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Weighted Hilbert spaces,
the free Maxwell equations & Operators

Homework Problems

22. Weighted L2-spaces (16 points)
Let ε ∈ L∞(Rn) be a function bounded away from 0 and+∞, i. e. there exist c, C > 0 such that

0 < c ≤ ε(x) ≤ C < +∞

holds for almost all x ∈ Rn. Define the weighted L2-space L2
ε(Rn) as the pre-Hilbert space with

scalar product

⟨f, g⟩ε :=
∫
Rn

dx ε(x) f(x) g(x) (1)

so that ∥f∥ε :=
√

⟨f, f⟩ε <∞.
(i) Show that f ∈ L2(Rn) if and only if f ∈ L2

ε(Rn).
(ii) Show that the map

Uε : L
2(Rn) −→ L2

ε(Rn) , f 7→
√
εf ,

is norm-preserving, i. e. ∥f∥ε = ∥Uεf∥L2(Rn) holds for all f ∈ L2(Rn).

(iii) Show that L2
ε(Rn) is indeed a Hilbert space, i. e. prove that it is complete.

Solution:

(i) “⇒:” Let f ∈ L2(Rn). Then by definition ∥f∥ <∞, and hence also

∥f∥2ε
[1]
=

∫
R3

dx ε(x)
∣∣f(x)∣∣2 [1]

≤
∫
R3

dxC
∣∣f(x)∣∣2 [1]

= C∥f∥2 <∞ .

“⇐:” Now assume f ∈ L2
ε(Rn). Since 0 < 1/ε(x) ≤ 1/c < +∞, we deduce

∥f∥2 [1]
=

∫
R3

dx
∣∣f(x)∣∣2 = ∫

R3

dx ε(x)
ε(x)

∣∣f(x)∣∣2
[1]

≤ c−1

∫
R3

dx ε(x)
∣∣f(x)∣∣2 [1]

= c−1 ∥f∥2ε .
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(ii) Let f ∈ L2(Rn). Then we compute∥∥Uεf
∥∥2
L2(Rn)

[1]
=
⟨√

εf,
√
εf
⟩
L2(Rn)

=

∫
Rn

dx
∣∣√ε(x) f(x)∣∣2

[1]
=

∫
Rn

dx ε(x)
∣∣f(x)∣∣2 = ⟨f, f⟩ε

[1]
= ∥f∥2ε .

Hence, Uε is norm-preserving.
(iii) Let {fj}j∈N be a Cauchy sequence in L2

ε(Rn) [1]. Since Uε is norm-preserving and linear, it is
also invertible (the arguments are the same as in problem 20 (vi)) [1]. Moreover, the inverse
U−1
ε = Uε−1 : L2

ε(Rn) −→ 2(Rn) is also norm-preserving by (ii) [1].
That means

{
Uε−1fj

}
j∈N is a Cauchy sequence in L2(Rn) [1]. Seeing as L2(Rn) is complete,

Uε−1fj converges to some g ∈ L2(Rn) [1]. But then fj converges to Uεg in L2
ε(Rn) [1],∥∥fj − Uεg

∥∥
ε
=
∥∥Uε

(
Uε−1fj − g

)∥∥
ε

(ii)
=
∥∥Uε−1fj − g

∥∥
L2(Rn)

j→∞−−−→ 0 .

Hence, L2
ε(Rn) is complete, and thus a Hilbert space [1].
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23. The free Maxwell equations as Schrödinger-type equation (17 points)
Consider the dynamical Maxwell equations

∂tE(t) = +∇x × H(t) , E(0) = E(0) ∈ L2(R3,C3) , (2)
∂tH(t) = −∇x × E(t) , H(0) = H(0) ∈ L2(R3,C3) .

Here, L2(Rn,CN ) is the Hilbert space with scalar product

⟨Ψ,Φ⟩ :=
∫
R3

dxΨ(x) · Φ(x)

defined in terms of the scalar productΨ(x) · Φ(x) :=
∑N

j=1Ψj(x)Φj(x) on CN .
Moreover, consider also the Schrödinger-type equation

i ddt

(
E(t)
H(t)

)
= Rot

(
E(t)
H(t)

)
,

(
E(0)
H(0)

)
=

(
E(0)
H(0)

)
∈ L2(R3,C6) , (3)

where the free Maxwell operator

Rot :=
(

0 +i∇×
x

−i∇×
x 0

)
is defined in terms of the curl∇×

x E := ∇x × E.
During the computations, you may work with Rot and e−itRot as if they were n× nmatrices.

(i) Verify that
(
E(t),H(t)

)
:= e−itRot (E(0),H(0)

)
solves (3).

(ii) Show that the dynamical Maxwell equations (2) can be recast in the form (3).
(iii) Define complex conjugation C as (CΨ)(x) := Ψ(x). Confirm that C RotC = −Rot holds.
(iv) Prove C e−itRotC = e−itRot as well as that e−itRot commutes with complex conjugation, i. e.[

e−itRot, C
]
:= e−itRotC − C e−itRot = 0 .

