Differential Equations of
 Mathematical Physics
 (APM 351 Y)

The discrete Fourier transform

Homework Problems

30. The Fourier transform of the sawtooth and the tent function

Consider the function $f(x):=\max \{0, x\}$ on $(-\pi,+\pi]$. Determine the Fourier coefficients, their asymptotic behavior for large $|k|$ of
(i) f,
(ii) g with $g(x)=f(-x)$ and
(iii) $h=f+g$.

In each of the cases, sketch the graph and give the first few terms of the sin and cos representation.
Hint: Work smart, not hard.

Solution:

(i) We compute directly for $k=0$

$$
(\mathcal{F} f)(0)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x f(x)=\frac{1}{2 \pi} \int_{0}^{+\pi} \mathrm{d} x x=\left[\frac{1}{4 \pi} x^{2}\right]_{0}^{\pi}=\frac{\pi}{4}
$$

and for $k \neq 0$

$$
\begin{aligned}
(\mathcal{F} f)(k) & =\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} f(x)=\frac{1}{2 \pi} \int_{0}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} x \\
& =\left[\frac{1}{2 \pi} \frac{\mathrm{e}^{-\mathrm{i} k x}}{-\mathrm{i} k} x\right]_{0}^{\pi}-\frac{1}{2 \pi} \int_{0}^{\pi} \mathrm{d} x \frac{\mathrm{e}^{-\mathrm{i} k x}}{-\mathrm{i} k} \\
& =\frac{1}{2 \pi}\left(\frac{(-1)^{k} \pi}{-\mathrm{i} k}+\frac{(-1)^{k}-1}{(-\mathrm{i} k)^{2}}\right)=\frac{\mathrm{i}(-1)^{k}}{2 k}+\frac{(-1)^{k}-1}{2 \pi k^{2}} .
\end{aligned}
$$

Clearly, $\lim _{|k| \rightarrow \infty}|k \hat{f}(k)|=1 / 2$, i. e. $\hat{f}(k)=\mathcal{O}\left(|k|^{-1}\right)$.
Expressed in terms of \sin and cos, we obtain

$$
\begin{aligned}
f(x)= & \frac{\pi}{4}-\frac{2 \cos x}{\pi}-\frac{2 \cos 3 x}{9 \pi}-\ldots \\
& -\sin x+\frac{\sin 2 x}{2}-\frac{\sin 3 x}{3} \pm \ldots
\end{aligned}
$$

(ii) The Fourier coefficients of $g(x)=f(-x)$ are

$$
\begin{aligned}
\hat{g}(k)=\hat{f}(-k) & = \begin{cases}\frac{\pi}{4} & k=0 \\
-\frac{\mathrm{i}(-1)^{k}}{2 k}+\frac{(-1)^{k}-1}{2 \pi k^{2}} & k \in \mathbb{Z} \backslash\{0\}\end{cases} \\
& = \begin{cases}\frac{\pi}{4} & k=0 \\
-\frac{i}{2 k} & k \in 2 \mathbb{Z} \backslash\{0\}, \\
+\frac{i}{2 k}-\frac{1}{\pi k^{2}} & k \in 2 \mathbb{Z}+1\end{cases}
\end{aligned}
$$

and hence we obtain again $\hat{g}(k)=\mathcal{O}\left(|k|^{-1}\right)$. Similarly, the signs of the sin terms flip while those for the cos terms remain the same,

$$
\begin{aligned}
g(x)= & \frac{\pi}{4}-\frac{2 \cos x}{\pi}-\frac{2 \cos 3 x}{9 \pi}-\ldots \\
& +\sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3} \pm \ldots \\
= & f(-x) .
\end{aligned}
$$

(iii) By linearity, the Fourier coefficients of $h=f+g$ are the sum of the Fourier coefficients for f and g,

$$
\hat{h}(k)= \begin{cases}\frac{\pi}{2} & k=0 \\ 0 & k \neq 0, k \in 2 \mathbb{Z}, \\ -\frac{2}{\pi k^{2}} & k \in 2 \mathbb{Z}+1\end{cases}
$$

and we immediately obtain the sin and cos expansion,

$$
\begin{aligned}
h(x) & =f(x)+g(x)=f(x)+f(-x) \\
& =\frac{\pi}{2}-\frac{4 \cos x}{\pi}-\frac{4 \cos 3 x}{9 \pi}-\ldots
\end{aligned}
$$

The coefficients now decay like $1 / k^{2}, \hat{f}(k)=\mathcal{O}\left(1 / k^{2}\right)$.

