

Differential Equations of Mathematical Physics (APM 351 Y)

2013-2014 Solutions 7 (2013.10.24)

Weighted Hilbert spaces, the free Maxwell equations & Operators

Homework Problems

22. Weighted L^2 -spaces (16 points)

Let $\varepsilon \in L^{\infty}(\mathbb{R}^n)$ be a function bounded away from 0 and $+\infty$, i. e. there exist c, C > 0 such that

$$0 < c \le \varepsilon(x) \le C < +\infty$$

holds for almost all $x \in \mathbb{R}^n$. Define the weighted L^2 -space $L^2_{\varepsilon}(\mathbb{R}^n)$ as the pre-Hilbert space with scalar product

$$\langle f,g\rangle_{\varepsilon} := \int_{\mathbb{R}^n} \mathrm{d}x \,\varepsilon(x) \,\overline{f(x)} \,g(x)$$
 (1)

so that $\|f\|_{\varepsilon} := \sqrt{\langle f, f \rangle_{\varepsilon}} < \infty$.

- (i) Show that $f \in L^2(\mathbb{R}^n)$ if and only if $f \in L^2_{\varepsilon}(\mathbb{R}^n)$.
- (ii) Show that the map

$$U_{\varepsilon}: L^2(\mathbb{R}^n) \longrightarrow L^2_{\varepsilon}(\mathbb{R}^n), \ f \mapsto \sqrt{\varepsilon}f,$$

is norm-preserving, i. e. $\|f\|_{\varepsilon} = \|U_{\varepsilon}f\|_{L^2(\mathbb{R}^n)}$ holds for all $f \in L^2(\mathbb{R}^n)$.

(iii) Show that $L^2_{\varepsilon}(\mathbb{R}^n)$ is indeed a Hilbert space, i. e. prove that it is complete.

Solution:

(i) " \Rightarrow :" Let $f\in L^2(\mathbb{R}^n)$. Then by definition $\|f\|<\infty$, and hence also

$$\|f\|_{\varepsilon}^{2} \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{d}x \, \varepsilon(x) \left|f(x)\right|^{2} \stackrel{[1]}{\leq} \int_{\mathbb{R}^{3}} \mathrm{d}x \, C \left|f(x)\right|^{2} \stackrel{[1]}{=} C \|f\|^{2} < \infty \, .$$

$$\begin{split} \|f\|^2 \stackrel{[1]}{=} & \int_{\mathbb{R}^3} \mathrm{d}x \left| f(x) \right|^2 = \int_{\mathbb{R}^3} \mathrm{d}x \, \frac{\varepsilon(x)}{\varepsilon(x)} \left| f(x) \right|^2 \\ \stackrel{[1]}{\leq} & c^{-1} \, \int_{\mathbb{R}^3} \mathrm{d}x \, \varepsilon(x) \left| f(x) \right|^2 \stackrel{[1]}{=} & c^{-1} \, \|f\|_{\varepsilon}^2 \, . \end{split}$$

(ii) Let $f \in L^2(\mathbb{R}^n)$. Then we compute

$$\begin{split} \left\| U_{\varepsilon}f \right\|_{L^{2}(\mathbb{R}^{n})}^{2} \stackrel{[1]}{=} \left\langle \sqrt{\varepsilon}f, \sqrt{\varepsilon}f \right\rangle_{L^{2}(\mathbb{R}^{n})} &= \int_{\mathbb{R}^{n}} \mathrm{d}x \left| \sqrt{\varepsilon}(x) f(x) \right|^{2} \\ \stackrel{[1]}{=} \int_{\mathbb{R}^{n}} \mathrm{d}x \, \varepsilon(x) \left| f(x) \right|^{2} &= \left\langle f, f \right\rangle_{\varepsilon} \stackrel{[1]}{=} \|f\|_{\varepsilon}^{2} \, . \end{split}$$

Hence, U_{ε} is norm-preserving.

