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The discrete Fourier transform

Homework Problems

30. The Fourier transform of the sawtooth and the tent function

Consider the function f(x) := max{0,z} on (—m,+=|. Determine the Fourier coefficients, their
asymptotic behavior for large |k| of

@ f,
(i) g with g(z) = f(—z) and
(iii) h=f+g.

In each of the cases, sketch the graph and give the first few terms of the sin and cos representation.
Hint: Work smart, not hard.

Solution:

(i) We compute directly for k = 0
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Clearly, limy . |k f(k)| = V/2,i.e. f(k) = O(Jk|7").

Expressed in terms of sin and cos, we obtain
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(ii) The Fourier coefficients of g(z) = f(—x) are
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and hence we obtain again j(k) = O(|k|™"). Similarly, the signs of the sin terms flip while
those for the cos terms remain the same,
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(iii) By linearity, the Fourier coefficients of h = f + g are the sum of the Fourier coefficients for f
and g,
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and we immediately obtain the sin and cos expansion,

h(z) = f(z) + g(a) = f(x) + f(=x)
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The coefficients now decay like 1/x2, f(k) = O(1/x2).



31. Fourier series of particular functions
(i) Which periodic function f : R — R has the Fourier coefficients f (k) = ﬁ, keZ?
(i) What are the Fourier coefficients of g(x) = e*"* cos(cos z)?

(iii) What are the Fourier coefficients of h(z) = e®*** cos(sin2z)?

Hint: Work smart, not hard.

Solution:

(i) Since ﬁ decays exponentially, the following expressions exist as absolutely convergent sum:
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(i) Since h(z) = % f(2z) + %, we can express the Fourier coefficients for k # 0 as
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Hence, we obtain
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32. Density of C>°(T") C L(T")
Prove that C>°(T™) is dense in L (T").

Solution:

Since continuous functions on the compact T" are bounded, C*°(T™) C L°°(T"), they are inte-
grable by Lemma 6.1.6.

Moreover, trigonometric polynomials are smooth and dense in L' (T"),
Pol(T™) C C*°(T™) c L*(T"),

and hence C>°(T") is dense as a superset of a dense subset.



33. The wave equation on [—7, +7] (22 points)

Solve the wave equation
Fu(t) — 02u(t) = 0

on [—m, +7| by expanding u(t) as a Fourier series.

(i) Givethe form of the generic solution u(t) if the initial conditions satisfy u(0) = f € L?([—, 4+7])
and 0;u(0) = g € L*([—m, +7]).

(ii) Show that u(t) from (i) is square integrable for all ¢ € R.

(iii) What does u(t, z) look like if the initial conditions f,g € L?([~n,+n]) from (i) satisfy Neu-
mann boundary conditions? Does the time-evolved solution u(t) satisfy Neumann boundary
conditions?

(iv) Solve the initial value problem for f(z) = |z| and g(z) = 1.
Solution:
(i) 1f we plug
ult,w) S e, k) etk
keZ
into the wave equation, we obtain an equation relating the Fourier coefficients,
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Since f, g € L*([—m, +n]), their Fourier series which converge in the L?-sense [1],
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Hence, we arrive at a family of equations for the Fourier coefficients

o2a(t, k) + k2a(t, k) 2o

with initial conditions

a(0, k) = f(k), (0, k) = §(k). [1]
The solution is
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where the coefficients a4 (k) are determined from the initial conditions:
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Hence, the solution is
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The square integrability of f and g implies that the Fourier coefficients f and § are square
summable. Thus, the estimate

proves that () is square summable. Hence, the Fourier series for u(t) exists in the L?-sense
[1].

Looking at the arguments on pp. 45-46, we see that solutions can be written as a linear com-
bination of
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for k € Ng [1]:
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The factor § doubles the length of the interval from [0, 7] to [0, 27] while — shifts the interval
[0, 27] to [—m, +7]. Using this expansion, it is easy to see that the boundary conditions are
preserved (just repeat the arguments on pp. 45-46) [1].

However, in the Fourier basis this is less obvious: The Fourier transform of the sin w =
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That means the kth Fourier coefficient is given by
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(iv) The function f(z) = |z| agrees almost everywhere with the function / from problem 30 (iii),
and hence, the Fourier coefficients agree [1]. Thus, the solution is
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