Foundations of
 Quantum Mechanics
 (APM 421 H)

Functional Calculus

Homework Problems

30. Functional calculus for matrices revisited ($\mathbf{3 0}$ points)

Let $H=h_{0} \mathrm{id}_{\mathbb{C}^{2}}+\sum_{j=1}^{3} h_{j} \sigma_{j}$ be a hermitian 2×2 matrix written in terms of the Pauli matrices σ_{1}, σ_{2} and σ_{3}.
(i) Compute the projection-valued measure associated to H.
(ii) Show that the functional calculus introduced on sheet 01 coincides with the functional calculus from Chapter 6 of the lecture notes.
(iii) Prove that the following inequality is false:

$$
\left|\left(\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right)+\left(\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right)\right| \leq\left|\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right|+\left|\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right|
$$

(iv) Show that the analogous inequality for the traces does hold true:

$$
\operatorname{Tr}\left|\left(\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right)+\left(\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right)\right| \leq \operatorname{Tr}\left|\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right|+\operatorname{Tr}\left|\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right|
$$

Solution:

(i) The spectrum is purely discrete, $\sigma(H)=\sigma_{\text {disc }}(H)=\left\{E_{-}, E_{+}\right\}$[1], where the eigenvalues are $E_{ \pm}=h_{0} \pm \sqrt{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}}$ [1]. That means the spectral measure is pure point since its support is the discrete set $\left\{E_{-}, E_{+}\right\}$. Thus, the eigenprojections

$$
P_{ \pm} \stackrel{[1]}{=} \frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}}+\frac{\sum_{j=1}^{3} h_{j} \sigma_{j}}{\sqrt{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}}}\right)
$$

are related to the projection-valued measure via

$$
P(\Lambda) \stackrel{[1]}{=}\left(P_{-}+P_{+}\right) P(\Lambda) \stackrel{[1]}{=} 1_{\Lambda}\left(\left\{E_{-}\right\}\right) P_{-}+1_{\Lambda}\left(\left\{E_{+}\right\}\right) P_{+}
$$

as $P_{-}+P_{+}=\mathrm{id}_{\mathbb{C}^{2}}[1]$.
(ii) In Problem 02 of Sheet 01, we have defined

$$
f(H): \stackrel{[1]}{=} f\left(E_{+}\right) P_{+}+f\left(E_{-}\right) P_{-}
$$

where $f: \mathbb{R} \longrightarrow \mathbb{C}$ was a suitable function.

Compared to the definition in Chapter 06,

$$
f(H) \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} P(\lambda) f(\lambda),
$$

we see with the help of (i) that the two definitions coincide:

$$
\begin{aligned}
f(H) & \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} P(\lambda) f(\lambda) \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \lambda\left(\delta\left(\lambda-E_{-}\right) P_{-}+\delta\left(\lambda-E_{+}\right) P_{+}\right) \lambda \\
& \stackrel{[1]}{=} f\left(E_{+}\right) P_{+}+f\left(E_{-}\right) P_{-}
\end{aligned}
$$

(iii) We will repeatedly use the formulas from Sheet 01 . Let us start with the left-hand side: the eigenvalues of the matrix on the left $\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}+\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}=\sigma_{1}+\sigma_{3}$ are $E_{ \pm}^{\text {left }}= \pm \sqrt{1^{2}+1^{2}}=$ $\pm \sqrt{2}$ [1] with eigenprojections

$$
P_{ \pm}^{\text {left }} \stackrel{[1]}{=} \frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}} \pm \frac{\sigma_{1}+\sigma_{3}}{\sqrt{2}}\right) .
$$

Thus, the absolute value of the left-hand side is

$$
\left|\left(\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right)+\left(\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right)\right| \stackrel{[1]}{=}|+\sqrt{2}| P_{+}^{\text {left }}+|-\sqrt{2}| P_{-}^{\text {left }} \stackrel{[1]}{=} \sqrt{2} \mathrm{id}_{\mathbb{C}^{2}} .
$$

