

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Solutions 9 (2014.11.07)

Homework Problems

26. Boundedness of the spectrum of an operator (6 points)

Let $T \in \mathcal{B}(\mathcal{X})$ where \mathcal{X} is a Banach space. Show that

$$\sigma(T) \subseteq \{ z \in \mathbb{C} \mid |z| \le ||T|| \}.$$

Hint: Look at the *resolvent* set.

Solution:

Pick a $z \in \mathbb{C}$ with |z| > ||T||. Consequently, ||T/z|| < 1 [1] and we can write $(T - z)^{-1}$ in terms of the Neumann series (cf. Problem 18 (iii)) [1]

$$\left(\operatorname{id}-T/z\right)^{-1} \stackrel{[1]}{=} \sum_{n=0}^{\infty} \frac{T^n}{z^n},$$

and thus, $T-z=-z\left(\mathsf{id}-{^T\!/z}\right)$ means we can write the resolvent as

$$(T-z)^{-1} \stackrel{[1]}{=} -z^{-1} \left(\operatorname{id} - \frac{T}{z} \right)^{-1} \stackrel{[1]}{=} -\sum_{n=0}^{\infty} \frac{T^n}{z^{n+1}}.$$

Hence, |z| > ||T|| implies $z \in \rho(T)$ [1].

27. Boundedness of multiplication operators (12 points)

Let $V(\hat{x})$ be the multiplication operator on $L^2(\mathbb{R}^d)$ associated to the function V. Show that $V(\hat{x})$ is bounded if and only if $V \in L^{\infty}(\mathbb{R}^d)$.

Solution:

" \Leftarrow :" Assume $V \in L^{\infty}(\mathbb{R}^d)$. Then the boundendess follows from the estimate

$$\left\| V(\hat{x})\varphi \right\|^2 \stackrel{[1]}{=} \int_{\mathbb{R}^d} \mathrm{d}x \, |V(x)|^2 \, |\varphi(x)|^2 \stackrel{[1]}{\leq} \|V\|_{L^{\infty}}^2 \, \int_{\mathbb{R}^d} \mathrm{d}x \, |\varphi(x)|^2 \stackrel{[1]}{=} \|V\|_{L^{\infty}}^2 \, \|\varphi\|^2.$$

" \Rightarrow :" Now assume the multiplication operator $V(\hat{x}) \in \mathcal{B}(L^2(\mathbb{R}^d))$ is bounded, but suppose the associated function is not essentially bounded, $V \notin L^{\infty}(\mathbb{R}^d)$ [1]. Then for any $\varepsilon > 0$ the Lebesgue measure of the set

$$M_{\varepsilon} := \left\{ x \in \mathbb{R}^d \mid |V(x)| > ||V(\hat{x})|| + \varepsilon \right\}$$

is positive, $\mathcal{L}(M_{\varepsilon}) > 0$ [2]. Then pick a subset $\Lambda \subseteq M_{\varepsilon}$ of finite and positive Lebesgue measure (the Lebesgue measure of M_{ε} could be infinite) and consider the function $\varphi(x) = 1_{\Lambda}(x)$ [1]. Since $0 < \|\varphi\| = \operatorname{vol}(\Lambda) < +\infty$, the vector $\varphi \neq 0 \in L^2(\mathbb{R}^d)$ is not the 0 vector [1]. On the other hand, the lower bound

$$\left\|V(\hat{x})\varphi\right\|^{2} = \int_{\mathbb{R}^{d}} \mathrm{d}x \, |V(x)|^{2} \, |\varphi(x)|^{2} \stackrel{[1]}{\geq} \left(\|V(\hat{x})\| + \varepsilon\right)^{2} \|\varphi\|^{2}$$

contradicts that |V| can take values which are larger than $||V(\hat{x})||$ on a set of positive measure [1], because evidently $||V(\hat{x})\varphi|| \le ||V(\hat{x})|| ||\varphi||$ [1]. That means $V \in L^{\infty}(\mathbb{R}^d)$ [1]. In fact, we have just shown that $||V(\hat{x})|| = ||V||_{L^{\infty}}$.

