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The Heat Equation & Hilbert Spaces

Homework Problems

19. The heat equation on a ring (17 points)

Assume a circular ring of radius r has been lying in a heat bath
with temperature distribution T'(x1, z2) = Tp %+, T > 0, for
a very long time. o
At time ¢t = 0, the ring is removed from the heat bath, and
for t > 0 the temperature distribution u(¢, s), s being the arc
length, satisfies the heat equation

o = a* 92, a>0.

(i) Compute u(t, s) for t > 0 using separation of variables.
(Hint: Use u(t, s) € R to simplify your arguments.)

(ii) After what time has the maximal difference in tempera-
ture decreased to the 1/eth fraction of that at time ¢ = 07

Solution:
(i) We first rewrite the initial condition in terms of the arc length s = r:

S
rcos 2 [
= =T cos 7

f(s) =T(rcos2,rsin) =Ty

If we identify the circle of radius r with the interval [0, 27r7], then the solutions need to satisfy
periodic boundary conditions [1],

u(t,0) = u(t, 2nr) .

Equivalently, we can think of periodic functions on R where (¢, s + 271) = u(t, s) holds.

After plugging in the product ansatz u(t, s) = 7(t) ((s) [1] into the heat equation,

() ¢(w) L a2 (1) ¢"(s)

we obtain two coupled ODEs,




(i)

Note that in this case, we may assume that \ is real instead of complex. Solving the equation
for ( yields

ai(A) siny/|As + az(\) cos \/|A|s A<0

1
Ca(s) Q a1(0) 4+ a2(0) s A=0
aj(N) sinh y/|\|s + a2(A) cosh/|A|[s A >0

Imposing periodic boundary conditions eliminates the solutions for A < 0[1] and the linear so-

lution for A = 0[1]. For A < 0, only those solutions are admissible which have 27r-periodicity,
i.e.

)\Q_@)Q, neNy.

r
Now we can solve the second equation for those special s,

2
—a2n ¢

2

Hence, any solution is a linear combination of the form
1] a2
u(t,s) = Z e " 2" (ai(n) sin ™2 + as(n) cos 22)
n=0

To satisfy the initial condition, (0, s) = f(s), we set all but one equal to 0,

u(0, 5) W Z(al(n) sin ™2 + ay(n) cos %) = T cos g,

n=0
and thus the solution is

{1 —%t s
u(t,s) =Toe 2" cos 7.

The maximal temperature difference is

Au(t) U Ser{%;a;:ﬂ u(t,s) — Ser[ggzrr] u(t, s)
2

a2 a
—Tye =t (1 (-1)) Yorpe 2t

Now if we require that at ¢, the difference is 1/eth of the initial maximal temperature differ-
ence,

we obtain t, = ;—z [1].



20. The Fourier basis on L%([—n, +7]) (19 points)

Consider the Hilbert space of square integrable functions L?([—, +7]) endowed with the scalar
product

+m .

Foohp = [ def(@) ale).

27 J_,

(i) Show that {e™™"*}, .7 is an orthonormal system.

(i) Show that {1} U {v/2 sinnz, v2 cosnz} <y is an orthonormal system.

The orthonormal system {e*1"*}, .7 is also an orthonormal basis of L?([—r, +7]). Moreover, let
(?(Z) be the Hilbert space of square summable sequences with scalar product

(a, b>£2 = Z% bn, a = (an)TLEZa b= (bn)nEZ .
neL

(i) Show that for any f € L*([—m,+x]) we have ., _,|(e™", f>‘iQ < o0.
(iv) Show that the map

F L ([~m, 7)) — (2, frs Ff = (<e+im, f>L2)

ne’
is norm-preserving, i. e. || || ;2 = || F f||,» holds for any f € L*([—n, +7]).
(v) Show that F is linear, i. e. for all f,g € L?([—m, +7]) and o € C we have
f(af—i—g) =aFf+ Fg.

(vi) Show that F is bijective.

Solution:

(i) The vectors et"® are normalized:

1 + +m

Finz o +i - etinz gtine _ =
<e inz o mx>L2 =5 3 dp etine gtinz _ o B dr = 1. [1]
For n # k, the vectors are orthogonal:
) ) 1 tr 1 a )
<e+mx e+1kx> - dg etine e+1kx - dx e+1(kfn)x
’ L2 27 J_ . 2 J_»
E i 1 (b} +m _ etilk—n)m _ o—i(k—n)m
2w i(k —n) . i2n(k —n)

_ (_1)k—n _ (_1)k—n B 0
B i2r(k —n) -

Hence, {eT"*}, c7 is an orthonormal system.

(ii) We write sinnx and cos nzx are real and imaginary part of e and use 1 = e° as well as (i):

<1, V2 cosnx>L2 B \}§(<1,e+i’m>L2 + <1,e*im>L2> =0

(1V2sinna) = i\l/§(<1,e+i"f’f>L2 — (L) .) =0



Now let us verify that the cos nz, n > 1, functions are orthonormal:

2 . . . .
<\f2 cos nx, \fQ cos ka;> _ = <e+1mc + efmx, etikz + e*lkﬂ?>
L2 4 L2

_ %<<e+inx7 e+ikm>L2 i <e—im’e+ikm>L2+
+<e+inx’e—ikm>L2 + <e—inm’ e—ikw>L2)
= %(6n,k + 6771,71{) g 5n,k

Similarly, we show that sinnz, n > 1, are orthonormal [1].

