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The discrete Fourier transform &
Applications to 2× 2matrix problems

Homework Problems

34. The Fourier transform of various functions (8 points)
Compute the Fourier coefficients of the following functions on [−π,+π] and characterize their
asymptotic behavior for large |k|:
(i) f(x) = 1 + x

(ii) g(x) = sin 2x

(iii) h(x) =
{
+1 x ∈ [0,+π]

0 x ∈ [−π, 0)

(iv) j(x) =
{
+1 x ∈ [0,+π]

−1 x ∈ [−π, 0)

Solution:

(i) From (F1)(k) = δk,0 and

(Fx)(k) =

{
0 k = 0

(−1)k i
k k ∈ Z \ {0}

,

we can immediately give the Fourier series of f as

(Ff)(k) [2]
=

{
1 k = 0

(−1)k i
k k ∈ Z \ {0}

.

The Fourier series decays as 1/|k|.
(ii) Writing sin 2x = 1

i2
(
e+i2x − e−i2x) in terms of exponential functions immediately yields

(Fg)(k) [2]
=


− i

2 k = 2

+ i
2 k = −2

0 else
.

The Fourier series has only finitelymany non-zero terms, i. e. it decays superpolynomially and
superexponentially.
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(iii) For k = 0, we obtain

(Fh)(0) = 1

2π

∫ +π

−π
dxh(x) = 1

2π

∫ +π

0
dx [1]

= 1
2 ,

while for k ̸= 0, we get

(Fh)(k) = 1

2π

∫ +π

0
dx e−ikx =

[
1

2π

1

−ike
−ikx

]+π

0

[1]
=

i
(
(−1)k − 1

)
2πk

.

The Fourier series decays as 1/|k|.
(iv) Noticing that j(x) = 2h(x)− 1, we deduce

(Fj)(k) [2]
=

{
0 k = 0
i((−1)k−1)

πk k ∈ Z \ {0}
.

The Fourier series decays as 1/|k|.
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35. The Pauli matrices
Consider the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ3 =

(
1 0
0 −1

)
.

(i) Prove σj σk = δjk idC2 + i
3∑

l=1

ϵjkl σl where ϵjkl is the epsilon tensor.

(ii) Prove that any 2 × 2 matrix can be written as the linear combination of the identity and the
three Pauli matrices with coefficients h0 and h = (h1, h2, h3),

MatC(2) ∋ A = (ajk)1≤j,k≤2 = h0 idC2 +

3∑
j=1

hj σj =: idC2 + h · σ. (1)

Hint: Use that MatC(2) is finite-dimensional.
(iii) Now assume that the coefficients h0, . . . , h3 in equation (1) are real. Show that then the re-

sulting matrixH = h0 idC2 + h · σ is hermitian. Compute the eigenvalues E±(h0, h) ofH in
terms of the coefficients h0 and h.

(iv) Use (i) to prove that for real h0, . . . , h3

P±(h0, h) =
1

2

(
idC2 ±

h · σ
|h|

)
, h ̸= 0 ∈ R3, |h| :=

√
h21 + h22 + h23,

are the projections onto the eigenspaces for the two eigenvalues E±(h0, h) ofH .
(v) Compute the trace ofH .

Note: In physics especially, one frequently writes h · σ for
3∑

j=1

hj σj where h = (h1, h2, h3).

Solution:
(i) This follows from direct computation: for j = k we obtain

σ21 = σ22 = σ23 = idC2

while for j < k

σ1 σ2 =

(
0 1
1 0

) (
0 −i
+i 0

)
=

(
+i 0
0 −i

)
= iσ3

σ1 σ3 =

(
0 1
1 0

) (
1 0
0 −1

)
=

(
0 −1
1 0

)
= −iσ2

σ2 σ3 =

(
0 −i
+i 0

) (
1 0
0 −1

)
=

(
0 +i
+i 0

)
= iσ1

In other words, we have shown (i) for j < k.
To show (i) in the remaining cases, we use that the σj = σ∗j are hermitian matrices, and hence
for j < k we obtain

σk σj =
(
σj σk

)∗
=

(
δjk idC2 + i

3∑
l=1

ϵjkl σl

)∗

= δjk idC2 − i
3∑

l=1

ϵjkl σl = δjk idC2 + i
3∑

l=1

ϵkjl σl.
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This proves (i).
(ii) The vector space of 2× 2matrices is four-dimensional, dimMatC(2) = 4, and seeing as the 4

vectors
{
idC2 , σ1, σ2, σ3

}
are linearly independent, they form a basis of MatC(2).

