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Operators
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26. Convergence of operators
Consider the following sequences {Tn}n∈N of operators on the Hilbert space

ℓ2(N) =
{
a ≡ (an)n∈N

∣∣ ∑∞
n=1|an|

2 <∞
}

and investigate whether they converge in norm, strongly or weakly:
(i) Tn(a) :=

(
1
na1,

1
na2, . . .

)
(ii) Tn(a) :=

(
0, . . . , 0︸ ︷︷ ︸
n places

, an+1, an+2, . . .
)

(iii) Tn(a) :=
(
0, . . . , 0︸ ︷︷ ︸
n places

, a1, a2, . . .
)

Solution:

(i) The sequence Tn converges in norm/uniformly to 0 ∈ B
(
ℓ2(N)

)
, because∥∥Tn(a)∥∥ℓ2(N) = 1

n ∥a∥ℓ2(N)
n→∞−−−→ 0

and thus
∥∥Tn∥∥B(ℓ2(N)) = 1/n. The above equation also implies that Tn converges to 0 also

strongly and weakly, because∣∣⟨a, Tn(b)⟩ℓ2(N)∣∣ ≤ ∥∥a∥∥ℓ2(N) ∥∥Tn(b)∥∥ℓ2(N) n→∞−−−→ 0 .

(ii) For a fixed a ∈ ℓ2(N), we have

∥∥Tn(a)∥∥ℓ2(N) = ∞∑
j=1

∣∣(Tn(a))j∣∣2 = ∞∑
j=n+1

|aj |
n→∞−−−→ 0 ,

and thus Tn converges strongly (and weakly) to 0 ∈ B
(
ℓ2(N)

)
. However, if en := (δjn)j∈N =(

0, . . . , 0, 1, 0, . . .
)
, we see that ∥∥Tnen+1

∥∥
ℓ2(N) = 1 ,

and thus Tn does not converge to 0 in norm, because ∥Tn∥B(ℓ2(N)) ≥ 1.
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(iii) Tn converges weakly to 0:

∣∣∣⟨a, Tn(b)⟩ℓ2(N)∣∣∣ =
∣∣∣∣∣
∞∑
j=1

bj
(
Tn(a)

)
j

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
j=n+1

bj aj−n

∣∣∣∣∣
≤

( ∞∑
j=n+1

|bj |2
)1/2( ∞∑

j=n+1

∣∣aj−n

∣∣2)1/2

=

( ∞∑
j=n+1

|bj |2
)1/2( ∞∑

j=1

|aj |2
)1/2

n→∞−−−→ 0

However, it does not converge strongly or in norm, because

∥∥Tn(a)∥∥2ℓ2(N) = ∞∑
j=n+1

∣∣aj−n

∣∣2 = ∞∑
j=1

|aj |2 = ∥a∥ℓ2(N) .
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27. Symmetric operators (17 points)
LetH = 1

2m(−i∇x)
2 + V be a Hamilton operator with potential V ∈ C(R3,R).

Define the smooth functions with compact support as

C∞
c (R3) :=

{
φ : R3 −→ C | φ ∈ C∞(R3), suppφ compact

}
.

(i) Prove C∞
c (R3) ⊂ L2(R3).

(ii) Show thatH is symmetric on C∞
c (R3), i. e. that⟨

φ,Hψ
⟩
=
⟨
Hφ,ψ

⟩
holds for all φ,ψ ∈ C∞

c (R3).

Solution:

(i) Every smooth functionwith compact support is square-integrable: letφ ∈ C∞
c (R3), then there

exists a compact subsetK ⊂ R3, so that

suppφ =
{
x ∈ R3 | φ(x) ̸= 0

}
⊆ K . [1]

Since φ is also continuous, we can estimate the supremum from above by

∥φ∥∞ = sup
x∈R3

|φ(x)| = sup
x∈K

|φ(x)| <∞ . [1]

Hence, we obtain

∥φ∥2 =
∫
R3

dx |φ(x)|2 [1]
=

∫
K
dx |φ(x)|2

[1]

≤ |K|
(
sup
x∈K

|φ(x)|
)2
<∞.