Now to the right-hand side: eigenvalues and eigenprojections of the first term are $E_{ \pm}^{\text {right }, 1}=$ 1 ± 1 [1] and

$$
P_{ \pm}^{\text {right }, 1} \stackrel{[1]}{=} \frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}} \pm \sigma_{3}\right)
$$

while those of the second term are $E_{ \pm}^{\text {right }, 2}=-1 \pm 1[1]$

$$
P_{ \pm}^{\text {right }, 2} \stackrel{[1]}{=} \frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}} \mp \sigma_{1}\right)
$$

That means their absolute values are

$$
\begin{aligned}
& \left|\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right| \stackrel{[1]}{=}|2| \cdot P_{+}^{\text {right, }, 1}+|0| \cdot P_{-}^{\text {right, } 1} \stackrel{[1]}{=} \mathrm{id}_{\mathbb{C}^{2}}+\sigma_{3}, \\
& \left|\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right| \stackrel{[1]}{=}|0| \cdot P_{+}^{\text {right, } 2}+|-2| \cdot P_{-}^{\text {right, } 2} \stackrel{[1]}{=} \mathrm{id}_{\mathbb{C}^{2}}+\sigma_{1} .
\end{aligned}
$$

Consequently, the eigenvalues of their sum

$$
\left|\sigma_{3}+\mathrm{id}_{\mathbb{C}^{2}}\right|+\left|\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right| \stackrel{[1]}{=} 2 \mathrm{id}_{\mathbb{C}^{2}}+\sigma_{1}+\sigma_{3}
$$

are $E_{ \pm}^{\text {sum }}=2 \pm \sqrt{2}[1]$, and since $E_{-}^{\text {sum }}=2-\sqrt{2}<\sqrt{2}$ [1], the inequality is necessarily false [1].
(iv) The trace of the matrix on the left is $2 \sqrt{2}$ while that of the matrix on the right is 4 , and hence, the inequality involving the traces is satisfied,

$$
\operatorname{Tr}\left|\left(\sigma_{3}+\operatorname{id}_{\mathbb{C}^{2}}\right)+\left(\sigma_{1}-\operatorname{id}_{\mathbb{C}^{2}}\right)\right| \stackrel{[1]}{=} 2 \sqrt{2} \stackrel{[1]}{\leq} 4 \stackrel{[1]}{=} \operatorname{Tr}\left|\sigma_{3}+\operatorname{id}_{\mathbb{C}^{2}}\right|+\operatorname{Tr}\left|\sigma_{1}-\mathrm{id}_{\mathbb{C}^{2}}\right|
$$

31. Projections and functional calculus (15 points)

Let P be a selfadjoint operator on a Hilbert space \mathcal{H}. Show that P is an orthogonal projection if and only if $\sigma(P) \subseteq\{0,1\}$.

Solution:

" \Rightarrow :" Suppose P is an orthogonal projection. Orthogonal projections are bounded, and the spectrum is closed and bounded by Problem 26. Let us define the bounded function

$$
f(\lambda) \stackrel{[1]}{=} \begin{cases}\lambda^{2} & |\lambda| \leq 2\|P\| \\ 0 & \text { else }\end{cases}
$$

Then we can use functional calculus to express P^{2} as $f(P)$,

$$
\begin{aligned}
P^{2} & \stackrel{[1]}{=} f(P) \stackrel{[1]}{=} \int_{\mathbb{R}} 1_{\mathrm{d} \lambda}(P) f(\lambda) \stackrel{[1]}{=} \int_{\sigma(P)} 1_{\mathrm{d} \lambda}(P) \lambda^{2} \\
& \stackrel{!}{=} P \stackrel{[1]}{=} \int_{\sigma(P)} 1_{\mathrm{d} \lambda}(P) \lambda,
\end{aligned}
$$

and deduce that on $\sigma(P)$ the equation $\lambda^{2}=\lambda$ holds [1]. Evidently, the only two solutions to this equation are 0 and 1, i. e. $\sigma(P) \subseteq\{0,1\}[1]$.
" \Leftarrow :" Suppose $\sigma(P) \subseteq\{0,1\}$ where P is selfadjoint [1]. As the spectrum is bounded, so is the operator P [1]. Then we can use the same reasoning as above in reverse: let f be as above: since $\lambda^{2}=\lambda$ on $\sigma(P)$ [1], we deduce $P^{2}=P$ from

$$
\begin{aligned}
& P^{2} \stackrel{[1]}{=} f(P) \stackrel{[1]}{=} \int_{\mathbb{R}} 1_{\mathrm{d} \lambda}(P) f(\lambda) \stackrel{[1]}{=} \int_{\sigma(P)} 1_{\mathrm{d} \lambda}(P) \underbrace{\lambda^{2}}_{=\lambda \text { on } \sigma(P)} \\
& \stackrel{[1]}{=} \int_{\sigma(P)} 1_{\mathrm{d} \lambda}(P) \lambda \stackrel{[1]}{=} P .
\end{aligned}
$$

