

Differential Equations of Mathematical Physics (APM 351 Y)

2013–2014 Problem Sheet 8 (2013.10.31)

Operators

Homework Problems

26. Convergence of operators

Consider the following sequences $\{T_n\}_{n\in\mathbb{N}}$ of operators on the Hilbert space

$$\ell^{2}(\mathbb{N}) = \left\{ a \equiv (a_{n})_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} |a_{n}|^{2} < \infty \right\}$$

and investigate whether they converge in norm, strongly or weakly:

(i)
$$T_n(a) := \left(\frac{1}{n}a_1, \frac{1}{n}a_2, \ldots\right)$$

(ii) $T_n(a) := \left(\underbrace{0, \ldots, 0}_{n \text{ places}}, a_{n+1}, a_{n+2}, \ldots\right)$

(iii)
$$T_n(a) := (\underbrace{0, \dots, 0}_{n \text{ places}}, a_1, a_2, \dots)$$

27. Symmetric operators

Let $H = \frac{1}{2m}(-i\nabla_x)^2 + V$ be a Hamilton operator with potential $V \in \mathcal{C}(\mathbb{R}^3, \mathbb{R})$. Define the smooth functions with compact support as

$$\mathcal{C}^\infty_\mathrm{c}(\mathbb{R}^3) := \left\{ \varphi : \mathbb{R}^3 \longrightarrow \mathbb{C} \mid \varphi \in \mathcal{C}^\infty(\mathbb{R}^3), \text{ supp } \varphi \text{ compact} \right\}.$$

- (i) Prove $\mathcal{C}^{\infty}_{\mathrm{c}}(\mathbb{R}^3) \subset L^2(\mathbb{R}^3)$.
- (ii) Show that H is *symmetric* on $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$, i. e. that

$$\langle \varphi, H\psi \rangle = \langle H\varphi, \psi \rangle$$

holds for all $\varphi, \psi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$.

28. Positive operators and the trace

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of $L^2(\mathbb{R}^n)$ and $\rho = \rho^*$ a density operator, i. e. $0 \le \rho$ which in addition satisfies

$$\operatorname{Tr}
ho = \sum_{n \in \mathbb{N}} \langle \varphi_n, \rho \varphi_n \rangle = 1.$$

- (i) Show that the trace is independent of the choice of basis $\{\varphi_n\}_{n\in\mathbb{N}}$.
- (ii) Show that any rank-1 projection $P = \langle \psi_*, \cdot \rangle \psi_*, \|\psi_*\| = 1$, is a density operator.
- (iii) Show that $\rho^2 = \rho$ if and only if ρ is a rank-1 projection.

29. Extensions of operators

Consider the vector space Pol([0, 1]) of polynomials of finite degree with complex coefficients (seen as functions from [0, 1] to \mathbb{C}) and define the operator

$$p(x) = \sum_{n=0}^{N} \alpha_n \, x^n \longmapsto \mathrm{d}p(x) := \sum_{n=0}^{N} n \, \alpha_n \, x^{n-1}$$

on Pol([0,1]).

- (i) Consider the Banach space $(\mathcal{C}([0,1]), \|\cdot\|_0)$, $\|f\|_0 := \sup_{x \in [0,1]} |f(x)|$. Investigate whether d has a continuous extension $\tilde{d} : \mathcal{C}([0,1]) \longrightarrow \mathcal{C}([0,1])$.
- (ii) Consider the Banach space $(\mathcal{C}^1([0,1]), \|\cdot\|_1)$,

$$||f||_1 := \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$$

Investigate whether d has a continuous extension to $\tilde{d} : C^1([0,1]) \longrightarrow C([0,1])$. Hint: You may use without proof that Pol([0,1]) is dense in $C^k([0,1])$, k = 0, 1.

Remark: To decrease the work load of the TA, only *one* will be marked this week. It will be announced only after the due date which of the four problems will be marked. Starting from Sheet 09, *about two* problems will be marked. In any case, unmarked problems will be relevant for tests 2–3 and the final exam.

Hand in home work on: Thursday, 7 November 2013, before class