(v) Show that e−itRot commutes with the real part operator Re := 1
2

(
1+C

)
, i. e.

[
e−itRot,Re

]
= 0.

(vi) Show that if
(
E(0),H(0)

)
is initially real-valued, then the solution

(
E(t),H(t)

)
to the Maxwell

equations is also real-valued.

Solution:

(i) By direct computation, we obtain that the ansatz solves the dynamical equation,

i ddt

(
E(t)
H(t)

)
= i ddt

(
e−itRot

(
E(0)
H(0)

))
= −i2Rot e−itRot

(
E(0)
H(0)

)
[1]
= Rot

(
E(t)
H(t)

)
,

and also satisfies the initial condition,(
E(0),H(0)

)
= e0

(
E(0),H(0)

) [1]
=
(
E(0),H(0)

)
.
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(ii) If we multiply equations (2) with i and arrange them as a vector in C6, we obtain

i ddt

(
E
H

)
[1]
=

(
+i∇x × H(t)
−i∇x × E(t)

)
On the other hand, computing

Rot
(
E(t)
H(t)

)
[1]
=

(
+∇x × H(t)
−∇x × E(t)

)
yields that the right-hand sides agree.

(iii) Plugging in the definition of complex conjugation and applying the operator to an arbitrary
(E,H), we obtain

C RotC
(
E
H

)
[1]
= C Rot

(
E
H

)
= C

(
+i∇x × H
−i∇x × E

)
[1]
=

(
+i∇x × H
−i∇x × E

)
=

(
−i∇x × H
+i∇x × E

)
[1]
= −Rot

(
E
H

)
.

(iv) First, let us conjugate e−itRot with C:

C e−itRotC
[1]
= e+it C RotC [1]

= e−itRot

Thus, using C2 = 1, this also implies that e−itRot commutes with C:[
e−itRot , C

] [1]
= e−itRotC − C e−itRot [1]

=
(
e−itRot − C e−itRotC

)
C

[1]
= 0

(v) Since the identity commutes with anything, the result follows directly from (iv):[
e−itRot , Re

] [1]
=

1

2

[
e−itRot , 1

]
+

1

2

[
e−itRot , C

]
= 0 + 0

[1]
= 0

(vi)
(
E(0),H(0)

)
is real-valued if and only if

(
E(0),H(0)

)
= Re

(
E(0),H(0)

)
, and hence

(
E(t),H(t)

) [1]
= e−itRot (E(0),H(0)

)
= e−itRot Re

(
E(0),H(0)

) [1]
= Re e−itRot (E(0),H(0)

)
[1]
= Re

(
E(t),H(t)

)
has to be real.
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24. Multiplication operators (23 points)
Let V ∈ L∞(Rn) and for 1 ≤ p <∞ define the multiplication operator

(TV ψ)(x) := V (x)ψ(x) , ψ ∈ Lp(Rn) .

(i) Show that TV : Lp(Rn) −→ Lp(Rn) is bounded.
(ii) Prove that ∥TV ∥ = ∥V ∥∞ where ∥·∥ is the operator norm and ∥·∥∞ the L∞-norm.
(iii) Show that a multiplication operator TV is bounded if and only if V ∈ L∞(Rn).
(iv) Assume V ∈ L∞(Rn) is real-valued. Show that then ⟨φ, TV ψ⟩L2(Rn) = ⟨TV φ,ψ⟩L2(Rn) holds

for all φ,ψ ∈ L2(Rn).
(v) Assume that V is bounded away from 0 and+∞, i. e. that there exist c, C > 0 so that

0 < c ≤ V (x) ≤ C < +∞

holds for all x ∈ Rn. Show that TV is invertible with bounded inverse.

Solution:

(i) From the elementary estimate
∣∣(TV ψ)(x)∣∣ = ∣∣V (x)ψ(x)

∣∣ ≤ ∥V ∥∞
∣∣ψ(x)∣∣ [1], we deduce

∥∥TV ψ∥∥p [1]
=

(∫
Rn

dx
∣∣(TV ψ)(x)∣∣p)1/p

[1]

≤
(∫

Rn

dx ∥V ∥p∞|ψ(x)|p
)1/p

= ∥V ∥∞
(∫

Rn

dx |ψ(x)|p
)1/p

[1]
= ∥V ∥∞ ∥ψ∥p .

Hence, TV is bounded [1].
(ii) In (i), we have already shown ∥TV ∥ ≤ ∥V ∥∞ [1] and it remains to show ∥TV ∥ ≥ ∥V ∥∞. To do

that, we will construct a sequence {ψj}j∈N ⊂ Lp(Rn) of normalized vectors so that

lim
j→∞

∥∥TV ψj

∥∥ = ∥V ∥∞ . [1]

[Any sequence of vectors gives 4 points in total.] For instance, one can use the following se-
quence of normalized step functions: let Uj ⊂ |V |−1 ((∥V ∥∞ − 1/j,+∞

))
be a subset of

non-zero measure and finite. The fact that such a set exists follows from the definition of the
essential supremum which implies |V |−1 ((∥V ∥∞ − 1/j,+∞

))
always has positive measure.

