Differential Equations of
 Mathematical Physics
 (APM 351 Y)

The discrete Fourier transform \&
 Applications to 2×2 matrix problems

Homework Problems

34. The Fourier transform of various functions (8 points)

Compute the Fourier coefficients of the following functions on $[-\pi,+\pi]$ and characterize their asymptotic behavior for large $|k|$:
(i) $f(x)=1+x$
(ii) $g(x)=\sin 2 x$
(iii) $h(x)= \begin{cases}+1 & x \in[0,+\pi] \\ 0 & x \in[-\pi, 0)\end{cases}$
(iv) $j(x)= \begin{cases}+1 & x \in[0,+\pi] \\ -1 & x \in[-\pi, 0)\end{cases}$

Solution:

(i) $\operatorname{From}(\mathcal{F} 1)(k)=\delta_{k, 0}$ and

$$
(\mathcal{F} x)(k)=\left\{\begin{array}{ll}
0 & k=0 \\
(-1)^{k} \frac{\mathrm{i}}{k} & k \in \mathbb{Z} \backslash\{0\}
\end{array},\right.
$$

we can immediately give the Fourier series of f as

$$
(\mathcal{F} f)(k) \stackrel{[2]}{=} \begin{cases}1 & k=0 \\ (-1)^{k} \frac{\mathrm{i}}{k} & k \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

The Fourier series decays as $1 /|k|$.
(ii) Writing $\sin 2 x=\frac{1}{\mathrm{i} 2}\left(\mathrm{e}^{+\mathrm{i} 2 x}-\mathrm{e}^{-\mathrm{i} 2 x}\right)$ in terms of exponential functions immediately yields

$$
(\mathcal{F} g)(k) \stackrel{[2]}{=} \begin{cases}-\frac{i}{2} & k=2 \\ +\frac{i}{2} & k=-2 \\ 0 & \text { else }\end{cases}
$$

The Fourier series has only finitely many non-zero terms, i. e. it decays superpolynomially and superexponentially.
(iii) For $k=0$, we obtain

$$
(\mathcal{F} h)(0)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \mathrm{d} x h(x)=\frac{1}{2 \pi} \int_{0}^{+\pi} \mathrm{d} x \stackrel{[1]}{=} \frac{1}{2},
$$

while for $k \neq 0$, we get

$$
\begin{aligned}
(\mathcal{F} h)(k) & =\frac{1}{2 \pi} \int_{0}^{+\pi} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x}=\left[\frac{1}{2 \pi} \frac{1}{-\mathrm{i} k} \mathrm{e}^{-\mathrm{i} k x}\right]_{0}^{+\pi} \\
& \stackrel{[1]}{=} \frac{\mathrm{i}\left((-1)^{k}-1\right)}{2 \pi k} .
\end{aligned}
$$

The Fourier series decays as $1 /|k|$.
(iv) Noticing that $j(x)=2 h(x)-1$, we deduce

$$
(\mathcal{F} j)(k) \stackrel{[2]}{=} \begin{cases}0 & k=0 \\ \frac{\mathrm{i}\left((-1)^{k}-1\right)}{\pi k} & k \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

The Fourier series decays as $1 /|k|$.

35. The Pauli matrices

Consider the three Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathbf{i} \\
+\mathbf{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(i) Prove $\sigma_{j} \sigma_{k}=\delta_{j k} \mathrm{id}_{\mathbb{C}^{2}}+\mathrm{i} \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l}$ where $\epsilon_{j k l}$ is the epsilon tensor.
(ii) Prove that any 2×2 matrix can be written as the linear combination of the identity and the three Pauli matrices with coefficients h_{0} and $h=\left(h_{1}, h_{2}, h_{3}\right)$,

$$
\begin{equation*}
\operatorname{Mat}_{\mathbb{C}}(2) \ni A=\left(a_{j k}\right)_{1 \leq j, k \leq 2}=h_{0} \operatorname{id}_{\mathbb{C}^{2}}+\sum_{j=1}^{3} h_{j} \sigma_{j}=: \operatorname{id}_{\mathbb{C}^{2}}+h \cdot \sigma \tag{1}
\end{equation*}
$$

Hint: Use that Mat $_{\mathbb{C}}(2)$ is finite-dimensional.
(iii) Now assume that the coefficients h_{0}, \ldots, h_{3} in equation (1) are real. Show that then the resulting matrix $H=h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma$ is hermitian. Compute the eigenvalues $E_{ \pm}\left(h_{0}, h\right)$ of H in terms of the coefficients h_{0} and h.
(iv) Use (i) to prove that for real h_{0}, \ldots, h_{3}

$$
P_{ \pm}\left(h_{0}, h\right)=\frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}} \pm \frac{h \cdot \sigma}{|h|}\right), \quad h \neq 0 \in \mathbb{R}^{3},|h|:=\sqrt{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}},
$$

are the projections onto the eigenspaces for the two eigenvalues $E_{ \pm}\left(h_{0}, h\right)$ of H.
(v) Compute the trace of H.