(iii) Let $\{f_j\}_{j\in\mathbb{N}}$ be a Cauchy sequence in $L^2_{\varepsilon}(\mathbb{R}^n)$ [1]. Since U_{ε} is norm-preserving and linear, it is also invertible (the arguments are the same as in problem 20 (vi)) [1]. Moreover, the inverse $U_{\varepsilon}^{-1} = U_{\varepsilon^{-1}} : L^2_{\varepsilon}(\mathbb{R}^n) \longrightarrow {}^2(\mathbb{R}^n)$ is also norm-preserving by (ii) [1].

That means $\{U_{\varepsilon^{-1}}f_j\}_{j\in\mathbb{N}}$ is a Cauchy sequence in $L^2(\mathbb{R}^n)$ [1]. Seeing as $L^2(\mathbb{R}^n)$ is complete, $U_{\varepsilon^{-1}}f_j$ converges to some $g \in L^2(\mathbb{R}^n)$ [1]. But then f_j converges to $U_{\varepsilon}g$ in $L^2_{\varepsilon}(\mathbb{R}^n)$ [1],

$$\begin{split} \left\| f_j - U_{\varepsilon}g \right\|_{\varepsilon} &= \left\| U_{\varepsilon} \left(U_{\varepsilon^{-1}} f_j - g \right) \right\|_{\varepsilon} \\ &\stackrel{(ii)}{=} \left\| U_{\varepsilon^{-1}} f_j - g \right\|_{L^2(\mathbb{R}^n)} \xrightarrow{j \to \infty} 0 \,. \end{split}$$

Hence, $L^2_{\varepsilon}(\mathbb{R}^n)$ is complete, and thus a Hilbert space [1].

23. The free Maxwell equations as Schrödinger-type equation (17 points)

Consider the dynamical Maxwell equations

$$\partial_t \mathbf{E}(t) = +\nabla_x \times \mathbf{H}(t), \qquad \mathbf{E}(0) = \mathbf{E}^{(0)} \in L^2(\mathbb{R}^3, \mathbb{C}^3), \qquad (2)$$

$$\partial_t \mathbf{H}(t) = -\nabla_x \times \mathbf{E}(t), \qquad \mathbf{H}(0) = \mathbf{H}^{(0)} \in L^2(\mathbb{R}^3, \mathbb{C}^3).$$

Here, $L^2(\mathbb{R}^n,\mathbb{C}^N)$ is the Hilbert space with scalar product

$$\langle \Psi, \Phi \rangle := \int_{\mathbb{R}^3} \mathrm{d}x \, \Psi(x) \cdot \Phi(x)$$

defined in terms of the scalar product $\Psi(x) \cdot \Phi(x) := \sum_{j=1}^{N} \overline{\Psi_j(x)} \Phi_j(x)$ on \mathbb{C}^N . Moreover, consider also the Schrödinger-type equation

$$\mathbf{i}\frac{\mathbf{d}}{\mathbf{d}t}\begin{pmatrix}\mathbf{E}(t)\\\mathbf{H}(t)\end{pmatrix} = \mathbf{Rot}\begin{pmatrix}\mathbf{E}(t)\\\mathbf{H}(t)\end{pmatrix},\qquad\qquad\begin{pmatrix}\mathbf{E}(0)\\\mathbf{H}(0)\end{pmatrix} = \begin{pmatrix}\mathbf{E}^{(0)}\\\mathbf{H}^{(0)}\end{pmatrix} \in L^2(\mathbb{R}^3,\mathbb{C}^6),\qquad(3)$$

where the free Maxwell operator

$$\mathbf{Rot} := \begin{pmatrix} 0 & +\mathbf{i} \nabla_x^{\times} \\ -\mathbf{i} \nabla_x^{\times} & 0 \end{pmatrix}$$

is defined in terms of the curl $\nabla_x^{\times} \mathbf{E} := \nabla_x \times \mathbf{E}$.

During the computations, you may work with Rot and $\mathrm{e}^{-\mathrm{i}t\mathrm{Rot}}$ as if they were n imes n matrices.

