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The discrete Fourier transform &
Applications to 2 x 2 matrix problems

Homework Problems

34. The Fourier transform of various functions (8 points)

Compute the Fourier coefficients of the following functions on [—7, 47| and characterize their
asymptotic behavior for large |k|:

@) flz)=1+=
(ii) g(z) =sin2zx

(iii) h(z) = {0 r € [-7,0)

o+ 2 eo, 4]
(iv) J(w) = {_1 T € [—71',0)
Solution:

(i) From (F1)(k) = 0y, and

0 k=0

(Fz)(k) = {(_1)klic kez\ {0}

we can immediately give the Fourier series of f as

2 [1 k=0
(Fk) = {(_1)7€’1C kEZ\{O}

The Fourier series decays as 1/|k|.

(ii) Writingsin2z = 5 (e*12* — e72%) in terms of exponential functions immediately yields
—L k=2
2 )7
(Fg)(k) = +5 k=-2.
0 else

The Fourier series has only finitely many non-zero terms, i. e. it decays superpolynomially and
superexponentially.



(iii) For k = 0, we obtain

+m —+m
(Fh)(0) = — Mh@hzl/‘dxg;
27T 0

—T

while for & # 0, we get

(]:h)(k‘) _ +7l'd —ikx __ iie—ikx o
o)y Y T lam—ikt |,
wi((=n*-1)

2rk '

The Fourier series decays as 1/|k|.

(iv) Noticing that j(z) = 2h(x) — 1, we deduce

o fo k=0
(Fi)(k) = {1«-?]:-1) kez\{0}

The Fourier series decays as 1/|k|.



35. The Pauli matrices

Consider the three Pauli matrices

/01 (0 i /1 0
91=1\1 0)° 2=\4 0 ) 73=\0 -1/

3
(i) Prove ooy = ;1 idcz +1i Z €ji1 01 where €1 is the epsilon tensor.
=1
(ii) Prove that any 2 x 2 matrix can be written as the linear combination of the identity and the
three Pauli matrices with coefficients hg and h = (hq, he, h3),

3
Mat(c(Q) >SA= (ajk)1§j7k§2 = hg id(cz + Z hj o5 =: id(cz +h-o. (1)
j=1

Hint: Use that Matc(2) is finite-dimensional.

(iii) Now assume that the coefficients hq, ..., h in equation (1) are real. Show that then the re-
sulting matrix H = hgidc2 + h - o is hermitian. Compute the eigenvalues E (ho, h) of H in
terms of the coefficients hg and h.

(iv) Use (i) to prove that for real hy, . .., h3

1 h -
Pj[(ho,h):5 <id(czim|(f>, h#0€R? |h|:=1/h?+ h3+h3,

are the projections onto the eigenspaces for the two eigenvalues E (ho, h) of H.

(v) Compute the trace of H.

3
Note: In physics especially, one frequently writes 4 - o for Z h; oj where h = (hi, ha, h3).
j=1

Solution:

(i) This follows from direct computation: for j = k we obtain

0} =03 =03 = ide2

_ (0 1y (0 i) _(+H 0 _,
9192=\1 o) \4+i o) " \o —i) 1'%
01\ (1 0)_ (0 -1\ .
9193=11 o) \o =1/~ \1 o)~ 7'
(0 =iy (10N _ (0 H)_,
2= 4 0)\0 1) " \+ o) 7%

In other words, we have shown (i) for j < k.

while for j < k

To show (i) in the remaining cases, we use that the o; = o} are hermitian matrices, and hence
for j < k we obtain

3 *
ok = (o50)" = <5jkid<c2 i) G ‘”)

=1

3 3
= jkid(c2—i E ijlal: jkid(cz-i‘i E GkﬂO’l.

=1 =1



This proves (i).

(ii) The vector space of 2 x 2 matrices is four-dimensional, dim Matc(2) = 4, and seeing as the 4
vectors {idc2, 01, 02,03} are linearly independent, they form a basis of Matc(2).

