Weighted Hilbert spaces, the free Maxwell equations \& Operators

Homework Problems

22. Weighted L^{2}-spaces ($\mathbf{1 6}$ points)

Let $\varepsilon \in L^{\infty}\left(\mathbb{R}^{n}\right)$ be a function bounded away from 0 and $+\infty$, i. e. there exist $c, C>0$ such that

$$
0<c \leq \varepsilon(x) \leq C<+\infty
$$

holds for almost all $x \in \mathbb{R}^{n}$. Define the weighted L^{2}-space $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ as the pre-Hilbert space with scalar product

$$
\begin{equation*}
\langle f, g\rangle_{\varepsilon}:=\int_{\mathbb{R}^{n}} \mathrm{~d} x \varepsilon(x) \overline{f(x)} g(x) \tag{1}
\end{equation*}
$$

so that $\|f\|_{\varepsilon}:=\sqrt{\langle f, f\rangle_{\varepsilon}}<\infty$.
(i) Show that $f \in L^{2}\left(\mathbb{R}^{n}\right)$ if and only if $f \in L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$.
(ii) Show that the map

$$
U_{\varepsilon}: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right), f \mapsto \sqrt{\varepsilon} f
$$

is norm-preserving, i. e. $\|f\|_{\varepsilon}=\left\|U_{\varepsilon} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ holds for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$.
(iii) Show that $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ is indeed a Hilbert space, i. e. prove that it is complete.

Solution:

(i) " \Rightarrow :" Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Then by definition $\|f\|<\infty$, and hence also

$$
\|f\|_{\varepsilon}^{2} \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \varepsilon(x)|f(x)|^{2} \stackrel{[1]}{\leq} \int_{\mathbb{R}^{3}} \mathrm{~d} x C|f(x)|^{2} \stackrel{[1]}{=} C\|f\|^{2}<\infty .
$$

$" \Leftarrow: "$ Now assume $f \in L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$. Since $0<1 / \varepsilon(x) \leq 1 / c<+\infty$, we deduce

$$
\begin{aligned}
& \|f\|^{2} \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x|f(x)|^{2}=\int_{\mathbb{R}^{3}} \mathrm{~d} x \frac{\varepsilon(x)}{\varepsilon(x)}|f(x)|^{2} \\
& \quad \stackrel{[1]}{\leq} c^{-1} \int_{\mathbb{R}^{3}} \mathrm{~d} x \varepsilon(x)|f(x)|^{2} \stackrel{[1]}{=} c^{-1}\|f\|_{\varepsilon}^{2} .
\end{aligned}
$$

(ii) Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Then we compute

$$
\begin{aligned}
\left\|U_{\varepsilon} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} & \stackrel{[1]}{=}\langle\sqrt{\varepsilon} f, \sqrt{\varepsilon} f\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}=\int_{\mathbb{R}^{n}} \mathrm{~d} x|\sqrt{\varepsilon}(x) f(x)|^{2} \\
& \stackrel{[1]}{=} \int_{\mathbb{R}^{n}} \mathrm{~d} x \varepsilon(x)|f(x)|^{2}=\langle f, f\rangle_{\varepsilon} \stackrel{[1]}{=}\|f\|_{\varepsilon}^{2} .
\end{aligned}
$$

Hence, U_{ε} is norm-preserving.
(iii) Let $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ be a Cauchy sequence in $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ [1]. Since U_{ε} is norm-preserving and linear, it is also invertible (the arguments are the same as in problem 20 (vi)) [1]. Moreover, the inverse $U_{\varepsilon}^{-1}=U_{\varepsilon^{-1}}: L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right) \longrightarrow{ }^{2}\left(\mathbb{R}^{n}\right)$ is also norm-preserving by (ii) [1].
That means $\left\{U_{\varepsilon^{-1}} f_{j}\right\}_{j \in \mathbb{N}}$ is a Cauchy sequence in $L^{2}\left(\mathbb{R}^{n}\right)[1]$. Seeing as $L^{2}\left(\mathbb{R}^{n}\right)$ is complete, $U_{\varepsilon^{-1}} f_{j}$ converges to some $g \in L^{2}\left(\mathbb{R}^{n}\right)[1]$. But then f_{j} converges to $U_{\varepsilon} g$ in $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ [1],

$$
\begin{aligned}
\left\|f_{j}-U_{\varepsilon} g\right\|_{\varepsilon} & =\left\|U_{\varepsilon}\left(U_{\varepsilon^{-1}} f_{j}-g\right)\right\|_{\varepsilon} \\
& \stackrel{(i i)}{=}\left\|U_{\varepsilon^{-1}} f_{j}-g\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \xrightarrow{j \rightarrow \infty} 0
\end{aligned}
$$