31. Fourier series of particular functions

(i) Which periodic function $f: \mathbb{R} \longrightarrow \mathbb{R}$ has the Fourier coefficients $\hat{f}(k)=\frac{1}{|k|!}, k \in \mathbb{Z}$?
(ii) What are the Fourier coefficients of $g(x)=\mathrm{e}^{\sin x} \cos (\cos x)$?
(iii) What are the Fourier coefficients of $h(x)=\mathrm{e}^{\cos 2 x} \cos (\sin 2 x)$?

Hint: Work smart, not hard.

Solution:

(i) Since $\frac{1}{|k|!}$ decays exponentially, the following expressions exist as absolutely convergent sum:

$$
\begin{aligned}
f(x) & =\sum_{k \in \mathbb{Z}} \frac{1}{|k|!} \mathrm{e}^{\mathrm{+i} k x}=-1+\sum_{k=0}^{\infty} \frac{1}{k!}\left(\mathrm{e}^{+\mathrm{i} x}\right)^{k}+\sum_{k=0}^{\infty} \frac{1}{k!}\left(\mathrm{e}^{-\mathrm{i} x}\right)^{k} \\
& =-1+\mathrm{e}^{\mathrm{e} i x}+\mathrm{e}^{\mathrm{e}^{-\mathrm{i} x}}=-1+\mathrm{e}^{\cos x}\left(\mathrm{e}^{+\mathrm{i} \sin x}+\mathrm{e}^{-\mathrm{i} \sin x}\right) \\
& =-1+2 \mathrm{e}^{\cos x} \cos (\sin x)
\end{aligned}
$$

(ii) Expressing g in terms of f,

$$
\begin{aligned}
g(x) & =\mathrm{e}^{\cos \left(x-\frac{\pi}{2}\right)} \cos \left(\sin \left(x-\frac{\pi}{2}\right)\right) \\
& =\frac{1}{2} f\left(x-\frac{\pi}{2}\right)+\frac{1}{2},
\end{aligned}
$$

yields the Fourier coefficients of g for $k \neq 0$,

$$
\mathcal{F}\left(f\left(\cdot-\frac{\pi}{2}\right)\right)(k)=\mathrm{e}^{-\mathrm{i} \frac{\pi}{2} k} \hat{f}(k)=\frac{\mathrm{i}^{k}}{|k|!},
$$

i. e. we have

$$
\hat{g}(k)= \begin{cases}1 & k=0 \\ \frac{\mathrm{i}}{2(|k|!)} & k \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

(iii) Since $h(x)=\frac{1}{2} f(2 x)+\frac{1}{2}$, we can express the Fourier coefficients for $k \neq 0$ as

$$
\begin{aligned}
\hat{h}(k) & =\widehat{f(2 \cdot)}(k)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} f(2 x)=\frac{1}{2 \pi} \int_{-2 \pi}^{+2 \pi} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} \frac{k}{2} x} f(x) \\
& =\frac{1}{4 \pi} \int_{-2 \pi}^{-\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} \frac{k}{2} x} f(x)+\frac{1}{4 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} \frac{k}{2} x} f(x)+\frac{1}{4 \pi} \int_{+\pi}^{+2 \pi} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} \frac{k}{2} x} f(x) \\
& =\frac{1}{4 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} \frac{k}{2} x} f(x-\pi)+\frac{1}{4 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} \frac{k}{2} x} f(x) \\
& =\frac{1}{2} \hat{f(\cdot-\pi)}(k)+\frac{1}{2} \hat{f}(k)=\frac{1}{2}\left(\mathrm{e}^{+\mathrm{i} \pi}+1\right) \hat{f}(k) \\
& = \begin{cases}\hat{f}(k / 2) & k \in 2 \mathbb{Z} \\
0 & k \in 2 \mathbb{Z}+1 .\end{cases}
\end{aligned}
$$

Hence, we obtain

$$
\hat{h}(k)=\left\{\begin{array}{ll}
1 & k=0 \\
\frac{1}{2(|k|!)} & k \in 2 \mathbb{Z} \\
0 & k \in 2 \mathbb{Z}+1
\end{array} .\right.
$$

32. Density of $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right) \subset L^{1}\left(\mathbb{T}^{n}\right)$

Prove that $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$ is dense in $L^{1}\left(\mathbb{T}^{n}\right)$.