(iii) In case hg, ..., hs are real,

H* = (hpide2 +h-0)" = hoidez + h - o
= hoide2 +h-o=H

is hermitian and we can compute both eigenvalues: the characteristic polynomial of H is

X(A) = det(Aides — H) = det (A “ho—hy Ry —iho )

h1 +1iho A —ho+ hs
= (A= ho) — hs) (A= ho) + hs) — (h1 — iha) (b1 +ihs)
= (A—ho)* — (B + h3 + h3) = (A — ho)* — |,

and hence, the eigenvalues are E1 (hg, h) = ho £ |h|.
(iv) The product

1 h-o)?
HP:t:(hoidcz+h'G)Pi:h0Pi+2<h'0:|:( ‘hT) >

involves the square of h - o which can be computed with the help of (i):

3
(h-0)2 = Z hj hy oj o
k=1

3
=> Blidez+ Y hihgieo
j=1

jvkvl:17273
7k

3
= |h|2id(cz + IZ< Z hj hkiejkl> o] = |h|2id(c2
=1 Njk=1.23
J#k

Hence, we can factor out £ and obtain (iv):

1 hl? id
Hpi:hOPiJrQ(h-ai"'l;'“)

1 /. h-o

= (ho = |h|) P+ = B4 Py

(v) The trace is just the sum over the diagonal elements of the matrices, and clearly, the Pauli
matrices are all traceless. Hence, we compute

trH = tr(hoidcz + h - o)
3
= hotridcz + Zhjtri = 2hyg.
j=1



36. Functional calculus for 2 x 2 matrices

Let f be a piecewise continuous function and H = H* a hermitian 2 x 2 matrix. Then define

f(H):=> f(Bs) Py (2)

J==

where F. are the eigenvalues of H and Py the two projections from problem 35.
(i) Compute f(H) defined as in equation (2) for H = h - 0, h # 0, and

1 >0
f(x):{o r<0’

(ii) Show that f(H) for f(z) = e~ (defined via (2)) coincides with the matrix exponential, i. e.

f(H) = e itho <cos(h| t) — |]11| sin(|h[t) h - O'> = e itH — Z (_;;L)n H". (3)

n=0
Hint: Use e it(hothao) — g—itho g—ith-o
(iii) Assuming hg, h1, ha, h3 are real, compute v (t) for the initial condition 1(0) = v € C%
@ £v(t) = (hoos + hyo3)y(t)
(b) i§(t) = hao2t(t)
(c) —igw(t) = (hoidcz + hsos)p(t)

Solution:

(i) f(H) = f(Ih]) P+ + f(—|h]) P— = P4
(ii) For h = 0, H is a scalar multiple of the identity matrix and equation (3) holds. So let us assume
h # 0. Then we first compute the left-hand side:

efitw(H) — efit(ho+‘h|) P+ + efit(h07|h|) P

_ L ithot D) o a—it(ho—IAD)) ; L it(hotInl) _ o—it(ho—[n)) PO
_§<e +e >1d<c2—|—§(e e ) 7

— e itho (cos(!h! t) — ﬁ sin(|h|t) k- a>
To obtain the right-hand side, we note

(h‘(f)gz Z hjhgojop = Z h?a?—l— Z hjhy oo,

J,k=1,2,3 Jj=1,2,3 J:k=1,2,3
Jj#k
2. 2
= E hj ide2 + E E hj hy €51 00 = h*,
j=1,2,3 1=1,2,3 j,k=1,2,3
Jj#k

and thus we identify a patternin (h - o)":

(h-0)*" = |h)*" idc
(h-0)" = (h-0)"h-c=n*" h-o



This means that we can compute the matrix exponential after splitting the sum into even and
odd terms:

o0 .
e—itH _ g—itho g=ith-o _ o—itho Z (=" (h-o)"

= n!