Hence, $P=P^{*}=P^{2}$ is an orthogonal projection [1].

32. The semirelativistic kinetic energy (32 points)

Consider a semirelativistic quantum particle subjected to a magnetic field $B=\nabla_{x} \times A$. (Semirelativistic here means that you are in an energy regime where one cannot yet create particle-antiparticle pairs but the energies are high enough so that one needs to take the relativistic kinetic energy.) Assuming the vector potential $A \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ is smooth, the hamiltonian

$$
H^{A}=\sqrt{m^{2}+\left(-\mathrm{i} \nabla_{x}-A(\hat{x})\right)^{2}}
$$

The purpose of this problem is to rigorously define H^{A}. You may use without proof that kinetic momentum $P_{j}^{A}:=-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})$ and $\left(P^{A}\right)^{2}$ (endowed with the correct domains) define selfadjoint operators.
(i) Let $\phi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ be a phase function and $\mathrm{e}^{+\mathrm{i} \phi}$ the associated unitary. Show that kinetic momentum is gauge-covariant,

$$
P^{A+\nabla_{x} \phi}=\mathrm{e}^{+\mathrm{i} \phi} P^{A} \mathrm{e}^{-\mathrm{i} \phi} .
$$

(ii) Find a less laborious way to prove $\left(P^{A+\nabla_{x} \phi}\right)^{2}=\mathrm{e}^{+\mathrm{i} \phi}\left(P^{A}\right)^{2} \mathrm{e}^{-\mathrm{i} \phi}$. Work smart, not hard.
(iii) Define the semirelativistic kinetic energy $\sqrt{m^{2}+\left(P^{A}\right)^{2}}$.
(iv) Prove $\sqrt{m^{2}+\left(P^{A}\right)^{2}} \geq\left|P^{A}\right|$.
(v) Show $\sqrt{m^{2}+\left(P^{A+\nabla_{x} \phi}\right)^{2}}=\mathrm{e}^{\mathrm{i} \phi} \sqrt{m^{2}+\left(P^{A}\right)^{2}} \mathrm{e}^{-\mathrm{i} \phi}$.

Solution:

(i) For $\psi \in \mathcal{D}\left(P_{j}^{A+\nabla_{x} \phi}\right):=\mathrm{e}^{+\mathrm{i} \phi} \mathcal{D}\left(P_{j}^{A}\right)$, we compute

$$
\begin{aligned}
\mathrm{e}^{+\mathrm{i} \phi} P_{j}^{A} \mathrm{e}^{-\mathrm{i} \phi} \psi & \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \phi}\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})\right) \mathrm{e}^{-\mathrm{i} \phi} \psi \\
& \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \phi}\left(\mathrm{e}^{-\mathrm{i} \phi}\left(-\mathrm{i} \partial_{x_{j}} \psi\right)-\mathrm{i}\left(\partial_{x_{j}} \mathrm{e}^{-\mathrm{i} \phi}\right) \psi-A_{j}(\hat{x})\right) \\
& \stackrel{[1]}{=}\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})-\mathrm{i} \partial_{x_{j}} \phi(\hat{x})\right) \psi \\
& =P_{j}^{A+\nabla_{x} \phi} \psi
\end{aligned}
$$

(ii) Writing $\left(P^{A}\right)^{2}=P^{A} \cdot P^{A}$ and using the result from (i), we obtain

$$
\begin{aligned}
& \mathrm{e}^{+\mathrm{i} \phi}\left(P^{A}\right)^{2} \mathrm{e}^{-\mathrm{i} \phi} \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \phi} P^{A} \mathrm{e}^{-\mathrm{i} \phi} \cdot \mathrm{e}^{+\mathrm{i} \phi} P^{A} \mathrm{e}^{-\mathrm{i} \phi} \\
& \stackrel{[1]}{=} P^{A+\nabla_{x} \phi} \cdot P^{A+\nabla_{x} \phi} \stackrel{[1]}{=}\left(P^{A+\nabla_{x} \phi}\right)^{2} .
\end{aligned}
$$

