Foundations of
 Quantum Mechanics
 (APM 421 H)

Selfadjoint Operators

Homework Problems

20. Equivalent conditions for unitarity

Prove the following statements:
(i) Let \mathcal{H} be a Hilbert space over \mathbb{C} and $A \in \mathcal{B}(\mathcal{H})$. If $\langle A \varphi, \varphi\rangle=0$ holds for all $\varphi \in \mathcal{H}$, then $A=0$. Hint: Consider the linear combination $\lambda \varphi+\mu \psi$ for various values of $\lambda, \mu \in \mathbb{C}$.
(ii) Let \mathcal{H}_{1} and \mathcal{H}_{2} be two Hilbert spaces and $U \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$. Then the following are equivalent:
(1) U is unitary, i. e. $U^{*}=U^{-1} \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$.
(2) $U \mathcal{H}_{1}=\mathcal{H}_{2}$ and $\langle\varphi, \psi\rangle_{\mathcal{H}_{1}}=\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}}$ for all $\varphi, \psi \in \mathcal{H}_{1}$.
(3) $U \mathcal{H}_{1}=\mathcal{H}_{2}$ and $\|U \varphi\|_{\mathcal{H}_{2}}=\|\varphi\|_{\mathcal{H}_{1}}$ for all $\varphi \in \mathcal{H}_{1}$.
(iii) Give an example of a map $U \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ which is not unitary even though $\langle\varphi, \psi\rangle_{\mathcal{H}_{1}}=$ $\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}}$ is satisfied for all $\varphi, \psi \in \mathcal{H}_{1}$. Why does that example not contradict the equivalences from (ii)?

21. Translations on the interval and its generator

Consider the problem of translations on $L^{2}([0,1])$ and their generators from Chapter 4.3.2. We will reuse all of the notation, e. g. $P_{\min }$ is the operator $-\mathrm{i} \partial_{x}$ equipped with domain

$$
\mathcal{D}_{\min }:=\left\{\varphi \in L^{2}([0,1]) \mid-\mathrm{i} \partial_{x} \varphi \in L^{2}([0,1]), \varphi(0)=0=\varphi(1)\right\}
$$

(i) Show that $P_{\min }^{*}=P_{\max }$.
(ii) Compute the deficiency indices for $P_{\min }$.
(iii) Show that $P_{\vartheta}=P_{\vartheta}^{*}$ is selfadjoint.

22. Translations on the half line

Consider the Hilbert space $L^{2}([0,+\infty))$.
(i) Show that there exists no selfadjoint extension of $P=-\mathrm{i} \partial_{x}$ with domain $\mathcal{D}(P)=\mathcal{C}_{\mathrm{c}}^{\infty}((0,+\infty))$.
(ii) Why does (i) imply that there cannot be a unitary evolution group associated to translations on $L^{2}([0,+\infty))$?
23. The radial part of the Laplace operator in $d=3$

Consider the radial part of $-\Delta_{x}$ on $L^{2}\left(\mathbb{R}^{3}\right)$, the operator

$$
H_{\mathrm{rad}}=-\frac{1}{2} \partial_{r}^{2}-\frac{1}{r} \partial_{r},
$$

with domain $\mathcal{C}_{c}^{\infty}((0,+\infty))$ on the Hilbert space $L^{2}([0,+\infty))$ endowed with the scalar product

$$
\langle\varphi, \psi\rangle=\int_{0}^{+\infty} \mathrm{d} r r^{2} \overline{\varphi(r)} \psi(r)
$$

(The factor r^{2} stems from $\int_{\mathbb{R}^{3}} \mathrm{~d} x=\int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{-\pi}^{+\pi} \mathrm{d} \vartheta \int_{0}^{+\infty} \mathrm{d} r r^{2} \sin \vartheta$ in spherical coordinates.)
(i) Show that $H_{\text {rad }}$ is symmetric.
(ii) Find out whether $H_{\text {rad }}$ is essentially selfadjoint.