Hence, $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ is complete, and thus a Hilbert space [1].
23. The free Maxwell equations as Schrödinger-type equation (17 points)

Consider the dynamical Maxwell equations

$$
\begin{array}{ll}
\partial_{t} \mathbf{E}(t)=+\nabla_{x} \times \mathbf{H}(t), & \mathbf{E}(0)=\mathbf{E}^{(0)} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{3}\right) \tag{2}\\
\partial_{t} \mathbf{H}(t)=-\nabla_{x} \times \mathbf{E}(t), & \mathbf{H}(0)=\mathbf{H}^{(0)} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{3}\right)
\end{array}
$$

Here, $L^{2}\left(\mathbb{R}^{n}, \mathbb{C}^{N}\right)$ is the Hilbert space with scalar product

$$
\langle\Psi, \Phi\rangle:=\int_{\mathbb{R}^{3}} \mathrm{~d} x \Psi(x) \cdot \Phi(x)
$$

defined in terms of the scalar product $\Psi(x) \cdot \Phi(x):=\sum_{j=1}^{N} \overline{\Psi_{j}(x)} \Phi_{j}(x)$ on \mathbb{C}^{N}. Moreover, consider also the Schrödinger-type equation

$$
\begin{equation*}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\mathbf{E}(t)}{\mathbf{H}(t)}=\boldsymbol{\operatorname { R o t }}\binom{\mathbf{E}(t)}{\mathbf{H}(t)}, \quad\binom{\mathbf{E}(0)}{\mathbf{H}(0)}=\binom{\mathbf{E}^{(0)}}{\mathbf{H}^{(0)}} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right), \tag{3}
\end{equation*}
$$

where the free Maxwell operator

$$
\text { Rot }:=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla_{x}^{\times} \\
-\mathrm{i} \nabla_{x}^{\times} & 0
\end{array}\right)
$$

is defined in terms of the curl $\nabla_{x}^{\times} \mathbf{E}:=\nabla_{x} \times \mathbf{E}$.
During the computations, you may work with Rot and $\mathrm{e}^{-\mathrm{i} t \mathrm{Rot}}$ as if they were $n \times n$ matrices.
(i) Verify that $(\mathbf{E}(t), \mathbf{H}(t)):=\mathrm{e}^{-\mathrm{i} t \mathbf{R o t}}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)$ solves (3).
(ii) Show that the dynamical Maxwell equations (2) can be recast in the form (3).
(iii) Define complex conjugation C as $(C \Psi)(x):=\overline{\Psi(x)}$. Confirm that $C \boldsymbol{\operatorname { R o t }} C=-\operatorname{Rot}$ holds.
(iv) Prove $C \mathrm{e}^{-\mathrm{i} t \text { Rot }} C=\mathrm{e}^{-\mathrm{i} t \text { Rot }}$ as well as that $\mathrm{e}^{-\mathrm{i} t \text { Rot }}$ commutes with complex conjugation, i. e.

$$
\left[\mathrm{e}^{-\mathrm{i} t \mathbf{R o t}}, C\right]:=\mathrm{e}^{-\mathrm{i} t \mathbf{R o t}} C-C \mathrm{e}^{-\mathrm{i} t \mathbf{R o t}}=0
$$

(v) Show that $\mathrm{e}^{-\mathrm{i} t R o t}$ commutes with the real part operator $\operatorname{Re}:=\frac{1}{2}(1+C)$, i. e. $\left[\mathrm{e}^{-\mathrm{i} t \operatorname{Rot}}, \operatorname{Re}\right]=0$.
(vi) Show that if $\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)$ is initially real-valued, then the solution $(\mathbf{E}(t), \mathbf{H}(t))$ to the Maxwell equations is also real-valued.

Solution:

(i) By direct computation, we obtain that the ansatz solves the dynamical equation,

$$
\begin{aligned}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\mathbf{E}(t)}{\mathbf{H}(t)} & =\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\mathrm{i} t \boldsymbol{R o t}}\binom{\mathbf{E}^{(0)}}{\mathbf{H}^{(0)}}\right)=-\mathrm{i}^{2} \boldsymbol{\operatorname { R o t }} \mathrm{e}^{-\mathrm{i} t \boldsymbol{R o t}}\binom{\mathbf{E}^{(0)}}{\mathbf{H}^{(0)}} \\
& \stackrel{[1]}{=} \boldsymbol{\operatorname { R o t }}\binom{\mathbf{E}(t)}{\mathbf{H}(t)}
\end{aligned}
$$

and also satisfies the initial condition,

$$
(\mathbf{E}(0), \mathbf{H}(0))=\mathrm{e}^{0}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right) \stackrel{[1]}{=}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)
$$