Note that the unitary $\mathrm{e}^{+\mathrm{i} \phi}$ relates the domains $\mathcal{D}\left(\left(P^{A}\right)^{2}\right)$ and $\mathcal{D}\left(\left(P^{A+\nabla_{x} \phi}\right)^{2}\right) \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \phi} \mathcal{D}\left(\left(P^{A}\right)^{2}\right)$.
(iii) The semirelativistic kinetic energy is defined via functional calculus: $\left(P^{A}\right)^{2} \geq 0$ is nonnegative [1] and selfadjoint [1] with domain $\mathcal{D}\left(\left(P^{A}\right)^{2}\right)$, and consequently, the semirelativistic kinetic energy is the operator

$$
\sqrt{m^{2}+\left(P^{A}\right)^{2}}: \stackrel{[2]}{=} \int_{0}^{+\infty} 1_{\mathrm{d} \lambda}\left(\left(P^{A}\right)^{2}\right) \sqrt{m^{2}+\lambda}
$$

endowed with domain

$$
\mathcal{D}\left(\sqrt{m^{2}+\left(P^{A}\right)^{2}}\right)::[2]=\left\{\psi \in L^{2}\left(\mathbb{R}^{3}\right) \mid \int_{0}^{+\infty}\left\langle\psi, 1_{\mathrm{d} \lambda}\left(\left(P^{A}\right)^{2}\right) \psi\right\rangle\left(m^{2}+\lambda\right)<\infty\right\}
$$

(Since the spectrum $\sigma\left(\left(P^{A}\right)^{2}\right) \subseteq[0,+\infty)$ is non-negative, we can omit the absolute value sign.)
(iv) We define

$$
\left|P^{A}\right|: \stackrel{[2]}{=} \sqrt{\left(P^{A}\right)^{2}} \stackrel{[1]}{=} \int_{0}^{+\infty} 1_{\mathrm{d} \lambda}\left(\left(P^{A}\right)^{2}\right)|\lambda|
$$

analogously to the semirelativistic kinetic energy endowed with domain

$$
\begin{aligned}
\mathcal{D}\left(\left|P^{A}\right|\right) & : \stackrel{[1]}{=}\left\{\psi \in L^{2}\left(\mathbb{R}^{3}\right) \mid \int_{0}^{+\infty}\left\langle\psi, 1_{\mathrm{d} \lambda}\left(\left(P^{A}\right)^{2}\right) \psi\right\rangle \lambda<\infty\right\} \\
& \stackrel{[1]}{=}\left\{\psi \in L^{2}\left(\mathbb{R}^{3}\right) \mid \int_{0}^{+\infty}\left\langle\psi, 1_{\mathrm{d} \lambda}\left(\left(P^{A}\right)^{2}\right) \psi\right\rangle\left(m^{2}+\lambda\right)<\infty\right\} \\
& \stackrel{[1]}{=} \mathcal{D}\left(\sqrt{m^{2}+\left(P^{A}\right)^{2}}\right) .
\end{aligned}
$$

The domain of $\left|P^{A}\right|$ coincides with the domain of $\sqrt{m^{2}+\left(P^{A}\right)^{2}}$ [1], and consequently, the gauge-covariance of $\sqrt{m^{2}+\left(P^{A}\right)^{2}} \geq\left|P^{A}\right|$ follows from $\sqrt{m^{2}+\lambda} \geq \sqrt{\lambda}$ on the level of functions [1] and functional calculus [1].
(v) The covariance of $\left(P^{A}\right)^{2}$ proven in (ii) also implies that the projection-valued measure of this operator is also gauge-covariant,

$$
\begin{equation*}
1_{\Lambda}\left(\left(P^{A+\nabla_{x} \phi}\right)^{2}\right)=\mathrm{e}^{+\mathrm{i} \phi} 1_{\Lambda}\left(\left(P^{A}\right)^{2}\right) \mathrm{e}^{-\mathrm{i} \phi} . \tag{1}
\end{equation*}
$$

