

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Solutions 8 (2014.11.04)

Time-reversal and von Neumann's Theorem

Homework Problems

24. Time-reversal symmetry (16 points)

- Let $(C\psi)(x) := \overline{\psi(x)}$ be complex conjugation defined on $L^2(\mathbb{R}^3)$.
 - (i) Show that C is a conjugation, i. e. an antiunitary $(\langle \varphi, \psi \rangle = \overline{\langle C\varphi, C\psi \rangle} = \langle C\psi, C\varphi \rangle$ for all $\varphi, \psi \in L^2(\mathbb{R}^d)$) which squares to $\mathrm{id}_{L^2(\mathbb{R}^3)}$.

Now consider the magnetic Schrödinger operator

$$H^{A} = \left(-i\nabla_{x} - A(\hat{x})\right)^{2} + V(\hat{x})$$

with domain $\mathcal{D}(H^A) = \mathcal{C}^{\infty}_{c}(\mathbb{R}^3)$ where the magnetic vector potential $A \in \mathcal{C}^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$ is associated to the magnetic field $B = \nabla_x \times A$, and the real-valued potential $V \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$ satisfies the conditions of Theorem 5.2.24.

- (ii) Show $C H^A C = H^{-A}$.
- (iii) Let $H := H^{A=0}$ be the non-magnetic Schrödinger operator. Prove [H, C] = 0.
- (iv) Show that C implements physical time-reversal for H from part (iii), i. e. CU(t) C = U(-t)where $U(t) = e^{-itH}$ is the time evolution group.

Solution:

(i) Evidently, C is antilinear [1], $C(\varphi + \mu\psi) = C\varphi + \bar{\mu}C\psi$, and an involution as $(C^2\psi)(x) = \overline{\psi(x)} = \psi(x)$ [1]. The antiunitarity is quickly verified by hand, too:

$$\begin{split} \langle \varphi, \psi \rangle &= \int_{\mathbb{R}^3} \mathrm{d}x \, \overline{\varphi(x)} \, \psi(x) \stackrel{[1]}{=} \int_{\mathbb{R}^3} \mathrm{d}x \, (C\varphi)(x) \, \overline{(C\psi)(x)} \\ &\stackrel{[1]}{=} \langle C\psi, C\varphi \rangle \end{split}$$

Hence, C is an antiunitary.

(ii) First of all, the domain $C_c^{\infty}(\mathbb{R}^3) = C C_c^{\infty}(\mathbb{R}^3)$ [1] is left invariant under complex conjugation. For multiplication operators for real-valued functions such as $V(\hat{x})$ and $A_j(\hat{x})$, we deduce $C V(\hat{x}) C = V(\hat{x})$ [1]. Moreover, $C (-i\nabla_x) C = +i\nabla_x$ holds true [1], and hence

$$C\left(-\mathrm{i}\partial_{x_j} - A_j(\hat{x})\right)C \stackrel{[1]}{=} -\left(-\mathrm{i}\partial_{x_j} + A_j(\hat{x})\right).$$

Put together, we obtain

$$C H^{A} C \stackrel{[1]}{=} \sum_{j=1}^{3} C \left(-i\partial_{x_{j}} - A_{j}(\hat{x}) \right) C^{2} \left(-i\partial_{x_{j}} - A_{j}(\hat{x}) \right) C + C V(\hat{x}) C$$
$$= \sum_{j=1}^{3} (-1)^{2} \left(-i\partial_{x_{j}} + A_{j}(\hat{x}) \right)^{2} + V(\hat{x}) \stackrel{[1]}{=} H^{-A}.$$

(iii) This follows immediately from (ii) since for A = 0 the operators $H^{A=0}$ and $H^{-A=0} = C H^{A=0} C$ coincide [1], and thus, multiplying both sides with C from the left yields

$$CH = C^2 H C \stackrel{[1]}{=} H C.$$

(iv) Multiplying the Schrödinger equation with ${\cal C}$ yields

$$C(\mathbf{i}\partial_t\psi) \stackrel{[1]}{=} -\mathbf{i}\partial_t C\psi = C H\psi \stackrel{[1]}{=} H C\psi.$$