o0 i1\2n o0 i1\2n+1

_ithg N~ )T o im0 (E) 20l
€ ;0 nyr (o) te 7;) @)
_ithg N qyn (R i ithy N (Ia] )2+
e D e = e 2 S0 g T
= e itho ( cos(|h|t id(cz—L sin(|h|t)h-o
||
Thus, left- and right-hand side agree.
(iii) (a)

U(t) = ey = " P (0,0, ho, hs) + 71" P_(0,0, h, h3)

1 3 1 ettlhl — o—tlhl

= i(e“‘h‘ +e t‘hl) Yo + PR (ha 02 + hg 03) o

= COSh(t |h‘) Yo + Sil’lh(t |h|) (hg o9+ hs 0'3)77[}0

(b) () = e " apy = cos(t|hal) 1o — i |Zz sin(t|ha|) o2t

) . : h
(©) ¥(t) = ey = et cos(t|hy|) 1o + ietitho |h73\ sin(t|ha]) o3t
3



37. A simple model for graphene (12 points)
Consider the nearest-neighbor model for graphene

oo < q31dp2(72) Lagz2y + q151 + @2 52)
Le2(z2) + q1 57 + g2 55 —q3idp2(z2) '

Here, ¢1,q2 € R are hopping amplitudes while g3 € R is the so-called stagger parameter. Repeat
the analysis in Chapter 6.1.5.2:

(i) Compute the momentum representation H* := F~! H F. What Hilbert space does this op-
erator act on?

(i) Find a matrix-valued function 7'(k) so that H” = T(k) is the multiplication operator associ-
atedto 7T

(iii) Find the eigenvalues F. (k) and eigenprojections Py (k) of T'(k).
(iv) Compute the unitary evolution group U () for H”.
(v) Compute the unitary evolution group U (t) in position representation.
(vi) Voluntary: Identify the parameter region where the eigenvalues are not separated by a gap,

i.e. inf |E, (k) — E_(k)| =0.
inf [B,(k) — B (k)
Remark: This nearest-neighbor model with stagger was used to investigate the piezoelectric effect
in graphene: Topological Polarization in Graphene-like Systems, G. De Nittis and M. Lein, J. Phys. A 46
no. 38, p. 385001, 2013
Solution:

(i) Usingthat F~1s; F = e+iki [1], we obtain

HF =F 'HF

@ g3 idL2('JI‘2) idL2 (T2) +q1 e""iicl + g2 e+if€2
idpe(re) + qre™ o e —g3idp2 ()

_ qs idLQ(’]I‘Q) w(/%)
w(k) —q3 isz(Tz)

where w(k) = 1+q; et 4 ¢ e T2 is defined just as in the lecture. H” is abounded operator
acting on L?(T?,C?) [1].

(ii) The matrix-valued function can be read off as

T (k) 4 <w%?]’€) w_f;) W Re (w(k)) o1 — Im (w(k)) o2 + g3 03.

(iii) The eigenvalues and eigenprojections have already been calculated in problem 35:

Ei(k) = £1/@3 + |w(k)[?

L
Pi(k’) = 5 <1dL2(T2) +


http://arxiv.org/pdf/1304.7478.pdf
http://arxiv.org/pdf/1304.7478.pdf

(iv) Problem 36 (ii) has introduced an efficient way to compute the unitary time evolution in the
momentum representation [1]:

) . . . E T R
U7 () = e 7 W cos (B (7)t) idpaqpe,co) — i sin(E4 (k)?) (k)
Ey (k)

(v) According to Proposition 6.1.5 (ii), F ( f g) = Ff * Fgholds [1], and hence

Utyy B FUT (1) F Ly

i sin(E.t
E F <C05(E+t) idL2(’]I‘2’(C2) — 1511’1;}.;,_) T> * w
+

(vi) The system has no gap if and only if £, (k)? = ¢3 + |w(k)|* = 0 for some k € T2. This is zero
if and only if g3 = 0 and

wk) =1+ qe ™ e 20

The result is best explained in a graph (Figure 2 (b) in the aforementioned publication):
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