(iii) In case h0, . . . , h3 are real,

H∗ =
(
h0 idC2 + h · σ

)∗
= h0 idC2 + h · σ

= h0 idC2 + h · σ = H

is hermitian and we can compute both eigenvalues: the characteristic polynomial ofH is

χ(λ) = det
(
λ idC2 −H

)
= det

(
λ− h0 − h3 h1 − ih2
h1 + ih2 λ− h0 + h3

)
=
(
(λ− h0)− h3

) (
(λ− h0) + h3

)
−
(
h1 − ih2

)(
h1 + ih2

)
= (λ− h0)

2 −
(
h21 + h22 + h23

)
= (λ− h0)

2 − |h|2,

and hence, the eigenvalues are E±(h0, h) = h0 ± |h|.
(iv) The product

H P± =
(
h0 idC2 + h · σ

)
P± = h0 P± +

1

2

(
h · σ ± (h · σ)2

|h|

)
involves the square of h · σ which can be computed with the help of (i):

(
h · σ

)2
=

3∑
j,k=1

hj hk σj σk

=

3∑
j=1

h2j idC2 +
∑

j,k,l=1,2,3
j ̸=k

hj hk i ϵjkl σl

= |h|2 idC2 + i
3∑

l=1

( ∑
j,k=1,2,3

j ̸=k

hj hk i ϵjkl
)
σl = |h|2 idC2

Hence, we can factor out E± and obtain (iv):

H P± = h0 P± +
1

2

(
h · σ ± |h|2 idC2

|h|

)

= h0 P± ± |h| 1
2

(
idC2 ±

h · σ
|h|

)
=
(
h0 ± |h|

)
P± = E± P±

(v) The trace is just the sum over the diagonal elements of the matrices, and clearly, the Pauli
matrices are all traceless. Hence, we compute

trH = tr
(
h0 idC2 + h · σ

)
= h0 tr idC2 +

3∑
j=1

hj trσj = 2h0.
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36. Functional calculus for 2× 2 matrices
Let f be a piecewise continuous function andH = H∗ a hermitian 2× 2matrix. Then define

f(H) :=
∑
j=±

f(E±)P± (2)

where E± are the eigenvalues ofH and P± the two projections from problem 35.
(i) Compute f(H) defined as in equation (2) forH = h · σ, h ̸= 0, and

f(x) =

{
1 x ≥ 0

0 x < 0
.

(ii) Show that f(H) for f(x) = e−itx (defined via (2)) coincides with the matrix exponential, i. e.

f(H) = e−ith0

(
cos
(
|h| t

)
− i

|h|
sin
(
|h| t

)
h · σ

)
= e−itH =

∞∑
n=0

(−it)n
n!

Hn. (3)

Hint: Use e−it(h0+h·σ) = e−ith0 e−ith·σ.
(iii) Assuming h0, h1, h2, h3 are real, compute ψ(t) for the initial condition ψ(0) = ψ0 ∈ C2:

(a) d
dtψ(t) =

(
h2 σ2 + h3 σ3

)
ψ(t)

(b) i ddtψ(t) = h2 σ2ψ(t)

(c) −i ddtψ(t) =
(
h0 idC2 + h3 σ3

)
ψ(t)

Solution:

(i) f(H) = f(|h|)P+ + f(− |h|)P− = P+

(ii) For h = 0,H is a scalarmultiple of the identitymatrix and equation (3) holds. So let us assume
h ̸= 0. Then we first compute the left-hand side:

e−itx(H) = e−it(h0+|h|) P+ + e−it(h0−|h|) P−

=
1

2

(
e−it(h0+|h|) + e−it(h0−|h|)

)
idC2 +

1

2

(
e−it(h0+|h|) − e−it(h0−|h|)

) h · σ
|h|

= e−ith0

(
cos
(
|h| t

)
− i

|h|
sin
(
|h| t

)
h · σ

)
To obtain the right-hand side, we note(

h · σ
)2

=
∑

j,k=1,2,3

hj hk σj σk =
∑

j=1,2,3

h2j σ
2
j +

∑
j,k=1,2,3

j ̸=k

hj hk σj σk

=
∑

j=1,2,3

h2j idC2 +
∑

l=1,2,3

∑
j,k=1,2,3

j ̸=k

hj hk ϵjkl σl = h2,

and thus we identify a pattern in
(
h · σ

)n:(
h · σ

)2n
= |h|2n idC2(

h · σ
)2n+1

=
(
h · σ

)2n
h · σ = |h|2n h · σ
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This means that we can compute the matrix exponential after splitting the sum into even and
odd terms:

e−itH = e−ith0 e−ith·σ = e−ith0

∞∑
n=0

(−it)n
n!

(
h · σ

)n
= e−ith0

∞∑
n=0

(−it)2n
(2n)!

(
h · σ

)2n
+ e−ith0

∞∑
n=0

(−it)2n+1

(2n+ 1)!