Note: In physics especially, one frequently writes $h \cdot \sigma$ for $\sum_{j=1}^{3} h_{j} \sigma_{j}$ where $h=\left(h_{1}, h_{2}, h_{3}\right)$.

Solution:

(i) This follows from direct computation: for $j=k$ we obtain

$$
\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\mathrm{id}_{\mathbb{C}^{2}}
$$

while for $j<k$

$$
\begin{aligned}
& \sigma_{1} \sigma_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -\mathrm{i} \\
+\mathrm{i} & 0
\end{array}\right)=\left(\begin{array}{cc}
+\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right)=\mathrm{i} \sigma_{3} \\
& \sigma_{1} \sigma_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=-\mathrm{i} \sigma_{2} \\
& \sigma_{2} \sigma_{3}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
+\mathrm{i} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & +\mathrm{i} \\
+\mathrm{i} & 0
\end{array}\right)=\mathrm{i} \sigma_{1}
\end{aligned}
$$

In other words, we have shown (i) for $j<k$.
To show (i) in the remaining cases, we use that the $\sigma_{j}=\sigma_{j}^{*}$ are hermitian matrices, and hence for $j<k$ we obtain

$$
\begin{aligned}
\sigma_{k} \sigma_{j} & =\left(\sigma_{j} \sigma_{k}\right)^{*}=\left(\delta_{j k} \mathrm{id}_{\mathbb{C}^{2}}+\mathrm{i} \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l}\right)^{*} \\
& =\delta_{j k} \mathrm{id}_{\mathbb{C}^{2}}-\mathrm{i} \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l}=\delta_{j k} \mathrm{id}_{\mathbb{C}^{2}}+\mathrm{i} \sum_{l=1}^{3} \epsilon_{k j l} \sigma_{l}
\end{aligned}
$$

This proves (i).
(ii) The vector space of 2×2 matrices is four-dimensional, $\operatorname{dim}_{\operatorname{Mat}}^{\mathbb{C}}(2)=4$, and seeing as the 4 vectors $\left\{\mathrm{id}_{\mathbb{C}^{2}}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are linearly independent, they form a basis of $\operatorname{Mat}_{\mathbb{C}}(2)$.
(iii) In case h_{0}, \ldots, h_{3} are real,

$$
\begin{aligned}
H^{*} & =\left(h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma\right)^{*}=\overline{h_{0}} \mathrm{id}_{\mathbb{C}^{2}}+\bar{h} \cdot \sigma \\
& =h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma=H
\end{aligned}
$$

is hermitian and we can compute both eigenvalues: the characteristic polynomial of H is

$$
\begin{aligned}
\chi(\lambda) & =\operatorname{det}\left(\lambda \mathrm{id}_{\mathbb{C}^{2}}-H\right)=\operatorname{det}\left(\begin{array}{cc}
\lambda-h_{0}-h_{3} & h_{1}-\mathrm{i} h_{2} \\
h_{1}+\mathrm{i} h_{2} & \lambda-h_{0}+h_{3}
\end{array}\right) \\
& =\left(\left(\lambda-h_{0}\right)-h_{3}\right)\left(\left(\lambda-h_{0}\right)+h_{3}\right)-\left(h_{1}-\mathrm{i} h_{2}\right)\left(h_{1}+\mathrm{i} h_{2}\right) \\
& =\left(\lambda-h_{0}\right)^{2}-\left(h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right)=\left(\lambda-h_{0}\right)^{2}-|h|^{2}
\end{aligned}
$$

and hence, the eigenvalues are $E_{ \pm}\left(h_{0}, h\right)=h_{0} \pm|h|$.
(iv) The product

$$
H P_{ \pm}=\left(h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma\right) P_{ \pm}=h_{0} P_{ \pm}+\frac{1}{2}\left(h \cdot \sigma \pm \frac{(h \cdot \sigma)^{2}}{|h|}\right)
$$

involves the square of $h \cdot \sigma$ which can be computed with the help of (i):

$$
\begin{aligned}
(h \cdot \sigma)^{2} & =\sum_{j, k=1}^{3} h_{j} h_{k} \sigma_{j} \sigma_{k} \\
& =\sum_{j=1}^{3} h_{j}^{2} \mathrm{id}_{\mathbb{C}^{2}}+\sum_{\substack{j, k, l=1,2,3 \\
j \neq k}} h_{j} h_{k} \mathbf{i} \epsilon_{j k l} \sigma_{l} \\
& =|h|^{2} \mathrm{id}_{\mathbb{C}^{2}}+\mathrm{i} \sum_{l=1}^{3}\left(\sum_{\substack{j, k=1,2,3 \\
j \neq k}} h_{j} h_{k} \mathbf{i} \epsilon_{j k l}\right) \sigma_{l}=|h|^{2} \mathrm{id}_{\mathbb{C}^{2}}
\end{aligned}
$$

