⟩
L2

=
1

2π

∫ +π

−π
dx e+inx e+ikx =

1

2π

∫ +π

−π
dx e+i(k−n)x

[1]
=

[
1

2π

1

i (k − n)
e+i(k−n)x

]+π

−π

=
e+i(k−n)π − e−i(k−n)π

i 2π(k − n)

=
(−1)k−n − (−1)k−n

i 2π(k − n)

[1]
= 0 .

Hence, {e+inx}n∈Z is an orthonormal system.
(ii) We write sinnx and cosnx are real and imaginary part of e+inx and use 1 = e0 as well as (i):⟨

1,
√
2 cosnx

⟩
L2

[1]
=

1√
2

(⟨
1, e+inx⟩

L2 +
⟨
1, e−inx⟩

L2

)
= 0⟨

1,
√
2 sinnx

⟩
L2

=
1

i
√
2

(⟨
1, e+inx⟩

L2 −
⟨
1, e−inx⟩

L2

)
= 0
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Now let us verify that the cosnx, n ≥ 1, functions are orthonormal:⟨√
2 cosnx,

√
2 cos kx

⟩
L2

=
2

4

⟨
e+inx + e−inx, e+ikx + e−ikx

⟩
L2

=
1

2

(⟨
e+inx, e+ikx⟩

L2 +
⟨
e−inx, e+ikx⟩

L2+

+
⟨
e+inx, e−ikx⟩

L2 +
⟨
e−inx, e−ikx⟩

L2

)
= 1

2

(
δn,k + δ−n,−k

) [1]
= δn,k

Similarly, we show that sinnx, n ≥ 1, are orthonormal [1].
Moreover, cosnx and sin kx are always orthogonal:⟨√

2 cosnx,
√
2 sin kx

⟩
L2

=
2

i4

⟨
e+inx + e−inx, e+ikx − e−ikx

⟩
L2

=
1

2

(⟨
e+inx, e+ikx⟩

L2 +
⟨
e−inx, e+ikx⟩

L2+

−
⟨
e+inx, e−ikx⟩

L2 −
⟨
e−inx, e−ikx⟩

L2

)
= 1

2

(
δn,k − δ−n,−k

) [1]
= 0

Hence, {1} ∪
{
sinnx, cosnx

}
n∈N is an orthonormal set.

(iii) We now use that {e+inx}n∈Z is an orthonormal basis, i. e. any f ∈ L2([−π,+π]) can be written
as Fourier series,

f =
∑
n∈Z

⟨
e+inx, f

⟩
L2 e+inx,

where the right-hand side converges in the L2-sense, i. e. fN :=
∑

|n|≤N

⟨
e+inx, f

⟩
L2 e+inx

converges to f asN → ∞,

lim
N→∞

∥∥f − fN
∥∥2
L2 = 0 .

Thus, ∥f∥2L2 <∞ can be written as

∥f∥2L2 = ⟨f, f⟩L2

[1]
=
⟨∑

n∈Z
⟨
e+inx, f

⟩
L2 e+inx,

∑
k∈Z
⟨
e+ikx, f

⟩
L2 e+ikx

⟩
L2

[1]
=
∑
n,k∈Z

⟨
e+inx, f

⟩ ⟨
e+ikx, f

⟩ ⟨
e+inx, e+ikx⟩︸ ︷︷ ︸

=δn,k

[1]
=
∑
n∈Z

∣∣⟨e+inx, f
⟩∣∣2 <∞ .

The right-hand side is finite as f ∈ L2([−π,+π]) and thus, by definition ∥f∥ <∞.
(iv) For any f ∈ L2([−π,+π]), we compute∥∥Ff∥∥2

ℓ2
[1]
=
∥∥∥(⟨e+inx, f

⟩
L2

)
n∈Z

∥∥∥
ℓ2

[1]
=
∑
n∈Z

∣∣⟨e+inx, f
⟩∣∣2 (iv)

= ∥f∥2L2 . [1]

The right-hand side is finite, because it coincides with ∥f∥L2 <∞.
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(v) Pick any f, g ∈ L2([−π,+π]) and α ∈ C. Then we have:

F
(
α f + g

) [1]
=
(⟨

e+inx, α f + g
⟩
L2

)
n∈Z

∗
=
(
α
⟨
e+inx, f

⟩
L2 +

⟨
e+inx, g

⟩
L2

)
n∈Z

= α
(⟨

e+inx, f
⟩
L2

)
n∈Z

+
(⟨

e+inx, g
⟩
L2

)
n∈Z

[1]
= αFf + Fg .

