
Foundations of
QuantumMechanics

(APM 421 H)

Winter 2014
Solutions 10
(2014.11.14)

Functional Calculus

Homework Problems

30. Functional calculus for matrices revisited (30 points)
Let H = h0 idC2 +

∑3
j=1 hj σj be a hermitian 2 × 2 matrix written in terms of the Pauli matrices

σ1, σ2 and σ3.
(i) Compute the projection-valued measure associated toH .
(ii) Show that the functional calculus introduced on Sheet 01 coincides with the functional calcu-

lus from Chapter 6 of the lecture notes.
(iii) Prove that the following inequality is false:∣∣∣(σ3 + idC2

)
+
(
σ1 − idC2

)∣∣∣ ≤ ∣∣σ3 + idC2

∣∣+ ∣∣σ1 − idC2

∣∣
(iv) Show that the analogous inequality for the traces does hold true:

Tr
∣∣∣(σ3 + idC2

)
+
(
σ1 − idC2

)∣∣∣ ≤ Tr
∣∣σ3 + idC2

∣∣+ Tr
∣∣σ1 − idC2

∣∣
Solution:

(i) The spectrum is purely discrete, σ(H) = σdisc(H) = {E−, E+} [1], where the eigenvalues
are E± = h0 ±

√
h21 + h22 + h23 [1]. That means the spectral measure is pure point since its

support is the discrete set {E−, E+}. Thus, the eigenprojections

P±
[1]
=

1

2

(
idC2 +

∑3
j=1 hj σj√

h21 + h22 + h23

)

are related to the projection-valued measure via

P (Λ)
[1]
=
(
P− + P+

)
P (Λ)

[1]
= 1Λ({E−})P− + 1Λ({E+})P+

as P− + P+ = idC2 [1].
(ii) In Problem 02 of Sheet 01, we have defined

f(H)
[1]
:= f(E+)P+ + f(E−)P−

where f : R −→ C was a suitable function.
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Compared to the definition in Chapter 06,

f(H)
[1]
=

∫
R
dP (λ) f(λ),

we see with the help of (i) that the two definitions coincide:

f(H)
[1]
=

∫
R
dP (λ) f(λ) [1]

=

∫
R
dλ
(
δ(λ−E−)P− + δ(λ− E+)P+

)
λ

[1]
= f(E+)P+ + f(E−)P−

(iii) We will repeatedly use the formulas from Sheet 01. Let us start with the left-hand side: the
eigenvalues of the matrix on the left σ3+ idC2 +σ1− idC2 = σ1+σ3 areEleft

± = ±
√
12 + 12 =

±
√
2 [1] with eigenprojections

P left
±

[1]
=

1

2

(
idC2 ±

σ1 + σ3√
2

)
.

Thus, the absolute value of the left-hand side is∣∣∣(σ3 + idC2

)
+
(
σ1 − idC2

)∣∣∣ [1]= ∣∣+√
2
∣∣P left

+ +
∣∣−√

2
∣∣P left

−
[1]
=

√
2 idC2 .

Now to the right-hand side: eigenvalues and eigenprojections of the first term are Eright,1
± =

1± 1 [1] and

P
right,1
±

[1]
= 1

2

(
idC2 ± σ3

)
while those of the second term are Eright,2

± = −1± 1 [1]

P
right,2
±

[1]
= 1

2

(
idC2 ∓ σ1

)
.

That means their absolute values are∣∣σ3 + idC2

∣∣ [1]= |2| · P right,1
+ + |0| · P right,1

−
[1]
= idC2 + σ3,∣∣σ1 − idC2

∣∣ [1]= |0| · P right,2
+ + |−2| · P right,2

−
[1]
= idC2 + σ1.