(ii) We will treat kinetic and potential energy separately: clearly, derivatives map C∞
c (R3) into

itself, and thus (−i∇x)
2φ ∈ L2(R3) [1]. Fix φ,ψ ∈ C∞

c (R3). Then there exists a compact
setK ⊂ R3 whose interior contains suppφ and suppψ [1]. Then we compute using repeated
partial integration

⟨
φ, 1

2m(−i∇x)
2ψ
⟩
=

3∑
j=1

1

2m

⟨
φ, (−i∂xj )

2ψ
⟩ [1]
=

3∑
j=1

1

2m

∫
R3

dxφ(x)
(
(−i∂xj )

2ψ
)
(x)

[1]
=

3∑
j=1

1

2m

∫
K
dxφ(x)

(
(−i∂xj )

2ψ
)
(x)

[1]
=

3∑
j=1

1

2m

∫
∂K

dS(x)φ(x)
(
(−i)2∂xjψ

)
(x)+

−
3∑

j=1

1

2m

∫
K
dx ∂xjφ(x)

(
(−i)2∂xjψ

)
(x)

[1]
= 0−

3∑
j=1

1

2m
(−i)2

∫
∂K

dS(x) ∂xjφ(x)ψ(x)+

+

3∑
j=1

1

2m
(−i)2

∫
K
dx ∂2xj

φ(x)ψ(x)
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[1]
=

3∑
j=1

1

2m

∫
K
dx
(
(−i∂xj )

2φ
)
(x)ψ(x)

[1]
=
⟨

1
2m(−i∇x)

2φ,ψ
⟩

Here, dS(x) is the surface measure on ∂K. The boundary terms vanish, because φ and ψ as
well as their derivatives vanish on ∂K.
Now to the potential energy: since V is continuous, it is bounded on compact subsets. Choose
any φ,ψ ∈ C∞

c (R3). Then V φ ∈ L2(R3) [1] and hence,

⟨
φ, V ψ

⟩ [1]
=

∫
R3

dxφ(x)
(
V ψ
)
(x)

[1]
=

∫
R3

dxφ(x)V (x)ψ(x)

[1]
=

∫
R3

dx
(
V φ
)
(x)ψ(x)

[1]
=
⟨
V φ, ψ

⟩
holds.
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28. Positive operators and the trace
Let {φn}n∈N be an orthonormal basis of L2(Rn) and ρ = ρ∗ a density operator, i. e. 0 ≤ ρ which in
addition satisfies

Tr ρ =
∑
n∈N

⟨φn, ρφn⟩ = 1.

(i) Show that the trace is independent of the choice of basis {φn}n∈N.
(ii) Show that any rank-1 projection P = ⟨ψ∗, · ⟩ ψ∗, ∥ψ∗∥ = 1, is a density operator.
(iii) Show that ρ2 = ρ if and only if ρ is a rank-1 projection.

Solution:

(i) By assumption, the sum

Tr ρ =
∑
n∈N

⟨φn, ρφn⟩ = 1

converges to 1, and the positivity of ρ implies it also converges absolutely to 1.
To show that the sum is independent of the choice of orthonormal basis, let {ψj}j∈N be a
second orthonormal basis. Then we can express any φn from the first orthonormal basis in
terms of the ψj ,

φn =
∑
j∈N

⟨ψj , φn⟩ ψj .

Plugged into the sum, we obtain

1 = Tr ρ =
∑
n∈N

⟨φn, ρφn⟩ =
∑

j,l,n∈N

⟨
⟨ψj , φn⟩ ψj , ρ ⟨ψl, φn⟩ ψl

⟩
=

∑
j,l,n∈N

⟨ψj , φn⟩ ⟨ψl, φn⟩ ⟨ψj , ρ ψl⟩ =
∑

j,l,n∈N

⟨
ψl, ⟨φn, ψj⟩ φn

⟩
⟨ψj , ρ ψl⟩

=
∑
j,l∈N

⟨ψl, ψj⟩ ⟨ψj , ρ ψl⟩ =
∑
j∈N

⟨ψj , ρ ψj⟩ .

