The Heat Equation \& Hilbert Spaces

Homework Problems

19. The heat equation on a ring (17 points)

Assume a circular ring of radius r has been lying in a heat bath with temperature distribution $T\left(x_{1}, x_{2}\right)=T_{0} \frac{x_{1}}{r}, T_{0}>0$, for a very long time.
At time $t=0$, the ring is removed from the heat bath, and for $t>0$ the temperature distribution $u(t, s), s$ being the arc length, satisfies the heat equation

$$
\partial_{t} u=a^{2} \partial_{s}^{2} u, \quad a>0 .
$$

(i) Compute $u(t, s)$ for $t>0$ using separation of variables. (Hint: Use $u(t, s) \in \mathbb{R}$ to simplify your arguments.)

(ii) After what time has the maximal difference in temperature decreased to the $1 /$ eth fraction of that at time $t=0$?
20. The Fourier basis on $L^{2}([-\pi,+\pi])$ (19 points)

Consider the Hilbert space of square integrable functions $L^{2}([-\pi,+\pi])$ endowed with the scalar product

$$
\langle f, g\rangle_{L^{2}}:=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \overline{f(x)} g(x)
$$

(i) Show that $\left\{\mathrm{e}^{+\mathrm{in} x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system.
(ii) Show that $\{1\} \cup\{\sqrt{2} \sin n x, \sqrt{2} \cos n x\}_{n \in \mathbb{N}}$ is an orthonormal system.

The orthonormal system $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is also an orthonormal basis of $L^{2}([-\pi,+\pi])$. Moreover, let $\ell^{2}(\mathbb{Z})$ be the Hilbert space of square summable sequences with scalar product

$$
\langle a, b\rangle_{\ell^{2}}:=\sum_{n \in \mathbb{Z}} \overline{a_{n}} b_{n}, \quad a=\left(a_{n}\right)_{n \in \mathbb{Z}}, b=\left(b_{n}\right)_{n \in \mathbb{Z}}
$$

(iii) Show that for any $f \in L^{2}([-\pi,+\pi])$ we have $\sum_{n \in \mathbb{Z}}\left|\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle\right|_{L^{2}}^{2}<\infty$.
(iv) Show that the map

$$
\mathcal{F}: L^{2}([-\pi,+\pi]) \longrightarrow \ell^{2}(\mathbb{Z}), f \mapsto \mathcal{F} f:=\left(\left\langle\mathrm{e}^{+\mathrm{i} n x}, f\right\rangle_{L^{2}}\right)_{n \in \mathbb{Z}}
$$

is norm-preserving, i. e. $\|f\|_{L^{2}}=\|\mathcal{F} f\|_{\ell^{2}}$ holds for any $f \in L^{2}([-\pi,+\pi])$.
(v) Show that \mathcal{F} is linear, i. e. for all $f, g \in L^{2}([-\pi,+\pi])$ and $\alpha \in \mathbb{C}$ we have

$$
\mathcal{F}(\alpha f+g)=\alpha \mathcal{F} f+\mathcal{F} g
$$

(vi) Show that \mathcal{F} is bijective.

21. Orthogonal subspaces and projections onto subspaces (16 points)

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis (ONB) of a Hilbert space \mathcal{H} and $N \in \mathbb{N}$.
(i) Prove that $E:=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$ is a sub vector space.
(ii) Give an ONB for the subspace $E=\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}$.
(iii) Show that $\left(\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}^{\perp}\right)^{\perp}=E^{\perp}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$.

Moreover, define the map

$$
P: \mathcal{H} \longrightarrow \mathcal{H}, P \psi:=\sum_{n=1}^{N}\left\langle\varphi_{n}, \psi\right\rangle \varphi_{n} .
$$

(iv) Show that P is linear, i. e. for any $\varphi, \psi \in \mathcal{H}$ and $\alpha \in \mathbb{C}$, we have $P(\alpha \varphi+\psi)=\alpha P \varphi+P \psi$.
(v) Show that P is a projection, i. e. $P^{2}=P$.
(vi) Show that P is bounded, i. e. $\|P \varphi\| \leq\|\varphi\|$ holds for any $\varphi \in \mathcal{H}$.

