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Homework Problems

30. Functional calculus for matrices revisited (30 points)

Let H = hoidcz + 2]3-:1 h; o be a hermitian 2 x 2 matrix written in terms of the Pauli matrices
01,09 and o 3.

(i) Compute the projection-valued measure associated to H.

(ii) Show that the functional calculus introduced on Sheet 01 coincides with the functional calcu-
lus from Chapter 6 of the lecture notes.

(iii) Prove that the following inequality is false:

’(03 +idc2) + (01 — ide2)

S }0'3 + id(c2‘ + ‘0'1 — id(c2‘
(iv) Show that the analogous inequality for the traces does hold true:

Tr’(ag + id(c2) + (0'1 — id(c2) S TI“J{; + id(c2‘ +Tr|01 — id(c2‘

Solution:

(i) The spectrum is purely discrete, o(H) = ogi.(H) = {E_, E+} [1], where the eigenvalues
are By = ho £ \/h? + h3 + h3 [1]. That means the spectral measure is pure point since its
support is the discrete set { E_, E. }. Thus, the eigenprojections

3
p. U2 idC2+—Z]_1 .
2 Vi + h3 + h3

are related to the projection-valued measure via

P(A) Y (P4 P) PA) B 1 ({EL)) P-4+ 1 ({B4}) Py

aSP_+P+:idc2 [1]
(ii) In Problem 02 of Sheet 01, we have defined

f(H) L f(By) Py o+ (B P

where f : R — C was a suitable function.



(iii)

(iv)

Compared to the definition in Chapter 06,

m Y /R dP(\) F(\)

we see with the help of (i) that the two definitions coincide:
)Y /RdP()\) Foo /RdA (6(\— E_)P_+6(A— E) P) A
U () Pe+ f(B-) P
We will repeatedly use the formulas from Sheet 01. Let us start with the left-hand side: the

eigenvalues of the matrix on the left o3 +idc2 + 01 —idg2 = 01 + 03 are Eleft +V12 +12 =
++/2 [1] with eigenprojections

1 o1+ o3
Pleft 1] ( d + 1 > )
* V2

Thus, the absolute value of the left-hand side is

’(0’3 +id(c2) + (0'1 — id@2) E ‘—F\/ﬂ PJlfft + ‘—\/i‘ pleft g \/§id(c2.

Now to the right-hand side: eigenvalues and eigenprojections of the first term are Emght t=

1+1[1]and
Prlght 1] %(1(1@2 + 03)

while those of the second term are Erlght 2o 1+41[1]

h 1]
Prlg t,2 [ %(ld(c2 :Fo'l)

That means their absolute values are

right,1 right,1 [

‘0'3—|—1d(c2| = |2| P
[

—I—|O| P ld + o3,

right,2 right,2 [

o1 —idc2| = |0] - PYE™7 + |2/ - P id(cz—l—o'l.

Consequently, the eigenvalues of their sum

‘0’3 +id(c2’ + ‘01 — id(cz‘ g 2idc2 + 01 + 03

are E$*™ = 2 + /2 [1], and since E*'™ = 2 — /2 < /2 [1], the inequality is necessarily false
[1].

The trace of the matrix on the left is 21/2 while that of the matrix on the right is 4, and hence,
the inequality involving the traces is satisfied,

[1]
Tr’(ag +idc2) + (01 —idee) Jova<alny |os +idz| 4+ Tr|oy — idce|.




31. Projections and functional calculus (15 points)
Let P be a selfadjoint operator on a Hilbert space H. Show that P is an orthogonal projection if and
onlyif o(P) C {0,1}.
Solution:

“=:"” Suppose P is an orthogonal projection. Orthogonal projections are bounded, and the spec-
trum is closed and bounded by Problem 26. Let us define the bounded function

NN <2||P
ﬂMg{ AL <2|P|
0 else

Then we can use functional calculus to express P? as f(P),

2 (1 1 1] 2
P—ﬂm—émwwm—Ammwn

Ll PSRN
a(P)

and deduce that on o(P) the equation A> = X holds [1]. Evidently, the only two solutions to this
equation are 0 and 1,1i.e. o(P) C {0,1} [1].