Solution:

Since continuous functions on the compact \mathbb{T}^{n} are bounded, $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right) \subset L^{\infty}\left(\mathbb{T}^{n}\right)$, they are integrable by Lemma 6.1.6.
Moreover, trigonometric polynomials are smooth and dense in $L^{1}\left(\mathbb{T}^{n}\right)$,

$$
\operatorname{Pol}\left(\mathbb{T}^{n}\right) \subset \mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right) \subset L^{1}\left(\mathbb{T}^{n}\right)
$$

and hence $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$ is dense as a superset of a dense subset.
33. The wave equation on $[-\pi,+\pi]$ (22 points)

Solve the wave equation

$$
\partial_{t}^{2} u(t)-\partial_{x}^{2} u(t)=0
$$

on $[-\pi,+\pi]$ by expanding $u(t)$ as a Fourier series.
(i) Give the form of the generic solution $u(t)$ if the initial conditions satisfy $u(0)=f \in L^{2}([-\pi,+\pi])$ and $\partial_{t} u(0)=g \in L^{2}([-\pi,+\pi])$.
(ii) Show that $u(t)$ from (i) is square integrable for all $t \in \mathbb{R}$.
(iii) What does $u(t, x)$ look like if the initial conditions $f, g \in L^{2}([-\pi,+\pi])$ from (i) satisfy Neumann boundary conditions? Does the time-evolved solution $u(t)$ satisfy Neumann boundary conditions?
(iv) Solve the initial value problem for $f(x)=|x|$ and $g(x)=1$.

Solution:

(i) If we plug

$$
u(t, x) \stackrel{[1]}{=} \sum_{k \in \mathbb{Z}} \hat{u}(t, k) \mathrm{e}^{+\mathrm{i} k x}
$$

into the wave equation, we obtain an equation relating the Fourier coefficients,

$$
\begin{aligned}
0=\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u(t, x) & \stackrel{[1]}{=}\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \sum_{k \in \mathbb{Z}} \hat{u}(t, k) \mathrm{e}^{+\mathrm{i} k x} \\
& \stackrel{[1]}{=} \sum_{k \in \mathbb{Z}}\left(\partial_{t}^{2} \hat{u}(t, k)+k^{2} \hat{u}(t, k)\right) \mathrm{e}^{+\mathrm{i} k x} .
\end{aligned}
$$

Since $f, g \in L^{2}([-\pi,+\pi])$, their Fourier series which converge in the L^{2}-sense [1],

$$
\begin{aligned}
& f(x)=\sum_{k \in \mathbb{Z}} \hat{f}(k) \mathrm{e}^{+\mathrm{i} k x} \\
& g(x)=\sum_{k \in \mathbb{Z}} \hat{g}(k) \mathrm{e}^{+\mathrm{i} k x}
\end{aligned}
$$

Hence, we arrive at a family of equations for the Fourier coefficients

$$
\partial_{t}^{2} \hat{u}(t, k)+k^{2} \hat{u}(t, k) \stackrel{[1]}{=} 0
$$

with initial conditions

$$
\begin{equation*}
\hat{u}(0, k)=\hat{f}(k), \quad \partial_{t} \hat{u}(0, k)=\hat{g}(k) \tag{1}
\end{equation*}
$$

The solution is

$$
\hat{u}(t, k) \stackrel{[1]}{=} \begin{cases}a_{+}(0)+a_{-}(0) t & k=0 \\ a_{+}(k) \mathrm{e}^{+\mathrm{i} k t}+a_{-}(k) \mathrm{e}^{-\mathrm{i} k t} & k \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

where the coefficients $a_{ \pm}(k)$ are determined from the initial conditions:

$$
\begin{gathered}
\hat{f}(k)=\hat{u}(0, k) \stackrel{[1]}{=} \begin{cases}a_{+}(0) & k=0 \\
a_{+}(k)+a_{-}(k) & k \in \mathbb{Z} \backslash\{0\}\end{cases} \\
\hat{g}(k)=\partial_{t} \hat{u}(0, k) \stackrel{[1]}{=} \begin{cases}a_{-}(0) & k=0 \\
\mathrm{i} k\left(a_{+}(k)-a_{-}(k)\right) & k \in \mathbb{Z} \backslash\{0\}\end{cases}
\end{gathered}
$$

The coefficients $a_{ \pm}(k)$ can be expressed in terms of \hat{f} and \hat{g} :

$$
\begin{align*}
& a_{+}(0)=\hat{f}(0), \quad a_{-}(0)=\hat{g}(0) \\
& a_{ \pm}(k)=\frac{\hat{f}(k)}{2} \mp \mathrm{i} \frac{\hat{g}(k)}{2 k}, \quad k \in \mathbb{Z} \backslash\{0\} \tag{1}
\end{align*}
$$

