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Homework Problems

26. Boundedness of the spectrum of an operator (6 points)

Let T' € B(X) where X is a Banach space. Show that
o(T) C {zeC| | < |IT]}.
Hint: Look at the resolvent set.

Solution:

Picka z € C with |z| > ||T||. Consequently,
the Neumann series (cf. Problem 18 (iii)) [1]

T’n
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(id — 7/2) :;Zn,

and thus, T — z = —z (id — 7/z) means we can write the resolvent as
o
L I -1 1] ™
(T—Z) = —Zz (ld—T/z) = —ZW
n=0

Hence, |z| > ||T|| implies z € p(T') [1].
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T/:|| < 1[1] and we can write (T' — z)~! in terms of



27. Boundedness of multiplication operators (12 points)

Let V() be the multiplication operator on L?(R%) associated to the function V. Show that V(%) is
bounded if and only if V € L>°(RY).

Solution:

“e" Assume V € L>®(R?). Then the boundendess follows from the estimate

X 1] [ [1]
IV (&)e|* = /Rd dz |V (2)? ()] < ||V |7 /Rd dz o(@)]* = V7 llol>.

“=:” Now assume the multiplication operator V() € B(L?(R?)) is bounded, but suppose the
associated function is not essentially bounded, V ¢ L>(R%) [1]. Then for any ¢ > 0 the Lebesgue
measure of the set

M. :={z € R | |V (z)| > ||[V(2)] +e}

is positive, £L(M.) > 0[2]. Then pick a subset A C M. of finite and positive Lebesgue measure
(the Lebesgue measure of M, could be infinite) and consider the function ¢(z) = 15 () [1]. Since
0 < |l¢|l = vol(A) < +o0, the vector ¢ # 0 € L?(R?) is not the 0 vector [1]. On the other hand,
the lower bound

A 2 2 2[1} A 2 2
[V (@)e|| z/Rddx\V(m)l lo(@)* = (V@) +¢)" el

contradicts that |V | can take values which are larger than ||V (Z)|| on a set of positive measure [1],
because evidently ||V (2)¢|| < [|[V(&)| [|¢|| [1]. That means V' € L>(R?) [1]. In fact, we have just
shown that |V (2)]| = ||V||1ee.



28. Selfadjointness of Schrodinger operators (9 points)

Let H = —A, +V be the Schrédinger operator on L?(R?) with potential V € L>°(R? R) equipped
with domain D(H) = H?(R%). Show that H is selfadjoint.

Solution:

First of all V € L°°(R?) defines a bounded multiplication operator [1],

. 2]
[V@)ell 2 < VIl lelize = 0 [=Aspllzz + VL el 2, (1)

and seeing as V' is real-valued, V is also symmetric (even selfadjoint) on D(V) = L2?(R%) [1].
Clearly, we have the inclusion D(—A,) = H?(RY) ¢ D(V) = L%*(R?) [1]. Moreover, (1) also
implies V is infinitesimally — A -bounded [1], because we can even choose a = 0 (and b = ||V|| 1)
[1]. That means Kato-Rellich applies [1],and H = —A,+V equipped with domain D(H) = H?(R?)
defines a selfadjoint operator [1].



29. A quantum two-body system (37 points)

Consider two identical quantum particles of mass m which are interacting with one another via
Coulomb repulsion. Then the Schrédinger operator which describes the two is an extension of
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endowed with domain D(Hy) = C(R®%) C L?(R®). Here, z1, 72 € R? are the positions of parti-
cles 1 and 2, respectively. We will denote the selfadjoint extension of Hy with H (establishing the
existence of H will be done in part (ii) below).

(i) Write Hy in terms of center-of-mass coordinate =, = %(ml + x2) and relative coordinate
r=x1— 2.

(ii) Show that H| is essentially selfadjoint. What is the domain of the selfadjoint extension H?
(iii) Does the selfadjoint extension H have eigenvalues below 07 Justify your answer.
(iv) What do low-energy states look like?

Define the fermionic subspace as
He:= {gp e L*(RY) | @(x2,21) = —¢p(z1, 22) almost everywhere},

and denote the restriction of H to D(H) N H¢ with H.
(v) Show that H maps D(H) N H¢ to H. How do you interpret this fact physically?
(vi) Explain in what sense H; defines a selfadjoint operator.

(vii) Show that info(H) < info(Hf). How do you interpret this fact physically?