28. Selfadjointness of Schrödinger operators (9 points)

Let $H = -\Delta_x + V$ be the Schrödinger operator on $L^2(\mathbb{R}^d)$ with potential $V \in L^{\infty}(\mathbb{R}^d, \mathbb{R})$ equipped with domain $\mathcal{D}(H) = H^2(\mathbb{R}^d)$. Show that H is selfadjoint.

Solution:

First of all $V \in L^{\infty}(\mathbb{R}^d)$ defines a bounded multiplication operator [1],

$$\left\| V(\hat{x})\varphi \right\|_{L^{2}} \le \|V\|_{L^{\infty}} \|\varphi\|_{L^{2}} \stackrel{[2]}{=} 0 \cdot \|-\Delta_{x}\varphi\|_{L^{2}} + \|V\|_{L^{\infty}} \|\varphi\|_{L^{2}}, \tag{1}$$

and seeing as V is real-valued, V is also symmetric (even selfadjoint) on $\mathcal{D}(V) = L^2(\mathbb{R}^d)$ [1]. Clearly, we have the inclusion $\mathcal{D}(-\Delta_x) = H^2(\mathbb{R}^d) \subset \mathcal{D}(V) = L^2(\mathbb{R}^d)$ [1]. Moreover, (1) also implies V is *infinitesimally* $-\Delta_x$ -bounded [1], because we can even choose a = 0 (and $b = ||V||_{L^{\infty}}$) [1]. That means Kato-Rellich applies [1], and $H = -\Delta_x + V$ equipped with domain $\mathcal{D}(H) = H^2(\mathbb{R}^d)$ defines a selfadjoint operator [1].

29. A quantum two-body system (37 points)

Consider two identical quantum particles of mass m which are interacting with one another via Coulomb repulsion. Then the Schrödinger operator which describes the two is an extension of

$$H_0 = \frac{1}{2m} \left(-i\nabla_{x_1} \right)^2 + \frac{1}{2m} \left(-i\nabla_{x_2} \right)^2 + \frac{e^2}{|x_1 - x_2|}$$

endowed with domain $\mathcal{D}(H_0) = \mathcal{C}^{\infty}_{c}(\mathbb{R}^6) \subset L^2(\mathbb{R}^6)$. Here, $x_1, x_2 \in \mathbb{R}^3$ are the positions of particles 1 and 2, respectively. We will denote the selfadjoint extension of H_0 with H (establishing the existence of H will be done in part (ii) below).

- (i) Write H_0 in terms of center-of-mass coordinate $x_c = \frac{1}{2}(x_1 + x_2)$ and relative coordinate $r = x_1 x_2$.
- (ii) Show that H_0 is essentially selfadjoint. What is the domain of the selfadjoint extension H?
- (iii) Does the selfadjoint extension H have eigenvalues below 0? Justify your answer.
- (iv) What do low-energy states look like?

Define the fermionic subspace as

$$\mathcal{H}_{\mathbf{f}} := \Big\{ \varphi \in L^2(\mathbb{R}^6) \ \big| \ \varphi(x_2, x_1) = -\varphi(x_1, x_2) \text{ almost everywhere} \Big\},$$

and denote the restriction of H to $\mathcal{D}(H) \cap \mathcal{H}_{f}$ with H_{f} .

- (v) Show that H_f maps $\mathcal{D}(H) \cap \mathcal{H}_f$ to \mathcal{H}_f . How do you interpret this fact physically?
- (vi) Explain in what sense $H_{\rm f}$ defines a selfadjoint operator.
- (vii) Show that $\inf \sigma(H) \leq \inf \sigma(H_f)$. How do you interpret this fact physically?