Consequently, the eigenvalues of their sum∣∣σ3 + idC2

∣∣+ ∣∣σ1 − idC2

∣∣ [1]= 2idC2 + σ1 + σ3

are Esum
± = 2±

√
2 [1], and since Esum

− = 2−
√
2 <

√
2 [1], the inequality is necessarily false

[1].
(iv) The trace of the matrix on the left is 2

√
2while that of the matrix on the right is 4, and hence,

the inequality involving the traces is satisfied,

Tr
∣∣∣(σ3 + idC2

)
+
(
σ1 − idC2

)∣∣∣ [1]= 2
√
2

[1]

≤ 4
[1]
= Tr

∣∣σ3 + idC2

∣∣+ Tr
∣∣σ1 − idC2

∣∣.

2



31. Projections and functional calculus (15 points)
Let P be a selfadjoint operator on a Hilbert spaceH. Show that P is an orthogonal projection if and
only if σ(P ) ⊆ {0, 1}.

Solution:
“⇒:” Suppose P is an orthogonal projection. Orthogonal projections are bounded, and the spec-
trum is closed and bounded by Problem 26. Let us define the bounded function

f(λ)
[1]
=

{
λ2 |λ| ≤ 2 ∥P∥
0 else

.

Then we can use functional calculus to express P 2 as f(P ),

P 2 [1]
= f(P )

[1]
=

∫
R
1dλ(P ) f(λ)

[1]
=

∫
σ(P )

1dλ(P )λ
2

!
= P

[1]
=

∫
σ(P )

1dλ(P )λ,

and deduce that on σ(P ) the equation λ2 = λ holds [1]. Evidently, the only two solutions to this
equation are 0 and 1, i. e. σ(P ) ⊆ {0, 1} [1].
“⇐:” Suppose σ(P ) ⊆ {0, 1} where P is selfadjoint [1]. As the spectrum is bounded, so is the
operator P [1]. Then we can use the same reasoning as above in reverse: let f be as above: since
λ2 = λ on σ(P ) [1], we deduce P 2 = P from

P 2 [1]
= f(P )

[1]
=

∫
R
1dλ(P ) f(λ)

[1]
=

∫
σ(P )

1dλ(P ) λ2︸︷︷︸
=λ on σ(P )

[1]
=

∫
σ(P )

1dλ(P )λ
[1]
= P.

Hence, P = P ∗ = P 2 is an orthogonal projection [1].
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32. The semirelativistic kinetic energy (32 points)
Consider a semirelativistic quantum particle subjected to a magnetic fieldB = ∇x×A. (Semirela-
tivistic heremeans that you are in an energy regimewhere one cannot yet create particle-antiparticle
pairs but the energies are high enough so that one needs to take the relativistic kinetic energy.)
Assuming the vector potential A ∈ C∞(R3,R3) is smooth, the hamiltonian

HA =

√
m2 +

(
−i∇x −A(x̂)

)2
.

The purpose of this problem is to rigorously define HA. You may use without proof that kinetic
momentumPAj := −i∂xj −Aj(x̂) and (PA)2 (endowedwith the correct domains) define selfadjoint
operators.
(i) Let ϕ ∈ C∞(R3,R) be a phase function and e+iϕ the associated unitary. Show that kinetic

momentum is gauge-covariant,

PA+∇xϕ = e+iϕ PA e−iϕ.

(ii) Find a less laborious way to prove (PA+∇xϕ)2 = e+iϕ (PA)2 e−iϕ. Work smart, not hard.
(iii) Define the semirelativistic kinetic energy

√
m2 + (PA)2.

(iv) Prove
√
m2 + (PA)2 ≥

∣∣PA∣∣.
(v) Show

√
m2 + (PA+∇xϕ)2 = e+iϕ√m2 + (PA)2 e−iϕ.

Solution:
(i) For ψ ∈ D

(
PA+∇xϕ
j

)
:= e+iϕD(PAj ), we compute

e+iϕ PAj e−iϕψ
[1]
= e+iϕ(−i∂xj −Aj(x̂)

)
e−iϕψ

[1]
= e+iϕ(e−iϕ (−i∂xjψ)− i(∂xje−iϕ)ψ −Aj(x̂)

)
[1]
=
(
−i∂xj −Aj(x̂)− i∂xjϕ(x̂)

)
ψ

= PA+∇xϕ
j ψ.

