Operators

Homework Problems

26. Convergence of operators

Consider the following sequences $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ of operators on the Hilbert space

$$
\ell^{2}(\mathbb{N})=\left\{\left.a \equiv\left(a_{n}\right)_{n \in \mathbb{N}}\left|\sum_{n=1}^{\infty}\right| a_{n}\right|^{2}<\infty\right\}
$$

and investigate whether they converge in norm, strongly or weakly:
(i) $T_{n}(a):=\left(\frac{1}{n} a_{1}, \frac{1}{n} a_{2}, \ldots\right)$
(ii) $T_{n}(a):=(\underbrace{0, \ldots, 0}_{n \text { places }}, a_{n+1}, a_{n+2}, \ldots)$
(iii) $T_{n}(a):=(\underbrace{0, \ldots, 0}_{n \text { places }}, a_{1}, a_{2}, \ldots)$

Solution:

(i) The sequence T_{n} converges in norm/uniformly to $0 \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$, because

$$
\left\|T_{n}(a)\right\|_{\ell^{2}(\mathbb{N})}=\frac{1}{n}\|a\|_{\ell^{2}(\mathbb{N})} \xrightarrow{n \rightarrow \infty} 0
$$

and thus $\left\|T_{n}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)}=1 / n$. The above equation also implies that T_{n} converges to 0 also strongly and weakly, because

$$
\left|\left\langle a, T_{n}(b)\right\rangle_{\ell^{2}(\mathbb{N})}\right| \leq\|a\|_{\ell^{2}(\mathbb{N})}\left\|T_{n}(b)\right\|_{\ell^{2}(\mathbb{N})} \xrightarrow{n \rightarrow \infty} 0
$$

(ii) For a fixed $a \in \ell^{2}(\mathbb{N})$, we have

$$
\left\|T_{n}(a)\right\|_{\ell^{2}(\mathbb{N})}=\sum_{j=1}^{\infty}\left|\left(T_{n}(a)\right)_{j}\right|^{2}=\sum_{j=n+1}^{\infty}\left|a_{j}\right| \xrightarrow{n \rightarrow \infty} 0
$$

and thus T_{n} converges strongly (and weakly) to $0 \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$. However, if $e_{n}:=\left(\delta_{j n}\right)_{j \in \mathbb{N}}=$ $(0, \ldots, 0,1,0, \ldots)$, we see that

$$
\left\|T_{n} e_{n+1}\right\|_{\ell^{2}(\mathbb{N})}=1
$$

and thus T_{n} does not converge to 0 in norm, because $\left\|T_{n}\right\|_{\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)} \geq 1$.
(iii) T_{n} converges weakly to 0 :

$$
\begin{aligned}
\left|\left\langle a, T_{n}(b)\right\rangle_{\ell^{2}(\mathbb{N})}\right| & =\left|\sum_{j=1}^{\infty} \overline{b_{j}}\left(T_{n}(a)\right)_{j}\right|=\left|\sum_{j=n+1}^{\infty} \overline{b_{j}} a_{j-n}\right| \\
& \leq\left(\sum_{j=n+1}^{\infty}\left|b_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=n+1}^{\infty}\left|a_{j-n}\right|^{2}\right)^{1 / 2}=\left(\sum_{j=n+1}^{\infty}\left|b_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\right)^{1 / 2} \\
& \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

However, it does not converge strongly or in norm, because

$$
\left\|T_{n}(a)\right\|_{\ell^{2}(\mathbb{N})}^{2}=\sum_{j=n+1}^{\infty}\left|a_{j-n}\right|^{2}=\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}=\|a\|_{\ell^{2}(\mathbb{N})}
$$

27. Symmetric operators (17 points)

Let $H=\frac{1}{2 m}\left(-\mathrm{i} \nabla_{x}\right)^{2}+V$ be a Hamilton operator with potential $V \in \mathcal{C}\left(\mathbb{R}^{3}, \mathbb{R}\right)$.
Define the smooth functions with compact support as

$$
\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right):=\left\{\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{C} \mid \varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}\right), \text { supp } \varphi \text { compact }\right\} .
$$

(i) Prove $\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right) \subset L^{2}\left(\mathbb{R}^{3}\right)$.
(ii) Show that H is symmetric on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, i. e. that

$$
\langle\varphi, H \psi\rangle=\langle H \varphi, \psi\rangle
$$

holds for all $\varphi, \psi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$.

