

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 6 (2014.10.17)

Selfadjoint Operators

Homework Problems

20. Equivalent conditions for unitarity

Prove the following statements:

- (i) Let \mathcal{H} be a Hilbert space over \mathbb{C} and $A \in \mathcal{B}(\mathcal{H})$. If $\langle A\varphi, \varphi \rangle = 0$ holds for all $\varphi \in \mathcal{H}$, then A = 0. Hint: Consider the linear combination $\lambda \varphi + \mu \psi$ for various values of $\lambda, \mu \in \mathbb{C}$.
- (ii) Let \mathcal{H}_1 and \mathcal{H}_2 be two Hilbert spaces and $U \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$. Then the following are equivalent:
 - (1) U is unitary, i. e. $U^* = U^{-1} \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$.
 - (2) $U\mathcal{H}_1 = \mathcal{H}_2$ and $\langle \varphi, \psi \rangle_{\mathcal{H}_1} = \langle U\varphi, U\psi \rangle_{\mathcal{H}_2}$ for all $\varphi, \psi \in \mathcal{H}_1$.
 - (3) $U\mathcal{H}_1 = \mathcal{H}_2$ and $||U\varphi||_{\mathcal{H}_2} = ||\varphi||_{\mathcal{H}_1}$ for all $\varphi \in \mathcal{H}_1$.
- (iii) Give an example of a map $U \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ which is not unitary even though $\langle \varphi, \psi \rangle_{\mathcal{H}_1} = \langle U\varphi, U\psi \rangle_{\mathcal{H}_2}$ is satisfied for all $\varphi, \psi \in \mathcal{H}_1$. Why does that example not contradict the equivalences from (ii)?

21. Translations on the interval and its generator

Consider the problem of translations on $L^2([0, 1])$ and their generators from Chapter 4.3.2. We will reuse all of the notation, e. g. P_{\min} is the operator $-i\partial_x$ equipped with domain

$$\mathcal{D}_{\min} := \{ \varphi \in L^2([0,1]) \mid -i\partial_x \varphi \in L^2([0,1]), \ \varphi(0) = 0 = \varphi(1) \}.$$

- (i) Show that $P_{\min}^* = P_{\max}$.
- (ii) Compute the deficiency indices for P_{\min} .
- (iii) Show that $P_{\vartheta} = P_{\vartheta}^*$ is selfadjoint.

22. Translations on the half line

Consider the Hilbert space $L^2([0, +\infty))$.

- (i) Show that there exists no selfadjoint extension of $P = -i\partial_x$ with domain $\mathcal{D}(P) = \mathcal{C}^{\infty}_{c}((0, +\infty))$.
- (ii) Why does (i) imply that there cannot be a unitary evolution group associated to translations on $L^2([0, +\infty))$?

23. The radial part of the Laplace operator in d = 3

Consider the radial part of $-\Delta_x$ on $L^2(\mathbb{R}^3)$, the operator

$$H_{\rm rad} = -\frac{1}{2}\partial_r^2 - \frac{1}{r}\partial_r,$$

with domain $\mathcal{C}^{\infty}_{c}((0,+\infty))$ on the Hilbert space $L^{2}([0,+\infty))$ endowed with the scalar product

$$\langle \varphi, \psi \rangle = \int_0^{+\infty} \mathrm{d}r \, r^2 \, \overline{\varphi(r)} \, \psi(r)$$

(The factor r^2 stems from $\int_{\mathbb{R}^3} \mathrm{d}x = \int_0^{2\pi} \mathrm{d}\varphi \int_{-\pi}^{+\pi} \mathrm{d}\vartheta \int_0^{+\infty} \mathrm{d}r \, r^2 \sin \vartheta$ in spherical coordinates.)

- (i) Show that $H_{\rm rad}$ is symmetric.
- (ii) Find out whether $H_{\rm rad}$ is essentially selfadjoint.

Hand in home work on: Friday, 24 October 2014, before class