(ii) If we multiply equations (2) with i and arrange them as a vector in \mathbb{C}^{6}, we obtain

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\mathbf{E}}{\mathbf{H}} \stackrel{[1]}{=}\binom{+\mathrm{i} \nabla_{x} \times \mathbf{H}(t)}{-\mathrm{i} \nabla_{x} \times \mathbf{E}(t)}
$$

On the other hand, computing

$$
\boldsymbol{\operatorname { R o t }}\binom{\mathbf{E}(t)}{\mathbf{H}(t)} \stackrel{[1]}{=}\binom{+\nabla_{x} \times \mathbf{H}(t)}{-\nabla_{x} \times \mathbf{E}(t)}
$$

yields that the right-hand sides agree.
(iii) Plugging in the definition of complex conjugation and applying the operator to an arbitrary (E, H), we obtain

$$
\begin{aligned}
C \operatorname{Rot} C\binom{\mathbf{E}}{\mathbf{H}} & \stackrel{[1]}{=} C \operatorname{Rot}\binom{\overline{\mathbf{E}}}{\mathbf{H}}=C\binom{+\mathrm{i} \nabla_{x} \times \overline{\mathbf{H}}}{-\mathrm{i} \nabla_{x} \times \overline{\mathbf{E}}} \\
& \stackrel{[1]}{=}\left(\overline{\left.+\frac{\mathrm{i} \nabla_{x} \times \overline{\mathbf{H}}}{-\mathrm{i} \nabla_{x} \times \overline{\mathbf{E}}}\right)=\binom{-\mathrm{i} \nabla_{x} \times \overline{\mathbf{H}}}{+\mathrm{i} \nabla_{x} \times \overline{\mathbf{E}}}}\right. \\
& \stackrel{[1]}{=}-\operatorname{Rot}\binom{\mathbf{E}}{\mathbf{H}} .
\end{aligned}
$$

(iv) First, let us conjugate $\mathrm{e}^{-\mathrm{itRot}}$ with C :

$$
C \mathrm{e}^{-\mathrm{i} \mathrm{t} \mathbf{R o t}} C \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} t C \operatorname{Rot} C} \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{i} \mathbf{t R o t}}
$$

Thus, using $C^{2}=1$, this also implies that $\mathrm{e}^{-\mathrm{i} \text { tRot }}$ commutes with C :
(v) Since the identity commutes with anything, the result follows directly from (iv):

$$
\left[\mathrm{e}^{-\mathrm{itRot}}, \operatorname{Re}\right] \stackrel{[1]}{=} \frac{1}{2}\left[\mathrm{e}^{-\mathrm{itRot}}, 1\right]+\frac{1}{2}\left[\mathrm{e}^{-\mathrm{itRot}}, C\right]=0+0 \stackrel{[1]}{=} 0
$$

(vi) $\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)$ is real-valued if and only if $\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)=\operatorname{Re}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)$, and hence

$$
\begin{aligned}
(\mathbf{E}(t), \mathbf{H}(t)) & \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{itRot}}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)=\mathrm{e}^{-\mathrm{i} \mathrm{RRot}} \operatorname{Re}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right) \stackrel{[1]}{=} \operatorname{Re} \mathrm{e}^{-\mathrm{i} t \operatorname{Rot}}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right) \\
& \stackrel{[1]}{=} \operatorname{Re}(\mathbf{E}(t), \mathbf{H}(t))
\end{aligned}
$$

has to be real.

24. Multiplication operators (23 points)

Let $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and for $1 \leq p<\infty$ define the multiplication operator

$$
\left(T_{V} \psi\right)(x):=V(x) \psi(x), \quad \psi \in L^{p}\left(\mathbb{R}^{n}\right)
$$

(i) Show that $T_{V}: L^{p}\left(\mathbb{R}^{n}\right) \longrightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is bounded.
(ii) Prove that $\left\|T_{V}\right\|=\|V\|_{\infty}$ where $\|\cdot\|$ is the operator norm and $\|\cdot\|_{\infty}$ the L^{∞}-norm.
(iii) Show that a multiplication operator T_{V} is bounded if and only if $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$.
(iv) Assume $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is real-valued. Show that then $\left\langle\varphi, T_{V} \psi\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\langle T_{V} \varphi, \psi\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}$ holds for all $\varphi, \psi \in L^{2}\left(\mathbb{R}^{n}\right)$.
(v) Assume that V is bounded away from 0 and $+\infty$, i. e. that there exist $c, C>0$ so that

$$
0<c \leq V(x) \leq C<+\infty
$$

holds for all $x \in \mathbb{R}^{n}$. Show that T_{V} is invertible with bounded inverse.