Solution:

(i) Evidently, the potential written in center-of-mass coordinates is $e^2/|r|$ [1], so now we only need to rewrite the kinetic energy. The x_1 - and x_2 -derivatives of a function of $x_c = \frac{1}{2}(x_1 + x_2)$ and $r = x_1 - x_2$,

$$\nabla_{x_1}\psi(x_c,r) \stackrel{[1]}{=} \nabla_{x_c}\psi(x_c,r) \cdot \nabla_{x_1}\left(\frac{1}{2}(x_1+x_2)\right) + \nabla_r\psi(x_c,r) \cdot \nabla_{x_1}(x_1-x_2)$$
$$\stackrel{[1]}{=} \left(\frac{1}{2}\nabla_{x_c}+\nabla_r\right)\psi(x_c,r),$$
$$\nabla_{x_2}\psi(x_c,r) \stackrel{[1]}{=} \nabla_{x_c}\psi(x_c,r) \cdot \nabla_{x_2}\left(\frac{1}{2}(x_1+x_2)\right) + \nabla_r\psi(x_c,r) \cdot \nabla_{x_2}(x_1-x_2)$$
$$\stackrel{[1]}{=} \left(\frac{1}{2}\nabla_{x_c}-\nabla_r\right)\psi(x_c,r),$$

then lead to expressions for the kinetic energy:

$$-\Delta_{x_1} - \Delta_{x_2} = -\nabla_{x_1}^2 - \nabla_{x_2}^2 \stackrel{[1]}{=} \left(\frac{1}{2}\nabla_{x_c} + \nabla_r\right)^2 - \left(\frac{1}{2}\nabla_{x_c} - \nabla_r\right)^2$$
$$\stackrel{[1]}{=} -\frac{1}{2}\Delta_{x_c} - 2\Delta_r$$

Note that the cross terms have cancelled. Hence, if we rewrite H_0 in center-of-mass coordinates, we obtain

$$H_0 \stackrel{[1]}{=} -\frac{1}{4m} \Delta_{x_c} - \frac{1}{m} \Delta_r + \frac{e^2}{|r|}.$$

(ii) The Hilbert space $L^2(\mathbb{R}^6) \cong L^2(\mathbb{R}^3_{x_c}) \otimes L^2(\mathbb{R}^3_r)$ decomposes as the direct sum of a center-ofmass contribution and a relative coordinate contribution.

$$H_0 \stackrel{[1]}{=} H_{\mathsf{c}} \otimes \mathsf{id} + \mathsf{id} \otimes H_{\mathsf{ref}}$$

where $H_c = -\frac{1}{4m}\Delta_{x_c}$ [1] and $H_{rel} = -\frac{1}{m}\Delta_r + \frac{e^2}{|r|}$ [1] are both endowed with the domains $C_c^{\infty}(\mathbb{R}^3)$ [1]. That is because if a function $\varphi \in L^2(\mathbb{R}^3_{x_1} \times \mathbb{R}^3_{x_2})$ is smooth and compact support, then the reparametrization in terms of x_c and r,

$$\psi(x_c, r) = \varphi\left(x_c + \frac{r}{2}, x_c - \frac{r}{2}\right)$$

is also smooth and has compact support. Now, H_0 is essentially selfadjoint if and only if H_c and H_{rel} are [1]: the essential selfadjointness of H_c and $-\frac{1}{m}\Delta_r$ (with domain $C_c^{\infty}(\mathbb{R}^3)$) is immediate (cf. the discussion on pp. 75–76 of the lecture notes) [2], and in both cases the domain of selfadjointness is $H^2(\mathbb{R}^3)$. (Alternatively, one may check by hand that the deficiency indices of $-\Delta_x$ with domain $C_c^{\infty}(\mathbb{R}^3)$ are 0 since none of the non-trivial solutions to $-\Delta_x \varphi_{\pm} = \mp i \varphi_{\pm}$ are in $L^2(\mathbb{R}^3)$.)

Now given that the repulsive Coulomb potential satisfies the conditions of Theorem 5.2.25 (the sign of the potential does not enter, so the proof is a trivial modification of that of Corollary 5.2.27) [1], H_{rel} has a selfadjoint extension with domain $H^2(\mathbb{R}^3)$ [1]. Hence, H_0 is essentially selfadjoint [1], and the domain of its unique selfadjoint extension is $H^2(\mathbb{R}^6)$ [1].