“«<:” Suppose o(P) C {0,1} where P is selfadjoint [1]. As the spectrum is bounded, so is the
operator P [1]. Then we can use the same reasoning as above in reverse: let f be as above: since
A2 = X on o(P) [1], we deduce P? = P from

2 (1 (1 (1 2
P—ﬂm—émwwm—mew> A

X~
=xono(P)

B/ 1n(P)AE P
o(P)

Hence, P = P* = P? is an orthogonal projection [1].



32. The semirelativistic kinetic energy (32 points)

Consider a semirelativistic quantum particle subjected to a magnetic field B = V, x A. (Semirela-
tivistic here means that you are in an energy regime where one cannot yet create particle-antiparticle
pairs but the energies are high enough so that one needs to take the relativistic kinetic energy.)

Assuming the vector potential A € C>°(R3, R?) is smooth, the hamiltonian

HA = \/m2 + (-iV, — A(2))".

The purpose of this problem is to rigorously define /4. You may use without proof that kinetic
momentum P]A = —i0,, — A;(2) and (P*)? (endowed with the correct domains) define selfadjoint
operators.

(i) Let ¢ € C(R3,R) be a phase function and et the associated unitary. Show that kinetic
momentum is gauge-covariant,

PA+VQ:¢ — e+i¢ PA e—iqs‘

(ii) Find a less laborious way to prove (PA+Ve®)2 = eti¢ (P4)2 =%, Work smart, not hard.
(iii) Define the semirelativistic kinetic energy \/m? + (P4)2.

(iv) Prove /m?2 + (P4)2 > |PA].

(v) Show \/m?2 + (PAtVad)2 = et /2  (PA)2e 19,

Solution:

(i) Forvy € D(P]AJFV”)) = etD(PJ), we compute

. i 1 . . N s
e™¢ pleidy i et?(—i0,, — A;j(2))e %y

W 19 (e71¢ (—id), 1) — i(Dy, e 7Y — A;())

2 (10, — Aj(2) — 10, 0())
PtYety,

(ii) Writing (P4)? = P4 . P4 and using the result from (i), we obtain
e+id (pA)2 i U] o+ pAg—i¢ . ot+id pAg—io

(1] PA+Ved | pA+Vad (1] ( PA+V.T¢)2.

Note that the unitary e i relates the domains D ((P*)?) and D ((PA+V=9) 2) W etiop ((P?).

(iii) The semirelativistic kinetic energy is defined via functional calculus: (P#)? > 0 is non-
negative [1] and selfadjoint [1] with domain D ((P#)?), and consequently, the semirelativistic
kinetic energy is the operator

\/m? + (P4)? 2 /0+OO I (P2 Vm2 + A

endowed with domain
+o00
D(y/m? + (PA)2) 2 {y € I2(®9) | /0 (@ 1ar ((P)?)8) (m? +2) < o0}

(Since the spectrum o ((P4)?) C [0,+00) is non-negative, we can omit the absolute value
sign.)



(iv)

)

We define

+0o0
P Jpay U /0 1 ((PY2)

analogously to the semirelativistic kinetic energy endowed with domain

D(|P4)) 4 {w € L*(R?) | /Om(qp, 1 ((PH?) ) A < oo}

u {¢ € L*(R%) | /O+Oo<¢, Lay (PH?)¢) (m* + ) < oo}
2D (\fm+ (PA)2).

The domain of |P4| coincides with the domain of \/m? + (P4)? [1], and consequently, the
gauge-covariance of \/m? + (P4)2 > |P4| follows from v'm? + XA > V/A on the level of

functions [1] and functional calculus [1].