Hence, the solution is

$$
\begin{aligned}
u(t, x) & \stackrel{[1]}{=} \hat{f}(0)+t \hat{g}(0)+\frac{1}{2} \sum_{k \in \mathbb{Z} \backslash\{0\}}\left(\left(\hat{f}(k)-\frac{\mathrm{i}}{k} \hat{g}(k)\right) \mathrm{e}^{+\mathrm{i} k t}+\left(\hat{f}(k)+\frac{\mathrm{i}}{k} \hat{g}(k)\right) \mathrm{e}^{-\mathrm{i} k t}\right) \mathrm{e}^{+\mathrm{i} k x} \\
& =\hat{f}(0)+t \hat{g}(0)+\frac{1}{2} \sum_{k \in \mathbb{Z} \backslash\{0\}}\left(\left(\hat{f}(k)-\frac{\mathrm{i}}{k} \hat{g}(k)\right) \mathrm{e}^{+\mathrm{i} k(x+t)}+\left(\hat{f}(k)+\frac{\mathrm{i}}{k} \hat{g}(k)\right) \mathrm{e}^{+\mathrm{i} k(x-t)}\right) .
\end{aligned}
$$

(ii) The square integrability of f and g implies that the Fourier coefficients \hat{f} and \hat{g} are square summable. Thus, the estimate

$$
\begin{aligned}
\left|\frac{1}{2}\left(\hat{f}(k)-\frac{\mathrm{i}}{k} \hat{g}(k)\right) \mathrm{e}^{+\mathrm{i} k t}+\frac{1}{2}\left(\hat{f}(k)+\frac{\mathrm{i}}{k} \hat{g}(k)\right) \mathrm{e}^{-\mathrm{i} k t}\right| & \stackrel{[1]}{\leq}|\hat{f}(k)|+\left|\frac{\mathrm{i}}{k} \hat{g}(k)\right| \\
& \leq|\hat{f}(k)|+|\hat{g}(k)|
\end{aligned}
$$

proves that $\hat{u}(t)$ is square summable. Hence, the Fourier series for $u(t)$ exists in the L^{2}-sense [1].
(iii) Looking at the arguments on pp. 45-46, we see that solutions can be written as a linear combination of

$$
\cos \left(k \frac{x-\pi}{2}\right)= \begin{cases}(-1)^{k} \cos j x & k=2 j, j \in \mathbb{N}_{0} \\ (-1)^{k} \sin \frac{(2 j+1) x}{2} & k=2 j+1, j \in \mathbb{N}_{0}\end{cases}
$$

for $k \in \mathbb{N}_{0}[1]$:

$$
u(x)=\sum_{j=0}^{\infty} a_{j} \cos j x+\sum_{j=1}^{\infty} b_{j} \sin \frac{(2 j+1) x}{2} .
$$

The factor $\frac{1}{2}$ doubles the length of the interval from $[0, \pi]$ to $[0,2 \pi]$ while $-\pi$ shifts the interval $[0,2 \pi]$ to $[-\pi,+\pi]$. Using this expansion, it is easy to see that the boundary conditions are preserved (just repeat the arguments on pp. 45-46) [1].
However, in the Fourier basis this is less obvious: The Fourier transform of the $\sin \frac{(2 j+1) x}{2}=$ $\frac{\mathrm{i}}{2}\left(\mathrm{e}^{-\mathrm{i} \frac{(2 j+1)}{2} x}-\mathrm{e}^{+\mathrm{i} \frac{\mathrm{i}(2 j+1)}{2} x}\right)$ terms are

$$
\begin{equation*}
\left(\mathcal{F} \sin \frac{(2 j+1) x}{2}\right)(k)=\frac{(-1)^{k+j+1}}{\pi} \frac{k}{k^{2}-(2 j+1)^{2} / 4} . \tag{1}
\end{equation*}
$$

That means the k th Fourier coefficient is given by

$$
\begin{equation*}
\hat{u}(k)=\frac{1}{2} a_{|k|}+\sum_{j=1}^{\infty} b_{j} \frac{(-1)^{k+j+1}}{\pi} \frac{k}{k^{2}-(2 j+1)^{2} / 4} . \tag{1}
\end{equation*}
$$

(iv) The function $f(x)=|x|$ agrees almost everywhere with the function h from problem 30 (iii), and hence, the Fourier coefficients agree [1]. Thus, the solution is

$$
\begin{aligned}
u(t, x) & \stackrel{[1]}{=} \frac{\pi}{2}+t-\frac{1}{2} \sum_{k \in 2 \mathbb{Z}+1} \frac{2}{\pi k^{2}}\left(\mathrm{e}^{+\mathrm{i} k t}+\mathrm{e}^{-\mathrm{i} k t}\right) \mathrm{e}^{+\mathrm{i} k x} \\
& \stackrel{[1]}{=} \frac{\pi}{2}+t-\sum_{k \in \mathbb{Z}} \frac{2}{\pi(2 k+1)^{2}}(\cos (2 k+1) t) \mathrm{e}^{+\mathrm{i}(2 k+1) x}
\end{aligned}
$$