(iii) We will use the min-max principle: let us consider the free two-particle hamiltonian $H_{\text{free}} = -\frac{1}{2m}\Delta_{x_1} - \frac{1}{2m}\Delta_{x_2}$ endowed with domain $H^2(\mathbb{R}^6)$ [1]. Then $e^2/|r| > 0$ and the fact that the domains of H and H_{free} coincide imply

$$H = -\frac{1}{2m}\Delta_{x_1} - \frac{1}{2m}\Delta_{x_2} + \frac{e^2}{|r|} \stackrel{[1]}{\ge} -\frac{1}{2m}\Delta_{x_1} - \frac{1}{2m}\Delta_{x_2} = H_{\text{free}}.$$

Consequently, $E_n(H) \ge E_n(H_{\text{free}}) = 0$ holds for all $n \in \mathbb{N}_0$ (the spectrum of H_{free} is $[0, +\infty)$, and the bottom is purely essential) [1], and thus, there can be no eigenvalues below 0. One may also see that on physical grounds: the potential is purely repulsive.

(iv) Low energy states can be best visualized in center-of-mass coordinates: the two particles are very delocalized but situated far apart. Visually, that means the probability density has two small, broad humps which are far away from one another. Hence, such a low energy state can be written as a product

$$\psi(x_c, r) \stackrel{[1]}{=} \phi(x_c) \eta(r)$$

where $\phi(x_c)$ is broad and flat (meaning $-\Delta_{x_c}\phi \approx 0$) [1] and $\eta(r) \approx 0$ for |r| small [1].

(v) Let us introduce the operator (Pψ)(x₁, x₂) := ψ(x₂, x₁) [1]. Clearly, P is idempotent (P² = id). A quick computation yields Δ_{x1} P = P Δ_{x2} [1], and we deduce that P commutes with H, i. e. [H, P] = 0 [1]. Elements of H_f are those for which Pψ = -ψ [1], and if we use the fact that P commutes with H, we see that H maps elements of H_f onto H_f,

$$-H\psi = H P\psi = P H\psi.$$
[1]

Consequently, $H_{f} := H|_{\mathcal{H}_{f}}$ defines a map $\mathcal{D}(H) \cap \mathcal{H}_{f} \longrightarrow \mathcal{H}_{f}$ [1].

(vi) First of all, \mathcal{H}_{f} is a Hilbert space, because limits of antisymmetric L^{2} -functions are again antisymmetric, and the Hilbert space $L^{2}(\mathbb{R}^{6}) \cong \mathcal{H}_{f} \oplus \mathcal{H}_{f}^{\perp}$ [1] (the second term consists of L^{2} functions with $\varphi(x_{1}, x_{2}) = +\varphi(x_{2}, x_{1})$).

Secondly, the above arguments show that $H = H_f \oplus H_b$ [1] where H_b is the restriction of H to the bosonic subspace \mathcal{H}_f^{\perp} . Now $H^* = H$ implies that $H_f = H_f^*$ and $H_b = H_b^*$ are also selfadjoint [1].

(vii) The operator prescription of H and H_f are identical, the only difference are the domains – and H_f is a *restriction* of H. Thus, the inequality is an immediate consequence of the Rayleigh-Ritz principle [1] and the fact that the second infimum is taken over a strictly smaller set,

$$\inf \sigma(H) \stackrel{[1]}{=} \inf_{\substack{\psi \in \mathcal{D}(H) \\ \|\psi\|=1}} \langle \psi, H\psi \rangle \stackrel{[1]}{\leq} \inf_{\substack{\psi \in \mathcal{D}(H) \cap \mathcal{H}_{\mathrm{f}} \\ \|\psi\|=1}} \langle \psi, H\psi \rangle \stackrel{[1]}{=} \sigma(H_{\mathrm{f}}).$$