Solution:

(i) Every smooth function with compact support is square-integrable: let $\varphi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$, then there exists a compact subset $K \subset \mathbb{R}^{3}$, so that

$$
\begin{equation*}
\operatorname{supp} \varphi=\overline{\left\{x \in \mathbb{R}^{3} \mid \varphi(x) \neq 0\right\}} \subseteq K \tag{1}
\end{equation*}
$$

Since φ is also continuous, we can estimate the supremum from above by

$$
\begin{equation*}
\|\varphi\|_{\infty}=\sup _{x \in \mathbb{R}^{3}}|\varphi(x)|=\sup _{x \in K}|\varphi(x)|<\infty \tag{1}
\end{equation*}
$$

Hence, we obtain

$$
\|\varphi\|^{2}=\int_{\mathbb{R}^{3}} \mathrm{~d} x|\varphi(x)|^{2} \stackrel{[1]}{=} \int_{K} \mathrm{~d} x|\varphi(x)|^{2} \stackrel{[1]}{\leq}|K|\left(\sup _{x \in K}|\varphi(x)|^{2}<\infty .\right.
$$

(ii) We will treat kinetic and potential energy separately: clearly, derivatives map $\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$ into itself, and thus $\left(-\mathrm{i} \nabla_{x}\right)^{2} \varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ [1]. Fix $\varphi, \psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. Then there exists a compact set $K \subset \mathbb{R}^{3}$ whose interior contains $\operatorname{supp} \varphi$ and $\operatorname{supp} \psi[1]$. Then we compute using repeated partial integration

$$
\begin{aligned}
&\left\langle\varphi, \frac{1}{2 m}\left(-\mathbf{i} \nabla_{x}\right)^{2} \psi\right\rangle=\sum_{j=1}^{3} \frac{1}{2 m}\left\langle\varphi,\left(-\mathbf{i} \partial_{x_{j}}\right)^{2} \psi\right\rangle \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)}\left(\left(-\mathbf{i} \partial_{x_{j}}\right)^{2} \psi\right)(x) \\
& \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{K} \mathrm{~d} x \overline{\varphi(x)}\left(\left(-\mathbf{i} \partial_{x_{j}}\right)^{2} \psi\right)(x) \\
& \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{\partial K} \mathrm{~d} S(x) \overline{\varphi(x)}\left((-\mathbf{i})^{2} \partial_{x_{j}} \psi\right)(x)+ \\
& \stackrel{-}{=} 0-\sum_{j=1}^{3} \frac{1}{2 m} \int_{K} \mathrm{~d} x \overline{\partial_{x_{j}} \varphi(x)}\left((-\mathbf{i})^{2} \partial_{x_{j}} \psi\right)(x) \\
&(-\mathbf{i})^{2} \int_{\partial K} \mathrm{~d} S(x) \overline{\partial_{x_{j}} \varphi(x)} \psi(x)+ \\
&+\sum_{j=1}^{3} \frac{1}{2 m}(-\mathbf{i})^{2} \int_{K} \mathrm{~d} x \overline{\partial_{x_{j}}^{2} \varphi(x)} \psi(x)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{[1]}{=} \sum_{j=1}^{3} \frac{1}{2 m} \int_{K} \mathrm{~d} x \overline{\left(\left(-\mathbf{i} \partial_{x_{j}}\right)^{2} \varphi\right)(x)} \psi(x) \\
& \stackrel{[1]}{=}\left\langle\frac{1}{2 m}\left(-\mathbf{i} \nabla_{x}\right)^{2} \varphi, \psi\right\rangle
\end{aligned}
$$

Here, $\mathrm{d} S(x)$ is the surface measure on ∂K. The boundary terms vanish, because φ and ψ as well as their derivatives vanish on ∂K.
Now to the potential energy: since V is continuous, it is bounded on compact subsets. Choose any $\varphi, \psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. Then $V \varphi \in L^{2}\left(\mathbb{R}^{3}\right)[1]$ and hence,

$$
\begin{aligned}
&\langle\varphi, V \psi\rangle \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)}(V \psi)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)} V(x) \psi(x) \\
& \stackrel{[1]}{=} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{(V \varphi)(x)} \psi(x) \stackrel{[1]}{=}\langle V \varphi, \psi\rangle
\end{aligned}
$$

holds.

28. Positive operators and the trace

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis of $L^{2}\left(\mathbb{R}^{n}\right)$ and $\rho=\rho^{*}$ a density operator, i. e. $0 \leq \rho$ which in addition satisfies

$$
\operatorname{Tr} \rho=\sum_{n \in \mathbb{N}}\left\langle\varphi_{n}, \rho \varphi_{n}\right\rangle=1
$$

(i) Show that the trace is independent of the choice of basis $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$.
(ii) Show that any rank-1 projection $P=\left\langle\psi_{*}, \cdot\right\rangle \psi_{*},\left\|\psi_{*}\right\|=1$, is a density operator.
(iii) Show that $\rho^{2}=\rho$ if and only if ρ is a rank- 1 projection.