(ii) Writing (PA)2 = PA · PA and using the result from (i), we obtain

e+iϕ (PA)2 e−iϕ [1]
= e+iϕ PAe−iϕ · e+iϕ PAe−iϕ

[1]
= PA+∇xϕ · PA+∇xϕ [1]

=
(
PA+∇xϕ

)2
.

Note that the unitary e+iϕ relates the domainsD
(
(PA)2

)
andD

((
PA+∇xϕ

)2) [1]
= e+iϕD

(
(PA)2

)
.

(iii) The semirelativistic kinetic energy is defined via functional calculus: (PA)2 ≥ 0 is non-
negative [1] and selfadjoint [1] with domainD

(
(PA)2

)
, and consequently, the semirelativistic

kinetic energy is the operator√
m2 + (PA)2

[2]
:=

∫ +∞

0
1dλ
(
(PA)2

)√
m2 + λ

endowed with domain

D
(√

m2 + (PA)2
)

[2]
:=
{
ψ ∈ L2(R3)

∣∣ ∫ +∞

0

⟨
ψ, 1dλ

(
(PA)2

)
ψ
⟩
(m2 + λ) <∞

}
.

(Since the spectrum σ
(
(PA)2

)
⊆ [0,+∞) is non-negative, we can omit the absolute value

sign.)
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(iv) We define ∣∣PA∣∣ [2]
:=
√

(PA)2
[1]
=

∫ +∞

0
1dλ
(
(PA)2

)
|λ|

analogously to the semirelativistic kinetic energy endowed with domain

D
(∣∣PA∣∣) :[1]= {ψ ∈ L2(R3)

∣∣ ∫ +∞

0

⟨
ψ, 1dλ

(
(PA)2

)
ψ
⟩
λ <∞

}
[1]
=
{
ψ ∈ L2(R3)

∣∣ ∫ +∞

0

⟨
ψ, 1dλ

(
(PA)2

)
ψ
⟩
(m2 + λ) <∞

}
[1]
= D

(√
m2 + (PA)2

)
.

The domain of
∣∣PA∣∣ coincides with the domain of

√
m2 + (PA)2 [1], and consequently, the

gauge-covariance of
√
m2 + (PA)2 ≥

∣∣PA∣∣ follows from
√
m2 + λ ≥

√
λ on the level of

functions [1] and functional calculus [1].
(v) The covariance of (PA)2 proven in (ii) also implies that the projection-valued measure of this

operator is also gauge-covariant,

1Λ

((
PA+∇xϕ

)2)
= e+iϕ 1Λ

(
(PA)2

)
e−iϕ. (1)

And if we assume for a moment that we have shown the gauge-covariance of the projection-
valued measure, then also the semirelativistic kinetic energy inherits the gauge-covariance,√

m2 +
(
PA+∇xϕ

)2 [1]
=

∫
R
1dλ

((
PA+∇xϕ

)2)√
m2 + λ

[1]
=

∫
R
e+iϕ 1Λ

(
(PA)2

)
e−iϕ

√
m2 + λ

[1]
= e+iϕ

√
m2 + (PA)2 e−iϕ.

Hence, it remains to show equation (1). From the gauge-covariance of the resolvent,((
PA+∇xϕ

)2 − z
)−1 [1]

= e+iϕ ((PA)2 − z
)−1 e−iϕ,

and the Herglotz representation theorem,⟨
e−iϕψ,

(
(PA)2 − z

)−1 e−iϕψ
⟩

[1]
=

∫
R
dµAe−iϕψ(λ) (λ− z)−1

[1]
=
⟨
ψ,
((
PA+∇xϕ

)2 − z
)−1

ψ
⟩

[1]
=

∫
R
dµA+∇xϕ

ψ (λ) (λ− z)−1,

we can relate the measures of (PA)2 and vector e−iϕψ to that of
(
PA+∇xϕ

)2 and vector ψ (as
indicated by the superscripts on the measures) [1]. Thus, we deduce the gauge-covariance for
the projection-valued measure,⟨