- (i) Verify that $(\mathbf{E}(t), \mathbf{H}(t)) := e^{-it\mathbf{Rot}} (\mathbf{E}^{(0)}, \mathbf{H}^{(0)})$ solves (3).
- (ii) Show that the dynamical Maxwell equations (2) can be recast in the form (3).
- (iii) Define complex conjugation C as $(C\Psi)(x) := \overline{\Psi(x)}$. Confirm that $C \operatorname{Rot} C = -\operatorname{Rot}$ holds.
- (iv) Prove $C e^{-it Rot} C = e^{-it Rot}$ as well as that $e^{-it Rot}$ commutes with complex conjugation, i. e.

$$\left[\mathbf{e}^{-\mathrm{i}t\mathbf{Rot}}, C \right] := \mathbf{e}^{-\mathrm{i}t\mathbf{Rot}} C - C \, \mathbf{e}^{-\mathrm{i}t\mathbf{Rot}} = 0$$

- (v) Show that e^{-itRot} commutes with the real part operator $Re := \frac{1}{2}(1+C)$, i. e. $[e^{-itRot}, Re] = 0$.
- (vi) Show that if $(\mathbf{E}^{(0)}, \mathbf{H}^{(0)})$ is initially real-valued, then the solution $(\mathbf{E}(t), \mathbf{H}(t))$ to the Maxwell equations is also real-valued.

Solution:

(i) By direct computation, we obtain that the ansatz solves the dynamical equation,

$$\mathbf{i}\frac{\mathbf{d}}{\mathbf{d}t}\begin{pmatrix}\mathbf{E}(t)\\\mathbf{H}(t)\end{pmatrix} = \mathbf{i}\frac{\mathbf{d}}{\mathbf{d}t}\left(\mathbf{e}^{-it\mathbf{Rot}}\begin{pmatrix}\mathbf{E}^{(0)}\\\mathbf{H}^{(0)}\end{pmatrix}\right) = -\mathbf{i}^{2}\mathbf{Rot}\,\mathbf{e}^{-it\mathbf{Rot}}\begin{pmatrix}\mathbf{E}^{(0)}\\\mathbf{H}^{(0)}\end{pmatrix}$$
$$\stackrel{[1]}{=}\mathbf{Rot}\begin{pmatrix}\mathbf{E}(t)\\\mathbf{H}(t)\end{pmatrix},$$

and also satisfies the initial condition,

$$\left(\mathbf{E}(0),\mathbf{H}(0)\right) = \mathbf{e}^0\left(\mathbf{E}^{(0)},\mathbf{H}^{(0)}\right) \stackrel{[1]}{=} \left(\mathbf{E}^{(0)},\mathbf{H}^{(0)}\right).$$

(ii) If we multiply equations (2) with i and arrange them as a vector in \mathbb{C}^6 , we obtain

$$\mathbf{i}\frac{\mathbf{d}}{\mathbf{d}t}\begin{pmatrix}\mathbf{E}\\\mathbf{H}\end{pmatrix}\stackrel{[1]}{=}\begin{pmatrix}+\mathbf{i}\nabla_x\times\mathbf{H}(t)\\-\mathbf{i}\nabla_x\times\mathbf{E}(t)\end{pmatrix}$$

On the other hand, computing

$$\mathbf{Rot} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} \stackrel{[1]}{=} \begin{pmatrix} +\nabla_x \times \mathbf{H}(t) \\ -\nabla_x \times \mathbf{E}(t) \end{pmatrix}$$

yields that the right-hand sides agree.

(iii) Plugging in the definition of complex conjugation and applying the operator to an arbitrary $({f E},{f H})$, we obtain

$$C \operatorname{Rot} C \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \stackrel{[1]}{=} C \operatorname{Rot} \begin{pmatrix} \overline{\mathbf{E}} \\ \overline{\mathbf{H}} \end{pmatrix} = C \begin{pmatrix} +i\nabla_x \times \overline{\mathbf{H}} \\ -i\nabla_x \times \overline{\mathbf{E}} \end{pmatrix}$$
$$\stackrel{[1]}{=} \begin{pmatrix} \overline{+i\nabla_x \times \overline{\mathbf{H}}} \\ -i\nabla_x \times \overline{\mathbf{E}} \end{pmatrix} = \begin{pmatrix} -i\nabla_x \times \overline{\mathbf{H}} \\ +i\nabla_x \times \overline{\mathbf{E}} \end{pmatrix}$$
$$\stackrel{[1]}{=} -\operatorname{Rot} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}.$$