Solution:

(i) By assumption, the sum

$$
\operatorname{Tr} \rho=\sum_{n \in \mathbb{N}}\left\langle\varphi_{n}, \rho \varphi_{n}\right\rangle=1
$$

converges to 1 , and the positivity of ρ implies it also converges absolutely to 1 .
To show that the sum is independent of the choice of orthonormal basis, let $\left\{\psi_{j}\right\}_{j \in \mathbb{N}}$ be a second orthonormal basis. Then we can express any φ_{n} from the first orthonormal basis in terms of the ψ_{j},

$$
\varphi_{n}=\sum_{j \in \mathbb{N}}\left\langle\psi_{j}, \varphi_{n}\right\rangle \psi_{j}
$$

Plugged into the sum, we obtain

$$
\begin{aligned}
1=\operatorname{Tr} \rho & =\sum_{n \in \mathbb{N}}\left\langle\varphi_{n}, \rho \varphi_{n}\right\rangle=\sum_{j, l, n \in \mathbb{N}}\left\langle\left\langle\psi_{j}, \varphi_{n}\right\rangle \psi_{j}, \rho\left\langle\psi_{l}, \varphi_{n}\right\rangle \psi_{l}\right\rangle \\
& =\sum_{j, l, n \in \mathbb{N}} \overline{\left\langle\psi_{j}, \varphi_{n}\right\rangle}\left\langle\psi_{l}, \varphi_{n}\right\rangle\left\langle\psi_{j}, \rho \psi_{l}\right\rangle=\sum_{j, l, n \in \mathbb{N}}\left\langle\psi_{l},\left\langle\varphi_{n}, \psi_{j}\right\rangle \varphi_{n}\right\rangle\left\langle\psi_{j}, \rho \psi_{l}\right\rangle \\
& =\sum_{j, l \in \mathbb{N}}\left\langle\psi_{l}, \psi_{j}\right\rangle\left\langle\psi_{j}, \rho \psi_{l}\right\rangle=\sum_{j \in \mathbb{N}}\left\langle\psi_{j}, \rho \psi_{j}\right\rangle
\end{aligned}
$$

(ii) First of all, $P=\left\langle\psi_{*}, \cdot\right\rangle \psi_{*}$ is selfadjoint, because for all $\varphi, \phi \in L^{2}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
\langle\varphi, P \phi\rangle & =\left\langle\varphi,\left\langle\psi_{*}, \phi\right\rangle \psi_{*}\right\rangle=\left\langle\psi_{*}, \phi\right\rangle\left\langle\varphi, \psi_{*}\right\rangle \\
& =\left\langle\left\langle\psi_{*}, \varphi\right\rangle \psi_{*}, \phi\right\rangle=\langle P \varphi, \phi\rangle
\end{aligned}
$$

Moreover, $P \geq 0$ because $P^{2}=P$, and thus

$$
\langle\varphi, P \varphi\rangle=\left\langle\varphi, P^{2} \varphi\right\rangle=\left\langle P^{*} \varphi, P \varphi\right\rangle=\langle P \varphi, P \varphi\rangle \geq 0
$$

By (i), we can compute the trace in any orthonormal basis, so for instance we can pick $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ with $\varphi_{1}=\psi_{*}$, and in that basis only one term of the sum survives,

$$
\begin{aligned}
\operatorname{Tr} P & =\sum_{n=1}^{\infty}\left\langle\varphi_{n}, P \varphi_{n}\right\rangle=\left\langle\psi_{*}, P \psi_{*}\right\rangle+\sum_{n=2}^{\infty}\left\langle\varphi_{n}, P \varphi_{n}\right\rangle \\
& =\left\langle\psi_{*}, \psi_{*}\right\rangle+0=1
\end{aligned}
$$