Solution:

(i) From the elementary estimate $\left|\left(T_{V} \psi\right)(x)\right|=|V(x) \psi(x)| \leq\|V\|_{\infty}|\psi(x)|$ [1], we deduce

$$
\begin{aligned}
\left\|T_{V} \psi\right\|_{p} & \stackrel{[1]}{=}\left(\int_{\mathbb{R}^{n}} \mathrm{~d} x\left|\left(T_{V} \psi\right)(x)\right|^{p}\right)^{1 / p} \\
& \stackrel{[1]}{\leq}\left(\int_{\mathbb{R}^{n}} \mathrm{~d} x\|V\|_{\infty}^{p}|\psi(x)|^{p}\right)^{1 / p} \\
& =\|V\|_{\infty}\left(\int_{\mathbb{R}^{n}} \mathrm{~d} x|\psi(x)|^{p}\right)^{1 / p} \\
& \stackrel{[1]}{=}\|V\|_{\infty}\|\psi\|_{p}
\end{aligned}
$$

Hence, T_{V} is bounded [1].
(ii) In (i), we have already shown $\left\|T_{V}\right\| \leq\|V\|_{\infty}$ [1] and it remains to show $\left\|T_{V}\right\| \geq\|V\|_{\infty}$. To do that, we will construct a sequence $\left\{\psi_{j}\right\}_{j \in \mathbb{N}} \subset L^{p}\left(\mathbb{R}^{n}\right)$ of normalized vectors so that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|T_{V} \psi_{j}\right\|=\|V\|_{\infty} \tag{1}
\end{equation*}
$$

[Any sequence of vectors gives 4 points in total.] For instance, one can use the following sequence of normalized step functions: let $U_{j} \subset|V|^{-1}\left(\left(\|V\|_{\infty}-1 / j,+\infty\right)\right)$ be a subset of non-zero measure and finite. The fact that such a set exists follows from the definition of the essential supremum which implies $|V|^{-1}\left(\left(\|V\|_{\infty}-1 / j,+\infty\right)\right)$ always has positive measure. The sequence is now defined in terms of the indicator function

$$
1_{U_{j}}(x):= \begin{cases}1 & x \in U_{j} \\ 0 & x \notin U_{j}\end{cases}
$$

Suitably normalized, we obtain our sequence,

$$
\psi_{j}(x):=\frac{1_{U_{j}}(x)}{\left\|1_{U_{j}}\right\|_{p}}
$$

and by definition, we deduce

$$
\left|\left(T_{V} \psi_{j}\right)(x)\right| \geq\left|\|V\|_{\infty}-1 / j\right|\left|\psi_{j}(x)\right|
$$

which implies

$$
\begin{aligned}
\left\|T_{V} \psi_{j}\right\|_{p} & \geq\left|\|V\|_{\infty}-1 / j\right|\left\|\psi_{j}\right\|_{p}=\left|\|V\|_{\infty}-1 / j\right| \\
& \xrightarrow{j \rightarrow \infty}\|V\|_{\infty} .
\end{aligned}
$$

This shows $\left\|T_{V}\right\|=\|V\|_{\infty}$.
(iii) Our arguments in (i) have shown that $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ implies T_{V} is bounded [1].

Now suppose a multiplication operator T_{V} is bounded, but that $V \notin L^{\infty}\left(\mathbb{R}^{n}\right)$ [1]. Since V is not bounded, there exists a sequence of vectors $\left\{\psi_{j}\right\}_{j \in \mathbb{N}} \subset L^{p}\left(\mathbb{R}^{n}\right)$ so that $\left|\left(T_{V} \psi_{j}\right)(x)\right| \geq$ $j\left|\psi_{j}(x)\right|$ (e. g. modify the sequence constructed in (ii) appropriately) [1], and hence the norm

$$
\left\|T_{V} \psi_{j}\right\|_{p} \geq j\left\|\psi_{j}\right\|_{p} \xrightarrow{j \rightarrow \infty}+\infty
$$