In the step marked with ∗, we have used the linearity of the scalar product in the second
argument.

(vi) Injectivity: Ff = 0 implies f = 0, because F is norm-preserving. Hence, F is injective [1].
Surjectivity: Pick any c ∈ ℓ2(Z); thus ∥c∥2ℓ2 =

∑
n∈Z|cn|2 <∞. Define the function

fc :=
∑
n∈Z

cn e+inx .

By definition, Ffc = c ∈ ℓ2(Z) holds [1], and thus the norm-preserving property (iv) yields
that fc ∈ L2([−π,+π]),

∥fc∥2L2 =
∥∥Ffc∥∥2ℓ2 = ∥c∥2ℓ2 <∞ . [1]

This means F is also surjective, and hence, bijective [1].
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21. Orthogonal subspaces and projections onto subspaces (16 points)
Let {φn}n∈N be an orthonormal basis (ONB) of a Hilbert spaceH andN ∈ N.

(i) Prove that E :=
{
φ1, . . . , φN

}⊥ is a sub vector space.

(ii) Give an ONB for the subspace E =
{
φ1, . . . , φN

}⊥.
(iii) Show that

(
{φ1, . . . , φN}⊥

)⊥
= E⊥ = span

{
φ1, . . . , φN

}
.

Moreover, define the map

P : H −→ H , Pψ :=

N∑
n=1

⟨φn, ψ⟩ φn .

(iv) Show that P is linear, i. e. for any φ,ψ ∈ H and α ∈ C, we have P
(
αφ+ ψ

)
= αPφ+ Pψ.

(v) Show that P is a projection, i. e. P 2 = P .
(vi) Show that P is bounded, i. e. ∥Pφ∥ ≤ ∥φ∥ holds for any φ ∈ H.

Solution:

(i) The orthogonal complement is defined as

E
[1]
=
{
ψ ∈ H | ⟨φj , ψ⟩ = 0, j = 1, . . . , N

}
.

For any ϕ, ψ ∈ E andα ∈ C, also the vectorαϕ+ψ is an element ofE [1]: for all j = 1, . . . , N

⟨φj , α ϕ+ ψ⟩ = α ⟨φj , ϕ⟩+ ⟨φj , ψ⟩
[1]
= 0

is satisfied. Hence, E is a linear subspace ofH.
(ii) {φj}∞j=N+1 [1]

(iii) Then φj ∈ E⊥, because by definition of E

⟨φj , ψ⟩
[1]
= 0

holds for all ψ ∈ H. Thus, φj ∈ E⊥ for all j = 1, . . . , N . By (i), E is a linear sub space [1].
Now assume that there exists a ψ ∈ E⊥ which is not a linear combination of {φ1, . . . , φN} [1].
Since

{
φj

}
j∈N is an orthonormal basis ofH, we can express ψ as

ψ =

∞∑
j=1

cj φj . [1]

By assumption, there exists a n ≥ N + 1 for which cn ̸= 0 [1]. But then

⟨φn, ψ⟩ = cn ̸= 0

and ψ cannot be an element of E⊥, contradiction [1].
Hence, E⊥ = span{φ1, . . . , φN}.
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(iv) The linearity of P follows from the linearity of the scalar product in the first argument: for
all ϕ, ψ ∈ H and α ∈ C, we have

P
(
αϕ+ ψ

) [1]
=

N∑
j=1

⟨φj , α ϕ+ ψ⟩ φj = α
N∑
j=1

⟨φj , ϕ⟩ φj +
N∑
j=1

⟨φj , ψ⟩ φj

[1]
= αPϕ+ Pψ .

Hence, P is linear.
(v) For any ψ ∈ H, we deduce using the linearity of P :

P 2ψ = P

(
N∑
j=1

⟨φj , ψ⟩ φj

)
[1]
=

N∑
k=1

⟨φj , ψ⟩ Pφj

=
N∑

k,j=1

⟨φj , ψ⟩ ⟨φk, φj⟩︸ ︷︷ ︸
=δk,j

φk =
N∑
j=1

⟨φj , ψ⟩ φj
[1]
= Pψ

Hence, P is a projection.
(vi) With the help of Bessel’s inequality [1], we obtain the claim:

∥∥Pψ∥∥ =

∥∥∥∥∥∥
N∑
j=1

⟨φj , ψ⟩ φj

∥∥∥∥∥∥
[1]

≤ ∥ψ∥
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