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Homework Problems

26. Boundedness of the spectrum of an operator (6 points)
Let T ∈ B(X ) where X is a Banach space. Show that

σ(T ) ⊆
{
z ∈ C | |z| ≤ ∥T∥

}
.

Hint: Look at the resolvent set.

Solution:
Pick a z ∈ C with |z| > ∥T∥. Consequently,

∥∥T/z∥∥ < 1 [1] and we can write (T − z)−1 in terms of
the Neumann series (cf. Problem 18 (iii)) [1]

(
id− T/z

)−1 [1]
=

∞∑
n=0

Tn

zn
,

and thus, T − z = −z
(
id− T/z

)
means we can write the resolvent as

(T − z)−1 [1]
= −z−1

(
id− T/z

)−1 [1]
= −

∞∑
n=0

Tn

zn+1
.

Hence, |z| > ∥T∥ implies z ∈ ρ(T ) [1].
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27. Boundedness of multiplication operators (12 points)
Let V (x̂) be the multiplication operator on L2(Rd) associated to the function V . Show that V (x̂) is
bounded if and only if V ∈ L∞(Rd).

Solution:
“⇐:” Assume V ∈ L∞(Rd). Then the boundendess follows from the estimate

∥∥V (x̂)φ
∥∥2 [1]

=

∫
Rd

dx |V (x)|2 |φ(x)|2
[1]

≤ ∥V ∥2L∞

∫
Rd

dx |φ(x)|2 [1]
= ∥V ∥2L∞ ∥φ∥2.

“⇒:” Now assume the multiplication operator V (x̂) ∈ B
(
L2(Rd)

)
is bounded, but suppose the

associated function is not essentially bounded, V ̸∈ L∞(Rd) [1]. Then for any ε > 0 the Lebesgue
measure of the set

Mε :=
{
x ∈ Rd | |V (x)| > ∥V (x̂)∥+ ε

}
is positive, L(Mε) > 0 [2]. Then pick a subset Λ ⊆ Mε of finite and positive Lebesgue measure
(the Lebesgue measure ofMε could be infinite) and consider the function φ(x) = 1Λ(x) [1]. Since
0 < ∥φ∥ = vol(Λ) < +∞, the vector φ ̸= 0 ∈ L2(Rd) is not the 0 vector [1]. On the other hand,
the lower bound ∥∥V (x̂)φ

∥∥2 = ∫
Rd

dx |V (x)|2 |φ(x)|2
[1]

≥
(
∥V (x̂)∥+ ε

)2 ∥φ∥2
contradicts that |V | can take values which are larger than ∥V (x̂)∥ on a set of positive measure [1],
because evidently

∥∥V (x̂)φ
∥∥ ≤ ∥V (x̂)∥ ∥φ∥ [1]. That means V ∈ L∞(Rd) [1]. In fact, we have just

shown that ∥V (x̂)∥ = ∥V ∥L∞ .
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28. Selfadjointness of Schrödinger operators (9 points)
LetH = −∆x+V be the Schrödinger operator onL2(Rd)with potential V ∈ L∞(Rd,R) equipped
with domainD(H) = H2(Rd). Show thatH is selfadjoint.

Solution:
First of all V ∈ L∞(Rd) defines a bounded multiplication operator [1],∥∥V (x̂)φ

∥∥
L2 ≤ ∥V ∥L∞ ∥φ∥L2

[2]
= 0 · ∥−∆xφ∥L2 + ∥V ∥L∞ ∥φ∥L2 , (1)

and seeing as V is real-valued, V is also symmetric (even selfadjoint) on D(V ) = L2(Rd) [1].
Clearly, we have the inclusion D(−∆x) = H2(Rd) ⊂ D(V ) = L2(Rd) [1]. Moreover, (1) also
implies V is infinitesimally −∆x-bounded [1], because we can even choose a = 0 (and b = ∥V ∥L∞)
[1]. Thatmeans Kato-Rellich applies [1], andH = −∆x+V equippedwith domainD(H) = H2(Rd)
defines a selfadjoint operator [1].
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29. A quantum two-body system (37 points)
Consider two identical quantum particles of mass m which are interacting with one another via
Coulomb repulsion. Then the Schrödinger operator which describes the two is an extension of

H0 =
1

2m

(
−i∇x1

)2
+

1

2m

(
−i∇x2

)2
+

e2

|x1 − x2|

endowed with domain D(H0) = C∞
c (R6) ⊂ L2(R6). Here, x1, x2 ∈ R3 are the positions of parti-

cles 1 and 2, respectively. We will denote the selfadjoint extension ofH0 withH (establishing the
existence ofH will be done in part (ii) below).
(i) Write H0 in terms of center-of-mass coordinate xc = 1

2(x1 + x2) and relative coordinate
r = x1 − x2.

(ii) Show thatH0 is essentially selfadjoint. What is the domain of the selfadjoint extensionH?
(iii) Does the selfadjoint extensionH have eigenvalues below 0? Justify your answer.
(iv) What do low-energy states look like?
Define the fermionic subspace as

Hf :=
{
φ ∈ L2(R6)

∣∣ φ(x2, x1) = −φ(x1, x2) almost everywhere
}
,

and denote the restriction ofH toD(H) ∩Hf withHf.
(v) Show thatHf mapsD(H) ∩Hf toHf. How do you interpret this fact physically?
(vi) Explain in what senseHf defines a selfadjoint operator.
(vii) Show that infσ(H) ≤ infσ(Hf). How do you interpret this fact physically?