(iv) First, let us conjugate e^{-itRot} with *C*:

$$C \operatorname{e}^{-\operatorname{i} t \operatorname{Rot}} C \stackrel{[1]}{=} \operatorname{e}^{+\operatorname{i} t \, C \operatorname{Rot} C} \stackrel{[1]}{=} \operatorname{e}^{-\operatorname{i} t \operatorname{Rot}}$$

Thus, using $C^2 = 1$, this also implies that $e^{-it Rot}$ commutes with C:

$$\left[\mathsf{e}^{-it\mathbf{Rot}}, C\right] \stackrel{[1]}{=} \mathsf{e}^{-it\mathbf{Rot}} C - C \, \mathsf{e}^{-it\mathbf{Rot}} \stackrel{[1]}{=} \left(\mathsf{e}^{-it\mathbf{Rot}} - C \, \mathsf{e}^{-it\mathbf{Rot}} C\right) C \stackrel{[1]}{=} 0$$

(v) Since the identity commutes with anything, the result follows directly from (iv):

$$\left[\mathbf{e}^{-it\mathbf{Rot}}, \mathbf{Re}\right] \stackrel{[1]}{=} \frac{1}{2} \left[\mathbf{e}^{-it\mathbf{Rot}}, 1\right] + \frac{1}{2} \left[\mathbf{e}^{-it\mathbf{Rot}}, C\right] = 0 + 0 \stackrel{[1]}{=} 0$$

(vi) $(\mathbf{E}^{(0)}, \mathbf{H}^{(0)})$ is real-valued if and only if $(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}) = \operatorname{Re}(\mathbf{E}^{(0)}, \mathbf{H}^{(0)})$, and hence

$$\begin{split} \left(\mathbf{E}(t), \mathbf{H}(t) \right) & \stackrel{[1]}{=} \mathbf{e}^{-it\mathbf{Rot}} \left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)} \right) = \mathbf{e}^{-it\mathbf{Rot}} \operatorname{Re} \left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)} \right) \stackrel{[1]}{=} \operatorname{Re} \left(\mathbf{e}^{-it\mathbf{Rot}} \left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)} \right) \\ & \stackrel{[1]}{=} \operatorname{Re} \left(\mathbf{E}(t), \mathbf{H}(t) \right) \end{split}$$

has to be real.

24. Multiplication operators (23 points)

Let $V \in L^{\infty}(\mathbb{R}^n)$ and for $1 \leq p < \infty$ define the multiplication operator

$$(T_V\psi)(x) := V(x)\,\psi(x)\,,\qquad\qquad \psi \in L^p(\mathbb{R}^n)\,.$$

- (i) Show that $T_V : L^p(\mathbb{R}^n) \longrightarrow L^p(\mathbb{R}^n)$ is bounded.
- (ii) Prove that $||T_V|| = ||V||_{\infty}$ where $||\cdot||$ is the operator norm and $||\cdot||_{\infty}$ the L^{∞} -norm.
- (iii) Show that a multiplication operator T_V is bounded if and only if $V \in L^{\infty}(\mathbb{R}^n)$.
- (iv) Assume $V \in L^{\infty}(\mathbb{R}^n)$ is real-valued. Show that then $\langle \varphi, T_V \psi \rangle_{L^2(\mathbb{R}^n)} = \langle T_V \varphi, \psi \rangle_{L^2(\mathbb{R}^n)}$ holds for all $\varphi, \psi \in L^2(\mathbb{R}^n)$.
- (v) Assume that V is bounded away from 0 and $+\infty$, i. e. that there exist c, C > 0 so that

$$0 < c \le V(x) \le C < +\infty$$

holds for all $x \in \mathbb{R}^n$. Show that T_V is invertible with bounded inverse.