ψ, e−iϕ 1Λ
(
(PA)2

)
e−iϕψ

⟩
[1]
=

∫
Λ
dµAe−iϕψ(λ)

[1]
=

∫
Λ
dµA+∇xϕ

ψ (λ)

[1]
=
⟨
ψ, 1Λ

((
PA+∇xϕ

)2)
ψ
⟩
.
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33. Resolution of the identity (30 points)
SupposeH be a selfadjoint operator on aHilbert spaceHwhose spectrum is purely discrete, i. e.σ(H) =
σdisc(H) = {En}n∈N. Here, the eigenvalues En are repeated according to their multiplicity.
(i) Express the projection-valued measure in terms of the eigenfunctions of φn.

(ii) Write outH =

∫
R
dP (λ)λ explicitly.

(iii) Prove that there exists a resolution of the identity with respect to the eigenfunctions φn,

idH =
∑
n∈N

|φn⟩⟨φn|.

Put another way, show that span{φn}n∈N = H.
(iv) Show thatH is necessarily unbounded.

Hint: Review the definitions of discrete and essential spectrum.

Solution:

(i) Let {φn}n∈N be an orthonormal set composed of eigenfunctions (in case of degeneracies,
choose an orthonormal basis for each of the eigenspace). Then the projection-valued mea-
sure is defined through

⟨
ψ, 1Λ(H)ψ

⟩ [1]
=

∫
R
dµψ(λ) 1Λ(λ)

[1]
=

∫
Λ
dµψ(λ) (2)

We will now show that for ψ ∈ span
{
φn
}
En∈Λ =: HΛ, the right-hand side is ∥ψ∥2 [1] while

for ψ ∈ H⊥
Λ we get 0 [1]: if φn is an eigenfunction to En, we compute

⟨
φn, (H − z)−1φn

⟩ [1]
= (En − z)−1 ∥φn∥2

[1]
= (En − z)−1.

On the other hand, the representation theorem for Herglotz functions relates the left-hand
side to the measure µφn(λ)⟨

φn, (H − z)−1φn
⟩ [1]
=

∫
R
dµφn(λ) (λ− z)−1 !,[1]

= (En − z)−1,

meaning that dµφn(λ) = δ(λ−En) ∥φn∥2 = δ(λ−En) [1]. Hence, if ψ ∈ HΛ then the right-
hand side of (2) is necessarily ∥ψ∥2 [1] while if it is in the orthogonal complement, we get 0
[1]. Thus, we have shown

P (Λ)
[1]
= 1Λ(H)

[1]
=

∑
{n∈N | En∈Λ}

|φn⟩⟨φn|
[1]
=
∑
n∈N

1Λ(En) |φn⟩⟨φn|.

(ii) The projection-valued measure is the infinite sum of point measures, and hence, we obtain

H
[1]
=

∫
R
dP (λ)λ [1]

=
∑
n∈N

En |φn⟩⟨φn|.
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(iii) Lemma 6.1.10 tells us that

P (Λ)
[1]
= 1Λ(H)

[1]
=
∑
n∈N

1Λ(En) |φn⟩⟨φn|

is a projection-valued measure, and all projection valued measures satisfy

idH
[1]
= P (R) [1]

=
∑
n∈N

1R(En) |φn⟩⟨φn|
[1]
=
∑
n∈N

|φn⟩⟨φn|.

This is equivalent to saying that {φn}n∈N forms an orthonormal basis ofH.
(iv) Assume H were bounded [1]. Then by Problem 26, we have σ(H) ⊆

{
z ∈ C | |z| ≤ ∥H∥

}
[1] and the spectrum is bounded [1]. Hence, the sequence {En}n∈N ⊂ R is bounded [1] and
consequently must have an accumulation point [1]. Such an accumulation point is part of
the essential spectrum by Theorem 5.2.8 [1], and thus, σess(H) ̸= ∅ [1] which contradicts our
assumption that the spectrum is purely discrete [1]. Hence,H has to be unbounded [1].
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