Put another way, $C\, {\rm e}^{-{\rm i} t H}\psi = {\rm e}^{+{\rm i} t H}\, C\psi$ [1] or

$$C \operatorname{e}^{-\operatorname{i} t H} C \stackrel{[1]}{=} \operatorname{e}^{+\operatorname{i} t H}.$$

25. Von Neumann's Theorem (17 points)

(i) Prove the following theorem due to von Neumann:

Theorem 1 (von Neumann) Let $H : \mathcal{D}(H) \subseteq \mathcal{H} \longrightarrow \mathcal{H}$ be a densely defined, symmetric operator on a Hilbert space. If there exists an antiunitary operator C with

- (a) $C^2 = \mathrm{id}_{\mathcal{H}}$,
- (b) $C\mathcal{D}(H) \subseteq \mathcal{D}(H)$, and
- (c) [H, C] = 0 on $\mathcal{D}(H)$,

then the deficiency indices agree, $N_+ = N_-$.

(ii) Assume $H = -\Delta_x + V$ with domain $\mathcal{D}(H) = \mathcal{C}^{\infty}_{c}(\mathbb{R}^d)$ is symmetric. Prove that then H always has a selfadjoint extension.

Hint: Review Chapter 5.2.1.

Solution:

(i) $C^2 = id_{\mathcal{H}}$ actually implies $C\mathcal{D}(H) = \mathcal{D}(H)$ (equality) [1], because applying C to both sides of $C\mathcal{D}(H) \subseteq \mathcal{D}(H)$ yields $\mathcal{D}(H) \subseteq C\mathcal{D}(H)$ [1].

Now let $K_{\pm} := \ker(H^* \pm i)$. We will show that $CK_{\pm} = K_{\mp}$ [1]: Let $\varphi_+ \in K_+$. Then we have for all $\psi \in \mathcal{D}(H)$

$$0 \stackrel{[1]}{=} \overline{\langle (H^* + \mathbf{i})\varphi_+, \psi \rangle} \stackrel{[1]}{=} \overline{\langle \varphi_+, (H - \mathbf{i})\psi \rangle}$$
$$= \langle C\varphi_+, C(H - \mathbf{i})\psi \rangle \stackrel{[1]}{=} \langle C\varphi_+, (H + \mathbf{i})C\psi \rangle$$

or, put another way, $C\varphi_+ \in \operatorname{ran}(H+i)^{\perp}$ [1]. By Lemma 5.2.5 (i) this means $C\varphi_+ \in \ker(H^* - i) = K_-$ [1], and thus, $CK_+ \subseteq K_-$ [1].

Repeating the same argument for $\varphi_{-} \in K_{-}$ yields also the opposite inclusion $CK_{-} \subseteq K_{+}$ [1]. Combining the two inclusions with $C^{2} = \operatorname{id}_{\mathcal{H}}$ yields $K_{-} \subseteq CK_{+} \subseteq K_{-}$, i. e. $CK_{+} = K_{-}$ [1], and similarly also $CK_{-} = K_{+}$. Given that C is an isometry, that means the dimensions of K_{-} and K_{+} – the deficiency indices N_{-} and N_{+} – have to be the same, $N_{-} = N_{+}$ [1].

(ii) Here, we can pick complex conjugation C [1]. Evidently, $C^2 = id_H$, $C\mathcal{D}(H) = \mathcal{D}(H)$ [1], and by problem 24, we also have [H, C] = 0 [1]. Hence, the deficiency indices agree, $N_+ = N_-$ [1], and Theorem 5.2.7 applies, i. e. there exists a selfadjoint extension of H [1].