Thus, P is a density operator.
(iii) " $\Leftarrow: "$ if ρ is a rank- 1 projection, then $\rho^{2}=\rho$ is a density operator by (ii).
" \Rightarrow :" Assume $\rho^{2}=\rho$, i. e. ρ is an orthogonal projection (selfadjointness is included in the definition of ρ). Hence, we can spit $L^{2}\left(\mathbb{R}^{n}\right)=\operatorname{ran} \rho \oplus(\operatorname{ran} \rho)^{\perp}$ into the range of ρ and its orthogonal complement, and the action of ρ and $\psi=\psi_{\rho}+\psi_{\rho}^{\perp}$ is

$$
\rho \psi=\rho\left(\psi_{\rho}+\psi_{\rho}^{\perp}\right)=\psi_{\rho} .
$$

Thus, choosing a basis $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}=\left\{\varphi_{n}\right\}_{n \in \mathcal{I}} \cup\left\{\varphi_{n}\right\}_{n \in \mathbb{N} \backslash \mathcal{I}}$ where $\left\{\varphi_{n}\right\}_{n \in \mathcal{I}}$ is an orthonormal basis of $\operatorname{ran} \rho$, we compute

$$
\begin{aligned}
\operatorname{Tr} \rho & =\sum_{n \in \mathbb{N}}\left\langle\varphi_{n}, \rho \varphi_{n}\right\rangle=\sum_{n \in \mathcal{I}}\left\langle\varphi_{n}, \rho \varphi_{n}\right\rangle \\
& =\sum_{n \in \mathcal{I}}\left\langle\varphi_{n}, \varphi_{n}\right\rangle=|\mathcal{I}| \stackrel{!}{=} 1 .
\end{aligned}
$$

Since $|\mathcal{I}|$ is the dimensionality of $\operatorname{ran} \rho$, we deduce that $\operatorname{dim}(\operatorname{ran} \rho)=1$, and thus, P is a rank- 1 projection.

29. Extensions of operators

Consider the vector space $\operatorname{Pol}([0,1])$ of polynomials of finite degree with complex coefficients (seen as functions from $[0,1]$ to \mathbb{C}) and define the operator

$$
p(x)=\sum_{n=0}^{N} \alpha_{n} x^{n} \longmapsto \mathrm{~d} p(x):=\sum_{n=0}^{N} n \alpha_{n} x^{n-1}
$$

on $\operatorname{Pol}([0,1])$.
(i) Consider the Banach space $\left(\mathcal{C}([0,1]),\|\cdot\|_{0}\right),\|f\|_{0}:=\sup _{x \in[0,1]}|f(x)|$. Investigate whether d has a continuous extension $\widetilde{\mathrm{d}}: \mathcal{C}([0,1]) \longrightarrow \mathcal{C}([0,1])$.
(ii) Consider the Banach space $\left(\mathcal{C}^{1}([0,1]),\|\cdot\|_{1}\right)$,

$$
\|f\|_{1}:=\sup _{x \in[0,1]}|f(x)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right| .
$$

Investigate whether d has a continuous extension to $\widetilde{\mathrm{d}}: \mathcal{C}^{1}([0,1]) \longrightarrow \mathcal{C}([0,1])$.
Hint: You may use without proof that $\operatorname{Pol}([0,1])$ is dense in $\mathcal{C}^{k}([0,1]), k=0,1$.

Solution:

(i) We have to check whether d is bounded: Clearly, the monomials $\left\{x^{n}\right\}_{n \in \mathbb{N}_{0}}$ are a basis of $\operatorname{Pol}([0,1])$ with $\left\|x^{n}\right\|_{0}=1$, and we see that

$$
\|\mathrm{d}\|_{\operatorname{Pol}([0,1])} \geq \frac{\left\|\mathrm{d}\left(x^{n}\right)\right\|}{\left\|x^{n}\right\|}=\left\|n x^{n-1}\right\|=n \xrightarrow{n \rightarrow \infty}+\infty .
$$

That means there cannot be any continuous extension.
(ii) The norm is now bounded,

$$
\begin{aligned}
\|\mathrm{d}\|_{\operatorname{Pol}([0,1])} & =\sup _{p \in \operatorname{Pol}([0,1]) \backslash\{0\}} \frac{\|\mathrm{d} p\|_{0}}{\|p\|_{1}}=\sup _{p \in \operatorname{Pol}([0,1]) \backslash\{0\}} \frac{\left\|p^{\prime}\right\|_{0}}{\|p\|_{0}+\left\|p^{\prime}\right\|_{0}} \\
& \leq \sup _{p \in \operatorname{Pol}([0,1]) \backslash\{0\}} \frac{\left\|p^{\prime}\right\|_{0}}{\left\|p^{\prime}\right\|_{0}}=1,
\end{aligned}
$$

so that by Theorem 5.1.6, there exists a bounded extension

$$
\widetilde{\mathrm{d}}: \mathcal{C}^{1}([0,1]) \longrightarrow \mathcal{C}([0,1])
$$