The sequence is now defined in terms of the indicator function

1Uj (x) :=

{
1 x ∈ Uj

0 x ̸∈ Uj

.

Suitably normalized, we obtain our sequence,

ψj(x) :=
1Uj (x)∥∥1Uj

∥∥
p

,
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and by definition, we deduce∣∣(TV ψj)(x)
∣∣ ≥ ∣∣∥V ∥∞ − 1/j

∣∣ |ψj(x)|

which implies ∥∥TV ψj

∥∥
p
≥
∣∣∥V ∥∞ − 1/j

∣∣ ∥ψj∥p =
∣∣∥V ∥∞ − 1/j

∣∣
j→∞−−−→ ∥V ∥∞ .

This shows
∥∥TV ∥∥ = ∥V ∥∞.

(iii) Our arguments in (i) have shown that V ∈ L∞(Rn) implies TV is bounded [1].
Now suppose a multiplication operator TV is bounded, but that V ̸∈ L∞(Rn) [1]. Since V is
not bounded, there exists a sequence of vectors {ψj}j∈N ⊂ Lp(Rn) so that

∣∣(TV ψj)(x)
∣∣ ≥

j
∣∣ψj(x)

∣∣ (e. g. modify the sequence constructed in (ii) appropriately) [1], and hence the norm∥∥TV ψj

∥∥
p
≥ j ∥ψj∥p

j→∞−−−→ +∞

explodes as j → ∞ [1]. Hence, TV cannot be bounded, contradiction! [1]
(iv) The claim follows from V = V and direct computation: for any φ,ψ ∈ L2(Rn), we have

⟨φ, TV ψ⟩L2(Rn)

[1]
=

∫
Rn

dxφ(x) (TV ψ)(x)
[1]
=

∫
Rn

dxφ(x)V (x)ψ(x)

=

∫
Rn

dxV (x)φ(x)ψ(x) =

∫
Rn

dx (TV φ)(x)ψ(x)

[1]
= ⟨TV φ,ψ⟩L2(Rn) .

(v) Since V is bounded away from 0 and+∞, so is V −1 [1],

0 < C−1 ≤ V −1(x) ≤ c−1 <∞ .

Hence, also TV −1 : Lp(Rn) −→ Lp(Rn) is a bounded multiplication operator by (i) [1]. More-
over, by direct computation, we verify that TV −1 is the inverse to TV [1], e. g.(

TV TV −1ψ
)
(x) = V (x)

(
TV −1ψ

)
(x)

= V (x)V −1(x)ψ(x) = ψ(x) ,

and similarly TV −1 TV = idLp(Rn) [1].
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25. Boundedness of linear operators (8 points)
Find out whether the following operators are bounded or unbounded. Justify your answer!
(i) H = −∂2x on L2([−π,+π]) with Dirichlet boundary conditions
(ii) e+it∂2

x on L2([−π,+π]) with Dirichlet boundary conditions
(iii) The multiplication operator associated to V (x) = 1

|x| on L
2(R3)

(iv) The multiplication operator associated to V (x) = x2 on L2([−π,+π])

Solution:

(i) By the arguments in Chapter 4.2.5, any ψ ∈ L2([−π,+π]) can be expressed in terms of the
orthonormal basis {e+inx}n∈Z,

ψ(x) =
∑
n∈Z

ψ̂(n) e+inx ,

where
{
ψ̂(n)

}
n∈Z is a square summable sequence. Then formally, we compute

−
(
∂2xψ

)
(x) =

∑
n∈Z

n2 ψ̂(n) e+inx .

Since
{
n2 ψ̂(n)

}
n∈Z need not be square summable (it need not even be a sequence converging

to 0),−∂2xψ need not exist in L2([−π,+π]) [1]. Hence,−∂2x is unbounded [1].
(ii) By the arguments in Chapter 4.2.5, e+it∂2

x is bounded [1], because
∥∥e+it∂2

xψ
∥∥ = ∥ψ∥ holds for

all ψ ∈ L2([−π,+π]) according to the calculation outlined there [1].
(iii) V (x) = 1

|x| is unbounded, and hence, by problem 24 (iii) [1], the associated multiplication
operator is also unbounded [1].

(iv) This operator is bounded by π2 [1], because

∥∥Tx2ψ
∥∥2 = ∫ +π

−π
dx
∣∣x2 ψ(x)∣∣2 ≤ π4

∫ +π

−π
dx
∣∣ψ(x)∣∣2

=
(
π2 ∥ψ∥

)2
holds for all ψ ∈ L2([−π,+π]) [1].
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