Differential Equations of Mathematical Physics

(APM 351 Y)

The discrete Fourier transform

Homework Problems

30. The Fourier transform of the sawtooth and the tent function

Consider the function $f(x):=\max \{0, x\}$ on $(-\pi,+\pi]$. Determine the Fourier coefficients, their asymptotic behavior for large $|k|$ of
(i) f,
(ii) g with $g(x)=f(-x)$ and
(iii) $h=f+g$.

In each of the cases, sketch the graph and give the first few terms of the sin and cos representation. Hint: Work smart, not hard.

31. Fourier series of particular functions

(i) Which periodic function $f: \mathbb{R} \longrightarrow \mathbb{R}$ has the Fourier coefficients $\hat{f}(k)=\frac{1}{|k|!}, k \in \mathbb{Z}$?
(ii) What are the Fourier coefficients of $g(x)=\mathrm{e}^{\sin x} \cos (\cos x)$?
(iii) What are the Fourier coefficients of $h(x)=\mathrm{e}^{\cos 2 x} \cos (\sin 2 x)$?

Hint: Work smart, not hard.
32. Density of $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right) \subset L^{1}\left(\mathbb{T}^{n}\right)$

Prove that $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$ is dense in $L^{1}\left(\mathbb{T}^{n}\right)$.
33. The wave equation on $[-\pi,+\pi]$

Solve the wave equation

$$
\partial_{t}^{2} u(t)-\partial_{x}^{2} u(t)=0
$$

on $[-\pi,+\pi]$ by expanding $u(t)$ as a Fourier series.
(i) Give the form of the generic solution $u(t)$ if the initial conditions satisfy $u(0)=f \in L^{2}([-\pi,+\pi])$ and $\partial_{t} u(0)=g \in L^{2}([-\pi,+\pi])$.
(ii) Show that $u(t)$ from (i) is square integrable for all $t \in \mathbb{R}$.
(iii) What does $u(t, x)$ look like if the initial conditions $f, g \in L^{2}([-\pi,+\pi])$ from (i) satisfy Neumann boundary conditions? Does the time-evolved solution $u(t)$ satisfy Neumann boundary conditions?
(iv) Solve the initial value problem for $f(x)=|x|$ and $g(x)=1$.

Hand in home work on: Thursday, 21 November 2013, before class