Solution:

(i) Evidently, the potential written in center-of-mass coordinates is e2/|r| [1], so nowwe only need
to rewrite the kinetic energy. The x1- and x2-derivatives of a function of xc = 1

2(x1+x2) and
r = x1 − x2,

∇x1ψ(xc, r)
[1]
= ∇xcψ(xc, r) · ∇x1

(
1
2(x1 + x2)

)
+∇rψ(xc, r) · ∇x1(x1 − x2)

[1]
=

(
1
2∇xc +∇r

)
ψ(xc, r),

∇x2ψ(xc, r)
[1]
= ∇xcψ(xc, r) · ∇x2

(
1
2(x1 + x2)

)
+∇rψ(xc, r) · ∇x2(x1 − x2)

[1]
=

(
1
2∇xc −∇r

)
ψ(xc, r),

then lead to expressions for the kinetic energy:

−∆x1 −∆x2 = −∇2
x1 −∇2

x2

[1]
=

(
1
2∇xc +∇r

)2 − (
1
2∇xc −∇r

)2
[1]
= −1

2∆xc − 2∆r

Note that the cross terms have cancelled. Hence, if we rewrite H0 in center-of-mass coordi-
nates, we obtain

H0
[1]
= − 1

4m
∆xc −

1

m
∆r +

e2

|r|
.
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(ii) The Hilbert space L2(R6) ∼= L2(R3
xc) ⊗ L2(R3

r) decomposes as the direct sum of a center-of-
mass contribution and a relative coordinate contribution.

H0
[1]
= Hc ⊗ id+ id⊗Hrel

where Hc = − 1
4m∆xc [1] and Hrel = − 1

m∆r +
e2

|r| [1] are both endowed with the domains
C∞
c (R3) [1]. That is because if a function φ ∈ L2(R3

x1 ×R3
x2) is smooth and compact support,

then the reparametrization in terms of xc and r,

ψ(xc, r) = φ
(
xc +

r
2 , xc −

r
2

)
,

is also smooth and has compact support. Now,H0 is essentially selfadjoint if and only ifHc and
Hrel are [1]: the essential selfadjointness ofHc and− 1

m∆r (with domain C∞
c (R3)) is immedi-

ate (cf. the discussion on pp. 75–76 of the lecture notes) [2], and in both cases the domain of
selfadjointness isH2(R3). (Alternatively, one may check by hand that the deficiency indices
of−∆x with domain C∞

c (R3) are 0 since none of the non-trivial solutions to−∆xφ± = ∓iφ±
are in L2(R3).)
Now given that the repulsive Coulomb potential satisfies the conditions of Theorem 5.2.25
(the sign of the potential does not enter, so the proof is a trivial modification of that of Corol-
lary 5.2.27) [1], Hrel has a selfadjoint extension with domainH2(R3) [1]. Hence, H0 is essen-
tially selfadjoint [1], and the domain of its unique selfadjoint extension isH2(R6) [1].

(iii) We will use the min-max principle: let us consider the free two-particle hamiltonianHfree =
− 1

2m∆x1 − 1
2m∆x2 endowed with domain H2(R6) [1]. Then e2/|r| > 0 and the fact that the

domains ofH andHfree coincide imply

H = − 1

2m
∆x1 −

1

2m
∆x2 +

e2

|r|
[1]

≥ − 1

2m
∆x1 −

1

2m
∆x2 = Hfree.

Consequently,En(H) ≥ En(Hfree) = 0 holds for all n ∈ N0 (the spectrum ofHfree is [0,+∞),
and the bottom is purely essential) [1], and thus, there can be no eigenvalues below 0. One
may also see that on physical grounds: the potential is purely repulsive.

(iv) Low energy states can be best visualized in center-of-mass coordinates: the two particles are
very delocalized but situated far apart. Visually, that means the probability density has two
small, broad humps which are far away from one another. Hence, such a low energy state can
be written as a product

ψ(xc, r)
[1]
= ϕ(xc) η(r)

where ϕ(xc) is broad and flat (meaning−∆xcϕ ≈ 0) [1] and η(r) ≈ 0 for |r| small [1].
(v) Let us introduce the operator (Pψ)(x1, x2) := ψ(x2, x1) [1]. Clearly, P is idempotent (P 2 =

id). A quick computation yields∆x1 P = P ∆x2 [1], and we deduce that P commutes withH ,
i. e. [H,P ] = 0 [1]. Elements of Hf are those for which Pψ = −ψ [1], and if we use the fact
that P commutes withH , we see thatH maps elements ofHf ontoHf,

−Hψ = H Pψ = P Hψ. [1]

Consequently,Hf := H|Hf defines a mapD(H) ∩Hf −→ Hf [1].
(vi) First of all, Hf is a Hilbert space, because limits of antisymmetric L2-functions are again an-

tisymmetric, and the Hilbert space L2(R6) ∼= Hf ⊕ H⊥
f [1] (the second term consists of L2-

functions with φ(x1, x2) = +φ(x2, x1)).
Secondly, the above arguments show that H = Hf ⊕ Hb [1] where Hb is the restriction of
H to the bosonic subspace H⊥

f . Now H∗ = H implies that Hf = H∗
f and Hb = H∗

b are also
selfadjoint [1].
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(vii) The operator prescription ofH andHf are identical, the only difference are the domains – and
Hf is a restriction ofH . Thus, the inequality is an immediate consequence of the Rayleigh-Ritz
principle [1] and the fact that the second infimum is taken over a strictly smaller set,

infσ(H)
[1]
= inf

ψ∈D(H)
∥ψ∥=1

⟨
ψ,Hψ

⟩ [1]

≤ inf
ψ∈D(H)∩Hf

∥ψ∥=1

⟨
ψ,Hψ

⟩ [1]
= σ(Hf).
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