Moreover, cos nx and sin kx are always orthogonal:

<\f2 cos nx, v/2 sin k:a:>L2 = % <eJrim +e7inz gtikr _ e—i’”>
_ %<<e+m’ e+ikw>L2 n <e—m7 e+ikx>L2_|_
_<e+inaz7 e—ikx>L2 . <e—in:c’e—ikag>L2)
= %(%k _ 5_n’_k) (1] 0

Hence, {1} U {sinnz,cosna} ¢ is an orthonormal set.

L2

(iii) We now use that {e*1"*}, .7 is an orthonormal basis, i. e. any f € L?([—, +7]) can be written
as Fourier series,

+1na: +mac
f= E L2 €

neL

where the right-hand side converges in the L*-sense, i. e. fx := Y-, <y (€77, f) . €T
converges to f as N — oo,

i _ 2 _o.
Jim [|f = fw[[7. =0
Thus, || f||32 < co can be written as

I1£1Z2 = (F, F) 1o
[—i] <Znez<e+mxa f>L2 e—an, Zkez<e+ikxa f>L2 e+ikz>L2

{1 Z W<e+ikx,f> <e+inx’e+ikx>
~——_————

n,k€Z

S et ) < 0.

nez

:5n,k:

The right-hand side is finite as f € L?(|—n, +7]) and thus, by definition || f| < oc.
(iv) Forany f € L?([—7, +7]), we compute

[ ) o
S (e, P @ s n

nel

The right-hand side is finite, because it coincides with || f]| ;> < oc.



(v) Pickany f,g € L?([—m,+n]) and « € C. Then we have:

Flof+a) = (" af+0)) = (0 (™ D)t (7 0),0),
—a (€))L (€),)

Uarf+rg.

EZ

nez neL

In the step marked with *, we have used the linearity of the scalar product in the second
argument.

(vi) Injectivity: F f = 0 implies f = 0, because F is norm-preserving. Hence, F is injective [1].

Surjectivity: Pick any ¢ € (%(Z); thus ||c||7. = 3°,,czlen|? < 0c. Define the function

fo = Z ¢ etine

nel

By definition, 7 f. = ¢ € ¢?(Z) holds [1], and thus the norm-preserving property (iv) yields
that f. € L*([-m, +n)),

I fellZ = H]:fCHZ2 =|lc]|% < . 1]

This means F is also surjective, and hence, bijective [1].



21. Orthogonal subspaces and projections onto subspaces (16 points)

Let {5, }nen be an orthonormal basis (ONB) of a Hilbert space H and N € N.
(i) Provethat E := {o, ..., goN}L is a sub vector space.
(ii) Give an ONB for the subspace E = {¢y,. .., @N}L.

(i) Show that ({¢1, ... ,@N}L)J' = E+ =span{opy,...,on}.

Moreover, define the map

N
P:H—H, PY=> (1) ¢n.

n=1

(iv) Show that P is linear, i. e. for any ¢, € H and « € C, we have P(ap + ¢) = o Po + P
(v) Show that P is a projection, i. e. P? = P.

(vi) Show that P is bounded, i. e. || Py|| < ||¢]|| holds for any ¢ € H.

Solution:

(i) The orthogonal complement is defined as

1 .
pd {ven]| (pj¢)=0,j=1,...,N}.
Forany ¢, € F and a € C, also the vector a ¢+ is an element of E'[1]: forallj =1,..., N

(P @6 +1) = a (p5,6) + (05 9) 2 0

is satisfied. Hence, E is a linear subspace of H.

(ii) {Sﬂj}}iNH [1]
(iii) Then g; € E*, because by definition of £/

[1]

holds for all ¢y € H. Thus, ¢; € Etforallj=1,..., N.By(i), F is a linear sub space [1].
Now assume that there exists a ¢ € E+ which is not a linear combination of {¢1, ..., on} [1].
Since {¢; }j ¢ s an orthonormal basis of #, we can express ¢ as
o
eI R [1]
j=1

By assumption, there exists an > N + 1 for which ¢,, # 0[1]. But then

<§0n7¢> =c, #0

and 1) cannot be an element of E, contradiction [1].

Hence, E+ = span{y1,...,on}.



(iv) The linearity of P follows from the linearity of the scalar product in the first argument: for
all 9 € H and o € C, we have

N N N
Plag+y) L D lpnadtv)oj=a} (20) ¢+ (95¥) ¢
j=1 j=1

Hence, P is linear.

(v) For any ¢ € H, we deduce using the linearity of P:

N
P%=P<Z 0, ) S (65,0) Poy
—1 E—1
Y o
Z (@i, ¥) (0r05) o6 = > _ (0 ¥) 5 = Py
=1 N—— =1

=0,

Hence, P is a projection.
(vi) With the help of Bessel’s inequality [1], we obtain the claim:
(1]
1Pyl = < [l

N
Z Soja