explodes as $j \rightarrow \infty$ [1]. Hence, T_{V} cannot be bounded, contradiction! [1]
(iv) The claim follows from $\bar{V}=V$ and direct computation: for any $\varphi, \psi \in L^{2}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
&\left\langle\varphi, T_{V} \psi\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \stackrel{[1]}{=} \int_{\mathbb{R}^{n}} \mathrm{~d} x \overline{\varphi(x)}\left(T_{V} \psi\right)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^{n}} \mathrm{~d} x \overline{\varphi(x)} V(x) \psi(x) \\
&=\int_{\mathbb{R}^{n}} \mathrm{~d} x \overline{V(x) \varphi(x)} \psi(x)=\int_{\mathbb{R}^{n}} \mathrm{~d} x \overline{\left(T_{V} \varphi\right)(x)} \psi(x) \\
& \stackrel{[1]}{=}\left\langle T_{V} \varphi, \psi\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

(v) Since V is bounded away from 0 and $+\infty$, so is $V^{-1}[1]$,

$$
0<C^{-1} \leq V^{-1}(x) \leq c^{-1}<\infty
$$

Hence, also $T_{V^{-1}}: L^{p}\left(\mathbb{R}^{n}\right) \longrightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is a bounded multiplication operator by (i) [1]. Moreover, by direct computation, we verify that $T_{V^{-1}}$ is the inverse to $T_{V}[1]$, e.g.

$$
\begin{aligned}
\left(T_{V} T_{V^{-1}} \psi\right)(x) & =V(x)\left(T_{V^{-1}} \psi\right)(x) \\
& =V(x) V^{-1}(x) \psi(x)=\psi(x),
\end{aligned}
$$

and similarly $T_{V^{-1}} T_{V}=\operatorname{id}_{L^{p}\left(\mathbb{R}^{n}\right)}[1]$.

25. Boundedness of linear operators (8 points)

Find out whether the following operators are bounded or unbounded. Justify your answer!
(i) $H=-\partial_{x}^{2}$ on $L^{2}([-\pi,+\pi])$ with Dirichlet boundary conditions
(ii) $\mathrm{e}^{+\mathrm{i} t \partial_{x}^{2}}$ on $L^{2}([-\pi,+\pi])$ with Dirichlet boundary conditions
(iii) The multiplication operator associated to $V(x)=\frac{1}{|x|}$ on $L^{2}\left(\mathbb{R}^{3}\right)$
(iv) The multiplication operator associated to $V(x)=x^{2}$ on $L^{2}([-\pi,+\pi])$

Solution:

(i) By the arguments in Chapter 4.2.5, any $\psi \in L^{2}([-\pi,+\pi])$ can be expressed in terms of the orthonormal basis $\left\{\mathrm{e}^{+\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$,

$$
\psi(x)=\sum_{n \in \mathbb{Z}} \widehat{\psi}(n) \mathrm{e}^{+\mathrm{i} n x}
$$

where $\{\widehat{\psi}(n)\}_{n \in \mathbb{Z}}$ is a square summable sequence. Then formally, we compute

$$
-\left(\partial_{x}^{2} \psi\right)(x)=\sum_{n \in \mathbb{Z}} n^{2} \widehat{\psi}(n) \mathrm{e}^{+\mathrm{i} n x}
$$

Since $\left\{n^{2} \widehat{\psi}(n)\right\}_{n \in \mathbb{Z}}$ need not be square summable (it need not even be a sequence converging to 0$),-\partial_{x}^{2} \psi$ need not exist in $L^{2}([-\pi,+\pi])[1]$. Hence, $-\partial_{x}^{2}$ is unbounded [1].
(ii) By the arguments in Chapter 4.2.5, $\mathrm{e}^{+\mathrm{i} t \partial_{x}^{2}}$ is bounded [1], because $\left\|\mathrm{e}^{+\mathrm{i} t \partial_{x}^{2}} \psi\right\|=\|\psi\|$ holds for all $\psi \in L^{2}([-\pi,+\pi])$ according to the calculation outlined there [1].
(iii) $V(x)=\frac{1}{|x|}$ is unbounded, and hence, by problem 24 (iii) [1], the associated multiplication operator is also unbounded [1].
(iv) This operator is bounded by $\pi^{2}[1]$, because

$$
\begin{aligned}
\left\|T_{x^{2}} \psi\right\|^{2} & =\int_{-\pi}^{+\pi} \mathrm{d} x\left|x^{2} \psi(x)\right|^{2} \leq \pi^{4} \int_{-\pi}^{+\pi} \mathrm{d} x|\psi(x)|^{2} \\
& =\left(\pi^{2}\|\psi\|\right)^{2}
\end{aligned}
$$

holds for all $\psi \in L^{2}([-\pi,+\pi])[1]$.