Solution:

(i) From the elementary estimate $|(T_V\psi)(x)| = |V(x)\psi(x)| \le ||V||_{\infty} |\psi(x)|$ [1], we deduce

$$\begin{split} \left\| T_V \psi \right\|_p &\stackrel{[1]}{=} \left(\int_{\mathbb{R}^n} \mathrm{d}x \left| (T_V \psi)(x) \right|^p \right)^{1/p} \\ & \stackrel{[1]}{\leq} \left(\int_{\mathbb{R}^n} \mathrm{d}x \left\| V \right\|_{\infty}^p |\psi(x)|^p \right)^{1/p} \\ & = \| V \|_{\infty} \left(\int_{\mathbb{R}^n} \mathrm{d}x \left| \psi(x) \right|^p \right)^{1/p} \\ & \stackrel{[1]}{=} \| V \|_{\infty} \| \psi \|_p \,. \end{split}$$

Hence, T_V is bounded [1].

(ii) In (i), we have already shown $||T_V|| \le ||V||_{\infty}$ [1] and it remains to show $||T_V|| \ge ||V||_{\infty}$. To do that, we will construct a sequence $\{\psi_j\}_{j\in\mathbb{N}} \subset L^p(\mathbb{R}^n)$ of normalized vectors so that

$$\lim_{j \to \infty} \left\| T_V \psi_j \right\| = \left\| V \right\|_{\infty} \,. \tag{1}$$

[Any sequence of vectors gives 4 points in total.] For instance, one can use the following sequence of normalized step functions: let $U_j \subset |V|^{-1} \left(\left(\|V\|_{\infty} - \frac{1}{j}, +\infty \right) \right)$ be a subset of non-zero measure and finite. The fact that such a set exists follows from the definition of the essential supremum which implies $|V|^{-1} \left(\left(\|V\|_{\infty} - \frac{1}{j}, +\infty \right) \right)$ always has positive measure. The sequence is now defined in terms of the indicator function

$$1_{U_j}(x) := \begin{cases} 1 & x \in U_j \\ 0 & x \notin U_j \end{cases}.$$

Suitably normalized, we obtain our sequence,

$$\psi_j(x) := rac{1_{U_j}(x)}{\|1_{U_j}\|_p},$$

and by definition, we deduce

$$\left| (T_V \psi_j)(x) \right| \ge \left| \|V\|_{\infty} - \frac{1}{j} \right| |\psi_j(x)|$$

which implies

$$\begin{aligned} \left\| T_V \psi_j \right\|_p &\ge \left| \|V\|_{\infty} - \frac{1}{j} \right| \|\psi_j\|_p = \left| \|V\|_{\infty} - \frac{1}{j} \right| \\ &\xrightarrow{j \to \infty} \|V\|_{\infty}. \end{aligned}$$

This shows $||T_V|| = ||V||_{\infty}$.

(iii) Our arguments in (i) have shown that $V \in L^{\infty}(\mathbb{R}^n)$ implies T_V is bounded [1].

Now suppose a multiplication operator T_V is bounded, but that $V \notin L^{\infty}(\mathbb{R}^n)$ [1]. Since V is not bounded, there exists a sequence of vectors $\{\psi_j\}_{j\in\mathbb{N}} \subset L^p(\mathbb{R}^n)$ so that $|(T_V\psi_j)(x)| \ge j |\psi_j(x)|$ (e. g. modify the sequence constructed in (ii) appropriately) [1], and hence the norm

$$\left\|T_V\psi_j\right\|_p \ge j \left\|\psi_j\right\|_p \xrightarrow{j \to \infty} +\infty$$

explodes as $j \to \infty$ [1]. Hence, T_V cannot be bounded, contradiction! [1]

