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Time-reversal and von Neumann’s Theorem

Homework Problems
24. Time-reversal symmetry (16 points)

Let (Cψ)(x) := ψ(x) be complex conjugation defined on L2(R3).
(i) Show that C is a conjugation, i. e. an antiunitary (⟨φ,ψ⟩ = ⟨Cφ,Cψ⟩ = ⟨Cψ,Cφ⟩ for all

φ,ψ ∈ L2(Rd)) which squares to idL2(R3).
Now consider the magnetic Schrödinger operator

HA =
(
−i∇x −A(x̂)

)2
+ V (x̂)

with domainD(HA) = C∞
c (R3)where the magnetic vector potentialA ∈ C∞(R3,R3) is associated

to the magnetic field B = ∇x × A, and the real-valued potential V ∈ L2(R3) + L∞(R3) satisfies
the conditions of Theorem 5.2.24.
(ii) Show C HAC = H−A.
(iii) LetH := HA=0 be the non-magnetic Schrödinger operator. Prove [H,C] = 0.
(iv) Show that C implements physical time-reversal forH from part (iii), i. e. C U(t)C = U(−t)

where U(t) = e−itH is the time evolution group.

Solution:
(i) Evidently, C is antilinear [1], C(φ + µψ) = Cφ + µ̄ Cψ, and an involution as (C2ψ)(x) =

ψ(x) = ψ(x) [1]. The antiunitarity is quickly verified by hand, too:

⟨φ,ψ⟩ =
∫
R3

dxφ(x)ψ(x) [1]
=

∫
R3

dx (Cφ)(x) (Cψ)(x)

[1]
= ⟨Cψ,Cφ⟩

Hence, C is an antiunitary.
(ii) First of all, the domain C∞

c (R3) = C C∞
c (R3) [1] is left invariant under complex conjugation.

For multiplication operators for real-valued functions such as V (x̂) and Aj(x̂), we deduce
C V (x̂)C = V (x̂) [1]. Moreover, C (−i∇x)C = +i∇x holds true [1], and hence

C
(
−i∂xj −Aj(x̂)

)
C

[1]
= −

(
−i∂xj +Aj(x̂)

)
.

Put together, we obtain

C HAC
[1]
=

3∑
j=1

C
(
−i∂xj −Aj(x̂)

)
C2

(
−i∂xj −Aj(x̂)

)
C + C V (x̂)C

=

3∑
j=1

(−1)2
(
−i∂xj +Aj(x̂)

)2
+ V (x̂)

[1]
= H−A.
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(iii) This follows immediately from (ii) since forA = 0 the operatorsHA=0 andH−A=0 = C HA=0C
coincide [1], and thus, multiplying both sides with C from the left yields

C H = C2H C
[1]
= H C.

(iv) Multiplying the Schrödinger equation with C yields

C
(
i∂tψ

) [1]
= −i∂tCψ = C Hψ

[1]
= H Cψ.

Put another way, C e−itHψ = e+itH Cψ [1] or

C e−itH C
[1]
= e+itH .
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25. Von Neumann’s Theorem (17 points)

(i) Prove the following theorem due to von Neumann:

Theorem 1 (von Neumann) LetH : D(H) ⊆ H −→ H be a densely defined, symmetric operator
on a Hilbert space. If there exists an antiunitary operator C with
(a) C2 = idH,
(b) CD(H) ⊆ D(H), and
(c) [H,C] = 0 onD(H),
then the deficiency indices agree,N+ = N−.

(ii) AssumeH = −∆x+V with domainD(H) = C∞
c (Rd) is symmetric. Prove that thenH always

has a selfadjoint extension.

Hint: Review Chapter 5.2.1.

Solution:

(i) C2 = idH actually impliesCD(H) = D(H) (equality) [1], because applyingC to both sides of
CD(H) ⊆ D(H) yieldsD(H) ⊆ CD(H) [1].
Now letK± := ker

(
H∗ ± i

)
. We will show that CK± = K∓ [1]: Let φ+ ∈ K+. Then we have

for all ψ ∈ D(H)

0
[1]
=

⟨
(H∗ + i)φ+, ψ

⟩ [1]
=

⟨
φ+, (H − i)ψ

⟩
=

⟨
Cφ+, C(H − i)ψ

⟩ [1]
=

⟨
Cφ+, (H + i)Cψ

⟩
,

or, put another way,Cφ+ ∈ ran (H+ i)⊥ [1]. By Lemma 5.2.5 (i) this meansCφ+ ∈ ker(H∗−
i) = K− [1], and thus, CK+ ⊆ K− [1].
Repeating the same argument forφ− ∈ K− yields also the opposite inclusionCK− ⊆ K+ [1].
Combining the two inclusions with C2 = idH yieldsK− ⊆ CK+ ⊆ K−, i. e. CK+ = K− [1],
and similarly alsoCK− = K+. Given thatC is an isometry, that means the dimensions ofK−
andK+ – the deficiency indicesN− andN+ – have to be the same,N− = N+ [1].

(ii) Here, we can pick complex conjugation C [1]. Evidently, C2 = idH, CD(H) = D(H) [1], and
by problem 24, we also have [H,C] = 0 [1]. Hence, the deficiency indices agree, N+ = N−
[1], and Theorem 5.2.7 applies, i. e. there exists a selfadjoint extension ofH [1].
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