(
h · σ

)2n+1

= e−ith0

∞∑
n=0

(−1)n
(|h| t)2n

(2n)!
idC2 −

i
|h|

e−ith0

∞∑
n=0

(−1)n
(|h| t)2n+1

(2n+ 1)!
h · σ

= e−ith0

(
cos
(
|h| t

)
idC2 −

i
|h|

sin
(
|h| t

)
h · σ

)
Thus, left- and right-hand side agree.

(iii) (a)

ψ(t) = etHψ0 = et|h| P+(0, 0, h2, h3) + e−t|h| P−(0, 0, h2, h3)

=
1

2

(
e+t|h| + e−t|h|)ψ0 +

1

2

e+t|h| − e−t|h|

|h|
(
h2 σ2 + h3 σ3

)
ψ0

= cosh
(
t |h|

)
ψ0 + sinh

(
t |h|

) (
h2 σ2 + h3 σ3

)
ψ0

(b) ψ(t) = e−itHψ0 = cos
(
t|h2|

)
ψ0 − i h2

|h2|
sin
(
t|h2|

)
σ2ψ0

(c) ψ(t) = e+itHψ0 = e+ith0 cos
(
t|h2|

)
ψ0 + i e+ith0

h3
|h3|

sin
(
t|h3|

)
σ3ψ0
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37. A simple model for graphene (12 points)
Consider the nearest-neighbor model for graphene

H =

(
q3 idℓ2(Z2) 1ℓ2(Z2) + q1 s1 + q2 s2

1ℓ2(Z2) + q1 s
∗
1 + q2 s

∗
2 −q3 idℓ2(Z2)

)
.

Here, q1, q2 ∈ R are hopping amplitudes while q3 ∈ R is the so-called stagger parameter. Repeat
the analysis in Chapter 6.1.5.2:
(i) Compute the momentum representation HF := F−1H F . What Hilbert space does this op-

erator act on?
(ii) Find a matrix-valued function T (k) so thatHF = T (k̂) is the multiplication operator associ-

ated to T .
(iii) Find the eigenvalues E±(k) and eigenprojections P±(k) of T (k).
(iv) Compute the unitary evolution group UF (t) forHF .
(v) Compute the unitary evolution group U(t) in position representation.
(vi) Voluntary: Identify the parameter region where the eigenvalues are not separated by a gap,

i. e. inf
k∈Tn

∣∣E+(k)− E−(k)
∣∣ = 0.

Remark: This nearest-neighbor model with stagger was used to investigate the piezoelectric effect
in graphene: Topological Polarization in Graphene-like Systems, G. De Nittis and M. Lein, J. Phys. A 46
no. 38, p. 385001, 2013

Solution:

(i) Using that F−1 sj F = e+ik̂j [1], we obtain

HF = F−1H F

[2]
=

(
q3 idL2(T2) idL2(T2) + q1 e+ik̂1 + q2 e+ik̂2

idL2(T2) + q1 e−ik̂1 + q2 e−ik̂2 −q3 idL2(T2)

)

=

(
q3 idL2(T2) ω(k̂)

ω(k̂) −q3 idL2(T2)

)

whereω(k) = 1+q1 e+ik1+q2 e+ik2 is defined just as in the lecture. HF is a bounded operator
acting on L2(T2,C2) [1].

(ii) The matrix-valued function can be read off as

T (k)
[1]
=

(
q3 ω(k)

ω(k) −q3

)
[1]
= Re

(
ω(k)

)
σ1 − Im

(
ω(k)

)
σ2 + q3 σ3.

(iii) The eigenvalues and eigenprojections have already been calculated in problem 35:

E±(k)
[1]
= ±

√
q23 + |ω(k)|2

P±(k)
[1]
=

1

2

(
idL2(T2) ±

Re
(
ω(k)

)
σ1 − Im

(
ω(k)

)
σ2 + q3 σ3

E+(k)

)
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(iv) Problem 36 (ii) has introduced an efficient way to compute the unitary time evolution in the
momentum representation [1]:

UF (t) = e−itHF [1]
= cos

(
E+(k̂)t

)
idL2(T2,C2) −

i sin
(
E+(k̂)t

)
E+(k̂)

T (k̂)

(v) According to Proposition 6.1.5 (ii), F
(
f g
)
= Ff ∗ Fg holds [1], and hence

U(t)ψ
[1]
= F UF (t)F−1ψ

[1]
= F

(
cos
(
E+t

)
idL2(T2,C2) −

i sin
(
E+t

)
E+

T

)
∗ ψ

(vi) The system has no gap if and only if E+(k)
2 = q23 + |ω(k)|2 = 0 for some k ∈ T2. This is zero

if and only if q3 = 0 and

ω(k) = 1 + q1 e−ik1 + q2 e−ik2 !
= 0

The result is best explained in a graph (Figure 2 (b) in the aforementioned publication):

η1

q11

−1

q2

1

1

0

q3

η2 No Gap

2

2
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