And if we assume for a moment that we have shown the gauge-covariance of the projectionvalued measure, then also the semirelativistic kinetic energy inherits the gauge-covariance,

$$
\begin{aligned}
\sqrt{m^{2}+\left(P^{A+\nabla_{x} \phi}\right)^{2}} & \stackrel{[1]}{=} \int_{\mathbb{R}} 1_{\mathrm{d} \lambda}\left(\left(P^{A+\nabla_{x} \phi}\right)^{2}\right) \sqrt{m^{2}+\lambda} \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{e}^{+\mathrm{i} \phi} 1_{\Lambda}\left(\left(P^{A}\right)^{2}\right) \mathrm{e}^{-\mathrm{i} \phi} \sqrt{m^{2}+\lambda} \\
& \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \phi} \sqrt{m^{2}+\left(P^{A}\right)^{2}} \mathrm{e}^{-\mathrm{i} \phi} .
\end{aligned}
$$

Hence, it remains to show equation (1). From the gauge-covariance of the resolvent,

$$
\left(\left(P^{A+\nabla_{x} \phi}\right)^{2}-z\right)^{-1} \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} \phi}\left(\left(P^{A}\right)^{2}-z\right)^{-1} \mathrm{e}^{-\mathrm{i} \phi}
$$

and the Herglotz representation theorem,

$$
\begin{aligned}
\left\langle\mathrm{e}^{-\mathrm{i} \phi} \psi,\left(\left(P^{A}\right)^{2}-z\right)^{-1} \mathrm{e}^{-\mathrm{i} \phi} \psi\right. & \rangle \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \mu_{\mathrm{e}^{-i \phi} \psi}^{A}(\lambda)(\lambda-z)^{-1} \\
& \stackrel{[1]}{=}\left\langle\psi,\left(\left(P^{A+\nabla_{x} \phi}\right)^{2}-z\right)^{-1} \psi\right\rangle \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \mu_{\psi}^{A+\nabla_{x} \phi}(\lambda)(\lambda-z)^{-1},
\end{aligned}
$$

we can relate the measures of $\left(P^{A}\right)^{2}$ and vector $\mathrm{e}^{-\mathrm{i} \phi} \psi$ to that of $\left(P^{A+\nabla_{x} \phi}\right)^{2}$ and vector ψ (as indicated by the superscripts on the measures) [1]. Thus, we deduce the gauge-covariance for the projection-valued measure,

$$
\begin{aligned}
\left\langle\psi, \mathrm{e}^{-\mathrm{i} \phi} 1_{\Lambda}\left(\left(P^{A}\right)^{2}\right) \mathrm{e}^{-\mathrm{i} \phi} \psi\right\rangle & \stackrel{[1]}{=} \int_{\Lambda} \mathrm{d} \mu_{\mathrm{e}^{-\mathrm{i} \phi} \psi}^{A}(\lambda) \stackrel{[1]}{=} \int_{\Lambda} \mathrm{d} \mu_{\psi}^{A+\nabla_{x} \phi}(\lambda) \\
& \stackrel{[1]}{=}\left\langle\psi, 1_{\Lambda}\left(\left(P^{A+\nabla_{x} \phi}\right)^{2}\right) \psi\right\rangle .
\end{aligned}
$$

33. Resolution of the identity ($\mathbf{3 0}$ points)

Suppose H be a selfadjoint operator on a Hilbert space \mathcal{H} whose spectrum is purely discrete, i. e. $\sigma(H)=$ $\sigma_{\text {disc }}(H)=\left\{E_{n}\right\}_{n \in \mathbb{N}}$. Here, the eigenvalues E_{n} are repeated according to their multiplicity.
(i) Express the projection-valued measure in terms of the eigenfunctions of φ_{n}.
(ii) Write out $H=\int_{\mathbb{R}} \mathrm{d} P(\lambda) \lambda$ explicitly.
(iii) Prove that there exists a resolution of the identity with respect to the eigenfunctions φ_{n},

$$
\mathrm{id}_{\mathcal{H}}=\sum_{n \in \mathbb{N}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right| .
$$

Put another way, show that $\operatorname{span}\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}=\mathcal{H}$.
(iv) Show that H is necessarily unbounded.