Solution:

(i) Evidently, the potential written in center-of-mass coordinates is ¢*/|r| [1], so now we only need
to rewrite the kinetic energy. The x;- and xo-derivatives of a function of 2, = %(xl + x9) and
r=r — X2,

Voo, r) 2 V(e v) - Vs (301 + 22)) + Vo, 1) - Vi (21 = 22)
2 (§Va, + Vo) (e 7),
Vi) 2 V(e ) Vg (301 + 22)) + Vet 7) - Va1 — 22)
= (49, = V) (e r),
then lead to expressions for the kinetic energy:

Ay~ Ay =-v2 —v2 Uiy, 1 v,)? - iy, - v,)?
1]
= =30, =24,

Note that the cross terms have cancelled. Hence, if we rewrite Hy in center-of-mass coordi-
nates, we obtain



(if)

(iii)

(iv)

)

(vi)

The Hilbert space L?(R®) = L?(R3 ) ® L*(R?) decomposes as the direct sum of a center-of-
mass contribution and a relative coordinate contribution.

1
HOQHC®id+id®Hre1

where H, = —ﬁch [1] and H, = —%Ar + % [1] are both endowed with the domains
Ce°(R3) [1]. That is because if a function ¢ € L*(R3 x R? ) is smooth and compact support,
then the reparametrization in terms of z. and r,

@b(xcﬂ“) = 90(1:0 + %,$c - %)7

is also smooth and has compact support. Now, H is essentially selfadjoint if and only if H. and
H, are [1]: the essential selfadjointness of H. and — A, (with domain C2°(R?)) is immedi-
ate (cf. the discussion on pp. 75-76 of the lecture notes) [2], and in both cases the domain of
selfadjointness is H?(IR?). (Alternatively, one may check by hand that the deficiency indices
of — A, with domain C°(R?) are 0 since none of the non-trivial solutions to —A ¢+ = Fip
are in L*(R3).)

Now given that the repulsive Coulomb potential satisfies the conditions of Theorem 5.2.25
(the sign of the potential does not enter, so the proof is a trivial modification of that of Corol-
lary 5.2.27) [1], H, has a selfadjoint extension with domain H?(R?) [1]. Hence, Hj is essen-
tially selfadjoint [1], and the domain of its unique selfadjoint extension is H2(R%) [1].

We will use the min-max principle: let us consider the free two-particle hamiltonian Hg. =
— 52 Ay, — 54, endowed with domain H?(RS) [1]. Then ¢*/|r| > 0 and the fact that the
domains of H and Hg,, coincide imply
1 1 el 1 1
H=——A;, ——A — > Ay, — —

2m=~ ! = Ir| = 2m~ " 2m
Consequently, E,,(H) > E,,(Hgee) = 0holds for all n € Ny (the spectrum of Hge, is [0, +00),
and the bottom is purely essential) [1], and thus, there can be no eigenvalues below 0. One
may also see that on physical grounds: the potential is purely repulsive.

% sz =H free:

Low energy states can be best visualized in center-of-mass coordinates: the two particles are
very delocalized but situated far apart. Visually, that means the probability density has two
small, broad humps which are far away from one another. Hence, such a low energy state can
be written as a product

(o) 2 dlae) n(r)

where ¢(z.) is broad and flat (meaning —A,_¢ ~ 0) [1] and n(r) ~ 0 for |r| small [1].
Let us introduce the operator (Pv)(z1,z2) := 1 (z2, 1) [1]. Clearly, P is idempotent (P? =
id). A quick computation yields A,, P = P A,, [1], and we deduce that P commutes with H,
i.e. [H, P] = 0[1]. Elements of H; are those for which Py = — [1], and if we use the fact
that P commutes with H, we see that H maps elements of H; onto H;,

—Hy = H P = P Hy. [1]
Consequently, Hy := H |y, defines a map D(H) N H¢ — He[1].
First of all, H¢ is a Hilbert space, because limits of antisymmetric L?-functions are again an-

tisymmetric, and the Hilbert space L*(R®) = ¢ & ;- [1] (the second term consists of L2-
functions with p(z1,22) = +¢(x2,x1)).

Secondly, the above arguments show that H = H & H, [1] where Hj, is the restriction of
H to the bosonic subspace H;-. Now H* = H implies that Hy = H} and H, = Hj are also
selfadjoint [1].



(vii) The operator prescription of H and H¢ are identical, the only difference are the domains - and
Hg is arestriction of H. Thus, the inequality is an immediate consequence of the Rayleigh-Ritz
principle [1] and the fact that the second infimum is taken over a strictly smaller set,

. n . -, 1]
fo(H) Y inf Hy) < £ H) 2 o(Hp).
info(H) %17'51(1{)@, Y) S ep )mfw, V) = o(Hy)
lll=1 =1



