Foundations of
 Quantum Mechanics
 (APM 421 H)

Time-reversal and von Neumann's Theorem

Homework Problems

24. Time-reversal symmetry (16 points)

Let $(C \psi)(x):=\overline{\psi(x)}$ be complex conjugation defined on $L^{2}\left(\mathbb{R}^{3}\right)$.
(i) Show that C is a conjugation, i. e. an antiunitary $(\langle\varphi, \psi\rangle=\overline{\langle C \varphi, C \psi\rangle}=\langle C \psi, C \varphi\rangle$ for all $\left.\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right)$ which squares to $\operatorname{id}_{L^{2}\left(\mathbb{R}^{3}\right)}$.
Now consider the magnetic Schrödinger operator

$$
H^{A}=\left(-\mathrm{i} \nabla_{x}-A(\hat{x})\right)^{2}+V(\hat{x})
$$

with domain $\mathcal{D}\left(H^{A}\right)=\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$ where the magnetic vector potential $A \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ is associated to the magnetic field $B=\nabla_{x} \times A$, and the real-valued potential $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ satisfies the conditions of Theorem 5.2.24.
(ii) Show $C H^{A} C=H^{-A}$.
(iii) Let $H:=H^{A=0}$ be the non-magnetic Schrödinger operator. Prove $[H, C]=0$.
(iv) Show that C implements physical time-reversal for H from part (iii), i. e. $C U(t) C=U(-t)$ where $U(t)=\mathrm{e}^{-\mathrm{i} t H}$ is the time evolution group.

Solution:

(i) Evidently, C is antilinear [1], $C(\varphi+\mu \psi)=C \varphi+\bar{\mu} C \psi$, and an involution as $\left(C^{2} \psi\right)(x)=$ $\overline{\overline{\psi(x)}}=\psi(x)$ [1]. The antiunitarity is quickly verified by hand, too:

$$
\begin{aligned}
\langle\varphi, \psi\rangle & =\int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)} \psi(x) \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x(C \varphi)(x) \overline{(C \psi)(x)} \\
& \stackrel{[1]}{=}\langle C \psi, C \varphi\rangle
\end{aligned}
$$

Hence, C is an antiunitary.
(ii) First of all, the domain $\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)=C \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$ [1] is left invariant under complex conjugation. For multiplication operators for real-valued functions such as $V(\hat{x})$ and $A_{j}(\hat{x})$, we deduce $C V(\hat{x}) C=V(\hat{x})$ [1]. Moreover, $C\left(-\mathrm{i} \nabla_{x}\right) C=+\mathrm{i} \nabla_{x}$ holds true [1], and hence

$$
C\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})\right) C \stackrel{[1]}{=}-\left(-\mathrm{i} \partial_{x_{j}}+A_{j}(\hat{x})\right)
$$

Put together, we obtain

$$
\begin{aligned}
C H^{A} C & \stackrel{[1]}{=} \sum_{j=1}^{3} C\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})\right) C^{2}\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})\right) C+C V(\hat{x}) C \\
& =\sum_{j=1}^{3}(-1)^{2}\left(-\mathrm{i} \partial_{x_{j}}+A_{j}(\hat{x})\right)^{2}+V(\hat{x}) \stackrel{[1]}{=} H^{-A}
\end{aligned}
$$

(iii) This follows immediately from (ii) since for $A=0$ the operators $H^{A=0}$ and $H^{-A=0}=C H^{A=0} C$ coincide [1], and thus, multiplying both sides with C from the left yields

$$
C H=C^{2} H C \stackrel{[1]}{=} H C .
$$

(iv) Multiplying the Schrödinger equation with C yields

$$
C\left(\mathrm{i} \partial_{t} \psi\right) \stackrel{[1]}{=}-\mathrm{i} \partial_{t} C \psi=C H \psi \stackrel{[1]}{=} H C \psi
$$

Put another way, $C \mathrm{e}^{-\mathrm{i} t H} \psi=\mathrm{e}^{+\mathrm{i} t H} C \psi[1]$ or

$$
C \mathrm{e}^{-\mathrm{i} t H} C \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} t H} .
$$

25. Von Neumann's Theorem (17 points)

(i) Prove the following theorem due to von Neumann:

Theorem 1 (von Neumann) Let $H: \mathcal{D}(H) \subseteq \mathcal{H} \longrightarrow \mathcal{H}$ be a densely defined, symmetric operator on a Hilbert space. If there exists an antiunitary operator C with
(a) $C^{2}=\mathrm{id}_{\mathcal{H}}$,
(b) $C \mathcal{D}(H) \subseteq \mathcal{D}(H)$, and
(c) $[H, C]=0$ on $\mathcal{D}(H)$,
then the deficiency indices agree, $N_{+}=N_{-}$.
(ii) Assume $H=-\Delta_{x}+V$ with domain $\mathcal{D}(H)=\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is symmetric. Prove that then H always has a selfadjoint extension.

Hint: Review Chapter 5.2.1.

Solution:

(i) $C^{2}=\mathrm{id}_{\mathcal{H}}$ actually implies $C \mathcal{D}(H)=\mathcal{D}(H)$ (equality) [1], because applying C to both sides of $C \mathcal{D}(H) \subseteq \mathcal{D}(H)$ yields $\mathcal{D}(H) \subseteq C \mathcal{D}(H)$ [1].
Now let $K_{ \pm}:=\operatorname{ker}\left(H^{*} \pm \mathrm{i}\right)$. We will show that $C K_{ \pm}=K_{\mp}$ [1]: Let $\varphi_{+} \in K_{+}$. Then we have for all $\psi \in \mathcal{D}(H)$

$$
\begin{aligned}
0 & \stackrel{[1]}{=} \overline{\left\langle\left(H^{*}+\mathbf{i}\right) \varphi_{+}, \psi\right\rangle} \stackrel{[1]}{=} \overline{\left\langle\varphi_{+},(H-\mathbf{i}) \psi\right\rangle} \\
& =\left\langle C \varphi_{+}, C(H-\mathbf{i}) \psi\right\rangle \stackrel{[1]}{=}\left\langle C \varphi_{+},(H+\mathbf{i}) C \psi\right\rangle
\end{aligned}
$$

or, put another way, $C \varphi_{+} \in \operatorname{ran}(H+\mathrm{i})^{\perp}[1]$. By Lemma 5.2.5 (i) this means $C \varphi_{+} \in \operatorname{ker}\left(H^{*}-\right.$ i) $=K_{-}$[1], and thus, $C K_{+} \subseteq K_{-}[1]$.

Repeating the same argument for $\varphi_{-} \in K_{-}$yields also the opposite inclusion $C K_{-} \subseteq K_{+}$[1]. Combining the two inclusions with $C^{2}=\mathrm{id}_{\mathcal{H}}$ yields $K_{-} \subseteq C K_{+} \subseteq K_{-}$, i. e. $C K_{+}=K_{-}$[1], and similarly also $C K_{-}=K_{+}$. Given that C is an isometry, that means the dimensions of K_{-} and K_{+}- the deficiency indices N_{-}and N_{+}- have to be the same, $N_{-}=N_{+}$[1].
(ii) Here, we can pick complex conjugation C [1]. Evidently, $C^{2}=\mathrm{id}_{\mathcal{H}}, C \mathcal{D}(H)=\mathcal{D}(H)$ [1], and by problem 24 , we also have $[H, C]=0[1]$. Hence, the deficiency indices agree, $N_{+}=N_{-}$ [1], and Theorem 5.2.7 applies, i. e. there exists a selfadjoint extension of H [1].

