Weighted Hilbert spaces, the free Maxwell equations \& Operators

Homework Problems

22. Weighted L^{2}-spaces ($\mathbf{1 6}$ points)

Let $\varepsilon \in L^{\infty}\left(\mathbb{R}^{n}\right)$ be a function bounded away from 0 and $+\infty$, i. e. there exist $c, C>0$ such that

$$
0<c \leq \varepsilon(x) \leq C<+\infty
$$

holds for almost all $x \in \mathbb{R}^{n}$. Define the weighted L^{2}-space $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ as the pre-Hilbert space with scalar product

$$
\begin{equation*}
\langle f, g\rangle_{\varepsilon}:=\int_{\mathbb{R}^{n}} \mathrm{~d} x \varepsilon(x) \overline{f(x)} g(x) \tag{1}
\end{equation*}
$$

so that $\|f\|_{\varepsilon}:=\sqrt{\langle f, f\rangle_{\varepsilon}}<\infty$.
(i) Show that $f \in L^{2}\left(\mathbb{R}^{n}\right)$ if and only if $f \in L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$.
(ii) Show that the map

$$
U_{\varepsilon}: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right), f \mapsto \sqrt{\varepsilon} f
$$

is norm-preserving, i. e. $\|f\|_{\varepsilon}=\left\|U_{\varepsilon} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ holds for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$.
(iii) Show that $L_{\varepsilon}^{2}\left(\mathbb{R}^{n}\right)$ is indeed a Hilbert space, i. e. prove that it is complete.
23. The free Maxwell equations as Schrödinger-type equation (17 points)

Consider the dynamical Maxwell equations

$$
\begin{array}{ll}
\partial_{t} \mathbf{E}(t)=+\nabla_{x} \times \mathbf{H}(t), & \mathbf{E}(0)=\mathbf{E}^{(0)} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{3}\right) \tag{2}\\
\partial_{t} \mathbf{H}(t)=-\nabla_{x} \times \mathbf{E}(t), & \mathbf{H}(0)=\mathbf{H}^{(0)} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{3}\right)
\end{array}
$$

Here, $L^{2}\left(\mathbb{R}^{n}, \mathbb{C}^{N}\right)$ is the Hilbert space with scalar product

$$
\langle\Psi, \Phi\rangle:=\int_{\mathbb{R}^{3}} \mathrm{~d} x \Psi(x) \cdot \Phi(x)
$$

defined in terms of the scalar product $\Psi(x) \cdot \Phi(x):=\sum_{j=1}^{N} \overline{\Psi_{j}(x)} \Phi_{j}(x)$ on \mathbb{C}^{N}. Moreover, consider also the Schrödinger-type equation

$$
\begin{equation*}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\mathbf{E}(t)}{\mathbf{H}(t)}=\boldsymbol{\operatorname { R o t }}\binom{\mathbf{E}(t)}{\mathbf{H}(t)}, \quad\binom{\mathbf{E}(0)}{\mathbf{H}(0)}=\binom{\mathbf{E}^{(0)}}{\mathbf{H}^{(0)}} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{6}\right) \tag{3}
\end{equation*}
$$

where the free Maxwell operator

$$
\text { Rot }:=\left(\begin{array}{cc}
0 & +\mathrm{i} \nabla_{x}^{\times} \\
-\mathrm{i} \nabla_{x}^{\times} & 0
\end{array}\right)
$$

is defined in terms of the curl $\nabla_{x}^{\times} \mathbf{E}:=\nabla_{x} \times \mathbf{E}$.
During the computations, you may work with Rot and $\mathrm{e}^{-\mathrm{itRot}}$ as if they were $n \times n$ matrices.
(i) Verify that $(\mathbf{E}(t), \mathbf{H}(t)):=\mathrm{e}^{-\mathrm{itRot}}\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)$ solves (3).
(ii) Show that the dynamical Maxwell equations (2) can be recast in the form (3).
(iii) Define complex conjugation C as $(C \Psi)(x):=\overline{\Psi(x)}$. Confirm that $C \boldsymbol{\operatorname { R o t }} C=-\operatorname{Rot}$ holds.
(iv) Prove $C \mathrm{e}^{-\mathrm{i} t \mathrm{Rot}} C=\mathrm{e}^{-\mathrm{i} t \mathrm{Rot}}$ as well as that $\mathrm{e}^{-\mathrm{i} t \mathrm{Rot}}$ commutes with complex conjugation, i. e.

$$
\left[\mathrm{e}^{-\mathrm{i} t \mathrm{Rot}}, C\right]:=\mathrm{e}^{-\mathrm{i} t \mathrm{Rot}} C-C \mathrm{e}^{-\mathrm{i} \mathrm{t} R o t}=0 .
$$

(v) Show that $\mathrm{e}^{-\mathrm{i} \text { RRot }}$ commutes with the real part operator $\mathrm{Re}:=\frac{1}{2}(1+C)$, i. e. $\left[\mathrm{e}^{-\mathrm{itRot}}, \operatorname{Re}\right]=0$.
(vi) Show that if $\left(\mathbf{E}^{(0)}, \mathbf{H}^{(0)}\right)$ is initially real-valued, then the solution $(\mathbf{E}(t), \mathbf{H}(t))$ to the Maxwell equations is also real-valued.

24. Multiplication operators (23 points)

Let $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and for $1 \leq p<\infty$ define the multiplication operator

$$
\left(T_{V} \psi\right)(x):=V(x) \psi(x), \quad \psi \in L^{p}\left(\mathbb{R}^{n}\right)
$$

(i) Show that $T_{V}: L^{p}\left(\mathbb{R}^{n}\right) \longrightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is bounded.
(ii) Prove that $\left\|T_{V}\right\|=\|V\|_{\infty}$ where $\|\cdot\|$ is the operator norm and $\|\cdot\|_{\infty}$ the L^{∞}-norm.
(iii) Show that a multiplication operator T_{V} is bounded if and only if $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$.
(iv) Assume $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is real-valued. Show that then $\left\langle\varphi, T_{V} \psi\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\langle T_{V} \varphi, \psi\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}$ holds for all $\varphi, \psi \in L^{2}\left(\mathbb{R}^{n}\right)$.
(v) Assume that V is bounded away from 0 and $+\infty$, i. e. that there exist $c, C>0$ so that

$$
0<c \leq V(x) \leq C<+\infty
$$

holds for all $x \in \mathbb{R}^{n}$. Show that T_{V} is invertible with bounded inverse.

25. Boundedness of linear operators (8 points)

Find out whether the following operators are bounded or unbounded. Justify your answer!
(i) $H=-\partial_{x}^{2}$ on $L^{2}([-\pi,+\pi])$ with Dirichlet boundary conditions
(ii) $\mathrm{e}^{+\mathrm{i} t \partial_{x}^{2}}$ on $L^{2}([-\pi,+\pi])$ with Dirichlet boundary conditions
(iii) The multiplication operator associated to $V(x)=\frac{1}{|x|}$ on $L^{2}\left(\mathbb{R}^{3}\right)$
(iv) The multiplication operator associated to $V(x)=x^{2}$ on $L^{2}([-\pi,+\pi])$

Hand in home work on: Thursday, 31 October 2013, before class