(iv) The claim follows from $\overline{V} = V$ and direct computation: for any $\varphi, \psi \in L^2(\mathbb{R}^n)$, we have

$$\begin{split} \langle \varphi, T_V \psi \rangle_{L^2(\mathbb{R}^n)} \stackrel{[1]}{=} & \int_{\mathbb{R}^n} \mathrm{d}x \, \overline{\varphi(x)} \, (T_V \psi)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^n} \mathrm{d}x \, \overline{\varphi(x)} \, V(x) \, \psi(x) \\ &= & \int_{\mathbb{R}^n} \mathrm{d}x \, \overline{V(x) \, \varphi(x)} \, \psi(x) = \int_{\mathbb{R}^n} \mathrm{d}x \, \overline{(T_V \varphi)(x)} \, \psi(x) \\ & \stackrel{[1]}{=} \langle T_V \varphi, \psi \rangle_{L^2(\mathbb{R}^n)} \, . \end{split}$$

(v) Since V is bounded away from $0 \text{ and } +\infty$, so is V^{-1} [1],

$$0 < C^{-1} \le V^{-1}(x) \le c^{-1} < \infty.$$

Hence, also $T_{V^{-1}}: L^p(\mathbb{R}^n) \longrightarrow L^p(\mathbb{R}^n)$ is a bounded multiplication operator by (i) [1]. Moreover, by direct computation, we verify that $T_{V^{-1}}$ is the inverse to T_V [1], e. g.

$$(T_V T_{V^{-1}}\psi)(x) = V(x) (T_{V^{-1}}\psi)(x)$$

= $V(x) V^{-1}(x) \psi(x) = \psi(x)$,

and similarly $T_{V^{-1}} T_V = \operatorname{id}_{L^p(\mathbb{R}^n)} [1].$

25. Boundedness of linear operators (8 points)

Find out whether the following operators are bounded or unbounded. Justify your answer!

- (i) $H = -\partial_x^2$ on $L^2([-\pi, +\pi])$ with Dirichlet boundary conditions
- (ii) $e^{+it\partial_x^2}$ on $L^2([-\pi, +\pi])$ with Dirichlet boundary conditions
- (iii) The multiplication operator associated to $V(x) = \frac{1}{|x|}$ on $L^2(\mathbb{R}^3)$
- (iv) The multiplication operator associated to $V(x) = x^2$ on $L^2([-\pi, +\pi])$

Solution:

(i) By the arguments in Chapter 4.2.5, any $\psi \in L^2([-\pi, +\pi])$ can be expressed in terms of the orthonormal basis $\{e^{+inx}\}_{n\in\mathbb{Z}}$,

$$\psi(x) = \sum_{n \in \mathbb{Z}} \widehat{\psi}(n) \, \mathbf{e}^{+\mathbf{i}nx}$$

where $\{\widehat{\psi}(n)\}_{n\in\mathbb{Z}}$ is a square summable sequence. Then formally, we compute

$$-\left(\partial_x^2\psi\right)(x) = \sum_{n\in\mathbb{Z}} n^2\,\widehat{\psi}(n)\,\mathbf{e}^{+\mathbf{i}nx}$$

Since $\{n^2 \hat{\psi}(n)\}_{n \in \mathbb{Z}}$ need not be square summable (it need not even be a sequence converging to 0), $-\partial_x^2 \psi$ need not exist in $L^2([-\pi, +\pi])$ [1]. Hence, $-\partial_x^2$ is unbounded [1].

- (ii) By the arguments in Chapter 4.2.5, $e^{+it\partial_x^2}$ is *bounded* [1], because $||e^{+it\partial_x^2}\psi|| = ||\psi||$ holds for all $\psi \in L^2([-\pi, +\pi])$ according to the calculation outlined there [1].
- (iii) $V(x) = \frac{1}{|x|}$ is unbounded, and hence, by problem 24 (iii) [1], the associated multiplication operator is also unbounded [1].
- (iv) This operator is *bounded* by π^2 [1], because

$$\begin{aligned} \|T_{x^2}\psi\|^2 &= \int_{-\pi}^{+\pi} \mathrm{d}x \, |x^2 \, \psi(x)|^2 \le \pi^4 \, \int_{-\pi}^{+\pi} \mathrm{d}x \, |\psi(x)|^2 \\ &= \left(\pi^2 \, \|\psi\|\right)^2 \end{aligned}$$

holds for all $\psi \in L^2([-\pi, +\pi])$ [1].