(ii) First of all, P = ⟨ψ∗, · ⟩ ψ∗ is selfadjoint, because for all φ, ϕ ∈ L2(Rn), we have⟨
φ,Pϕ

⟩
=
⟨
φ, ⟨ψ∗, ϕ⟩ ψ∗

⟩
= ⟨ψ∗, ϕ⟩ ⟨φ,ψ∗⟩

=
⟨
⟨ψ∗, φ⟩ψ∗, ϕ

⟩
=
⟨
Pφ, ϕ

⟩
.

Moreover, P ≥ 0 because P 2 = P , and thus

⟨φ,Pφ⟩ =
⟨
φ,P 2φ

⟩
= ⟨P ∗φ,Pφ⟩ = ⟨Pφ, Pφ⟩ ≥ 0 .

By (i), we can compute the trace in any orthonormal basis, so for instancewe can pick {φn}n∈N
with φ1 = ψ∗, and in that basis only one term of the sum survives,

TrP =
∞∑
n=1

⟨φn, Pφn⟩ = ⟨ψ∗, Pψ∗⟩+
∞∑
n=2

⟨φn, Pφn⟩

= ⟨ψ∗, ψ∗⟩+ 0 = 1 .

Thus, P is a density operator.
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(iii) “⇐:” if ρ is a rank-1 projection, then ρ2 = ρ is a density operator by (ii).
“⇒:” Assume ρ2 = ρ, i. e. ρ is an orthogonal projection (selfadjointness is included in the
definition of ρ). Hence, we can spit L2(Rn) = ran ρ ⊕

(
ran ρ

)⊥ into the range of ρ and its
orthogonal complement, and the action of ρ and ψ = ψρ + ψ⊥

ρ is

ρψ = ρ
(
ψρ + ψ⊥

ρ

)
= ψρ .

Thus, choosing a basis {φn}n∈N = {φn}n∈I ∪ {φn}n∈N\I where {φn}n∈I is an orthonormal
basis of ran ρ, we compute

Tr ρ =
∑
n∈N

⟨φn, ρφn⟩ =
∑
n∈I

⟨φn, ρφn⟩

=
∑
n∈I

⟨φn, φn⟩ = |I| !
= 1 .

Since |I| is the dimensionality of ran ρ, we deduce that dim
(
ran ρ

)
= 1, and thus,P is a rank-1

projection.
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29. Extensions of operators
Consider the vector space Pol([0, 1]) of polynomials of finite degree with complex coefficients (seen
as functions from [0, 1] to C) and define the operator

p(x) =
N∑

n=0

αn x
n 7−→ dp(x) :=

N∑
n=0

nαn x
n−1

on Pol([0, 1]).
(i) Consider the Banach space

(
C([0, 1]), ∥·∥0

)
, ∥f∥0 := supx∈[0,1]|f(x)|. Investigate whether d

has a continuous extension d̃ : C([0, 1]) −→ C([0, 1]).
(ii) Consider the Banach space

(
C1([0, 1]), ∥·∥1

)
,

∥f∥1 := sup
x∈[0,1]

|f(x)|+ sup
x∈[0,1]

|f ′(x)| .

Investigate whether d has a continuous extension to d̃ : C1([0, 1]) −→ C([0, 1]).
Hint: You may use without proof that Pol([0, 1]) is dense in Ck([0, 1]), k = 0, 1.

Solution:

(i) We have to check whether d is bounded: Clearly, the monomials {xn}n∈N0 are a basis of
Pol([0, 1]) with ∥xn∥0 = 1, and we see that

∥d∥Pol([0,1]) ≥
∥d(xn)∥
∥xn∥

=
∥∥nxn−1

∥∥ = n
n→∞−−−→ +∞ .

That means there cannot be any continuous extension.
(ii) The norm is now bounded,

∥d∥Pol([0,1]) = sup
p∈Pol([0,1])\{0}

∥∥dp∥∥
0∥∥p∥∥
1

= sup
p∈Pol([0,1])\{0}

∥p′∥0
∥p∥0 + ∥p′∥0

≤ sup
p∈Pol([0,1])\{0}

∥p′∥0
∥p′∥0

= 1 ,

so that by Theorem 5.1.6, there exists a bounded extension

d̃ : C1([0, 1]) −→ C([0, 1]) .
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