The covariance of (P4)? proven in (ii) also implies that the projection-valued measure of this
operator is also gauge-covariant,

Ia <(PA+V””¢)2) = et 1A((PA)2) e i, (1)

And if we assume for a moment that we have shown the gauge-covariance of the projection-
valued measure, then also the semirelativistic kinetic energy inherits the gauge-covariance,

\/mQ + (PA+V20)? B / 1dA((PA+VI¢)2> m2 + A
R
U [t ry (A7) e Vint 4
R

W e+ie | /m2 4 (PA)2e 1,

Hence, it remains to show equation (1). From the gauge-covariance of the resolvent,
<(PA+W¢)2 _ Z)” [ o+io (P42 - Z)—l it
and the Herglotz representation theorem,
(o0 (P2 =)0 B [ i, () (2= )
[1 <w’ ((PA+Vw¢)2 _ Z>*1¢>

Y[ Tty o)
R

we can relate the measures of (P*)? and vector e 1?1 to that of (PA+V=?) ? and vector ¥ (as
indicated by the superscripts on the measures) [1]. Thus, we deduce the gauge-covariance for
the projection-valued measure,

(ve1a(PP) e o) U [ i, 0 Y [ au o
(1] <¢, 1A((PA+VQJ¢)2)¢>.



33. Resolution of the identity (30 points)

Suppose H be a selfadjoint operator on a Hilbert space H whose spectrum is purely discrete, i.e.o(H)
odisc(H) = { Ep }nen. Here, the eigenvalues E,, are repeated according to their multiplicity.

(i) Express the projection-valued measure in terms of the eigenfunctions of ©,,.
(ii) Write out H = / dP(X) A explicitly.
R
(iii) Prove that there exists a resolution of the identity with respect to the eigenfunctions ,,,
idy = Z |@n) {@nl-
neN

Put another way, show that span{y,, },en = H.
(iv) Show that H is necessarily unbounded.

Hint: Review the definitions of discrete and essential spectrum.

Solution:

(i) Let {®n}nen be an orthonormal set composed of eigenfunctions (in case of degeneracies,
choose an orthonormal basis for each of the eigenspace). Then the projection-valued mea-
sure is defined through

at)) B [ a1 Y [ duon )

We will now show that for ¢ € span{y, }, _, =: Hy, the right-hand side is [4]|? [1] while
fory € Hk we get 0 [1]: if ¢,, is an eigenfunction to E,,, we compute

(s (H = 2)70,) & (B — 2) 7 lnl2 2 (B — 2)7L

On the other hand, the representation theorem for Herglotz functions relates the left-hand
side to the measure p,, (\)

_ 1 RN _
o (T =270) © [ g, ) (3= 27 (8- 27
meaning that du,, (\) = 6(A — E,,) [|¢n]|?> = 6(A — E,,) [1]. Hence, if ¢ € H, then the right-

hand side of (2) is necessarily ||1/||? [1] while if it is in the orthogonal complement, we get 0
[1]. Thus, we have shown

(1] 1]
P(A) =1A(H) = § |on) {(@nl E 1A(En) |on){@nl-
{neN | EncA} neN

(ii) The projection-valued measure is the infinite sum of point measures, and hence, we obtain

1 1

neN



(iii) Lemma 6.1.10 tells us that

(1] 1]
P(A) = 1A(H) = ) 1a(En) [on) (0]

neN

is a projection-valued measure, and all projection valued measures satisfy

R) Y ST 1R [on) (onl © S ) (0.

neN neN

This is equivalent to saying that {©,, },,cn forms an orthonormal basis of .

(iv) Assume H were bounded [1]. Then by Problem 26, we have o(H) C {z € C | |2| < | H]|}
[1] and the spectrum is bounded [1]. Hence, the sequence {E,, } ey C R is bounded [1] and
consequently must have an accumulation point [1]. Such an accumulation point is part of
the essential spectrum by Theorem 5.2.8 [1], and thus, oess(H) # () [1] which contradicts our
assumption that the spectrum is purely discrete [1]. Hence, H has to be unbounded [1].