Hint: Review the definitions of discrete and essential spectrum.

Solution:

(i) Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal set composed of eigenfunctions (in case of degeneracies, choose an orthonormal basis for each of the eigenspace). Then the projection-valued measure is defined through

$$
\begin{equation*}
\left\langle\psi, 1_{\Lambda}(H) \psi\right\rangle \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \mu_{\psi}(\lambda) 1_{\Lambda}(\lambda) \stackrel{[1]}{=} \int_{\Lambda} \mathrm{d} \mu_{\psi}(\lambda) \tag{2}
\end{equation*}
$$

We will now show that for $\psi \in \overline{\operatorname{span}\left\{\varphi_{n}\right\}_{E_{n} \in \Lambda}}=: \mathcal{H}_{\Lambda}$, the right-hand side is $\|\psi\|^{2}$ [1] while for $\psi \in \mathcal{H}_{\Lambda}^{\perp}$ we get 0 [1]: if φ_{n} is an eigenfunction to E_{n}, we compute

$$
\left\langle\varphi_{n},(H-z)^{-1} \varphi_{n}\right\rangle \stackrel{[1]}{=}\left(E_{n}-z\right)^{-1}\left\|\varphi_{n}\right\|^{2} \stackrel{[1]}{=}\left(E_{n}-z\right)^{-1}
$$

On the other hand, the representation theorem for Herglotz functions relates the left-hand side to the measure $\mu_{\varphi_{n}}(\lambda)$

$$
\left\langle\varphi_{n},(H-z)^{-1} \varphi_{n}\right\rangle \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \mu_{\varphi_{n}}(\lambda)(\lambda-z)^{-1} \stackrel{![1]}{=}\left(E_{n}-z\right)^{-1}
$$

meaning that $\mathrm{d} \mu_{\varphi_{n}}(\lambda)=\delta\left(\lambda-E_{n}\right)\left\|\varphi_{n}\right\|^{2}=\delta\left(\lambda-E_{n}\right)$ [1]. Hence, if $\psi \in \mathcal{H}_{\Lambda}$ then the righthand side of (2) is necessarily $\|\psi\|^{2}$ [1] while if it is in the orthogonal complement, we get 0 [1]. Thus, we have shown

$$
P(\Lambda) \stackrel{[1]}{=} 1_{\Lambda}(H) \stackrel{[1]}{=} \sum_{\left\{n \in \mathbb{N} \mid E_{n} \in \Lambda\right\}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right| \stackrel{[1]}{=} \sum_{n \in \mathbb{N}} 1_{\Lambda}\left(E_{n}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
$$

(ii) The projection-valued measure is the infinite sum of point measures, and hence, we obtain

$$
H \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} P(\lambda) \lambda \stackrel{[1]}{=} \sum_{n \in \mathbb{N}} E_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right| .
$$

(iii) Lemma 6.1.10 tells us that

$$
P(\Lambda) \stackrel{[1]}{=} 1_{\Lambda}(H) \stackrel{[1]}{=} \sum_{n \in \mathbb{N}} 1_{\Lambda}\left(E_{n}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
$$

is a projection-valued measure, and all projection valued measures satisfy

$$
\operatorname{id}_{\mathcal{H}} \stackrel{[1]}{=} P(\mathbb{R}) \stackrel{[1]}{=} \sum_{n \in \mathbb{N}} 1_{\mathbb{R}}\left(E_{n}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right| \stackrel{[1]}{=} \sum_{n \in \mathbb{N}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
$$

This is equivalent to saying that $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ forms an orthonormal basis of \mathcal{H}.
(iv) Assume H were bounded [1]. Then by Problem 26, we have $\sigma(H) \subseteq\{z \in \mathbb{C}||z| \leq\|H\|\}$ [1] and the spectrum is bounded [1]. Hence, the sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}$ is bounded [1] and consequently must have an accumulation point [1]. Such an accumulation point is part of the essential spectrum by Theorem 5.2.8 [1], and thus, $\sigma_{\text {ess }}(H) \neq \emptyset[1]$ which contradicts our assumption that the spectrum is purely discrete [1]. Hence, H has to be unbounded [1].