Hence, we can factor out $E_{ \pm}$and obtain (iv):

$$
\begin{aligned}
H P_{ \pm} & =h_{0} P_{ \pm}+\frac{1}{2}\left(h \cdot \sigma \pm \frac{|h|^{2} \mathrm{id}_{\mathbb{C}^{2}}}{|h|}\right) \\
& =h_{0} P_{ \pm} \pm|h| \frac{1}{2}\left(\mathrm{id}_{\mathbb{C}^{2}} \pm \frac{h \cdot \sigma}{|h|}\right) \\
& =\left(h_{0} \pm|h|\right) P_{ \pm}=E_{ \pm} P_{ \pm}
\end{aligned}
$$

(v) The trace is just the sum over the diagonal elements of the matrices, and clearly, the Pauli matrices are all traceless. Hence, we compute

$$
\begin{aligned}
\operatorname{tr} H & =\operatorname{tr}\left(h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma\right) \\
& =h_{0} \operatorname{tr} \mathrm{id}_{\mathbb{C}^{2}}+\sum_{j=1}^{3} h_{j} \operatorname{tr} \sigma_{j}=2 h_{0}
\end{aligned}
$$

36. Functional calculus for 2×2 matrices

Let f be a piecewise continuous function and $H=H^{*}$ a hermitian 2×2 matrix. Then define

$$
\begin{equation*}
f(H):=\sum_{j= \pm} f\left(E_{ \pm}\right) P_{ \pm} \tag{2}
\end{equation*}
$$

where $E_{ \pm}$are the eigenvalues of H and $P_{ \pm}$the two projections from problem 35.
(i) Compute $f(H)$ defined as in equation (2) for $H=h \cdot \sigma, h \neq 0$, and

$$
f(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

(ii) Show that $f(H)$ for $f(x)=\mathrm{e}^{-\mathrm{i} t x}$ (defined via (2)) coincides with the matrix exponential, i. e.

$$
\begin{equation*}
f(H)=\mathrm{e}^{-\mathrm{i} t h_{0}}\left(\cos (|h| t)-\frac{\mathrm{i}}{|h|} \sin (|h| t) h \cdot \sigma\right)=\mathrm{e}^{-\mathrm{i} t H}=\sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{n}}{n!} H^{n} \tag{3}
\end{equation*}
$$

Hint: Use $\mathrm{e}^{-\mathrm{i} t\left(h_{0}+h \cdot \sigma\right)}=\mathrm{e}^{-\mathrm{i} t h_{0}} \mathrm{e}^{-\mathrm{i} t h \cdot \sigma}$.
(iii) Assuming $h_{0}, h_{1}, h_{2}, h_{3}$ are real, compute $\psi(t)$ for the initial condition $\psi(0)=\psi_{0} \in \mathbb{C}^{2}$:
(a) $\frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\left(h_{2} \sigma_{2}+h_{3} \sigma_{3}\right) \psi(t)$
(b) $\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=h_{2} \sigma_{2} \psi(t)$
(c) $-\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\left(h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h_{3} \sigma_{3}\right) \psi(t)$

Solution:

(i) $f(H)=f(|h|) P_{+}+f(-|h|) P_{-}=P_{+}$
(ii) For $h=0, H$ is a scalar multiple of the identity matrix and equation (3) holds. So let us assume $h \neq 0$. Then we first compute the left-hand side:

$$
\begin{aligned}
\mathrm{e}^{-\mathrm{i} t x}(H) & =\mathrm{e}^{-\mathrm{i} t\left(h_{0}+|h|\right)} P_{+}+\mathrm{e}^{-\mathrm{i} t\left(h_{0}-|h|\right)} P_{-} \\
& =\frac{1}{2}\left(\mathrm{e}^{-\mathrm{i} t\left(h_{0}+|h|\right)}+\mathrm{e}^{-\mathrm{i} t\left(h_{0}-|h|\right)}\right) \mathrm{id}_{\mathbb{C}^{2}}+\frac{1}{2}\left(\mathrm{e}^{-\mathrm{i} t\left(h_{0}+|h|\right)}-\mathrm{e}^{-\mathrm{i} t\left(h_{0}-|h|\right)}\right) \frac{h \cdot \sigma}{|h|} \\
& =\mathrm{e}^{-\mathrm{i} t h_{0}}\left(\cos (|h| t)-\frac{\mathrm{i}}{|h|} \sin (|h| t) h \cdot \sigma\right)
\end{aligned}
$$

To obtain the right-hand side, we note

$$
\begin{aligned}
(h \cdot \sigma)^{2} & =\sum_{j, k=1,2,3} h_{j} h_{k} \sigma_{j} \sigma_{k}=\sum_{j=1,2,3} h_{j}^{2} \sigma_{j}^{2}+\sum_{\substack{j, k=1,2,3 \\
j \neq k}} h_{j} h_{k} \sigma_{j} \sigma_{k} \\
& =\sum_{j=1,2,3} h_{j}^{2} \mathrm{id}_{\mathbb{C}^{2}}+\sum_{l=1,2,3} \sum_{\substack{j, k=1,2,3 \\
j \neq k}} h_{j} h_{k} \epsilon_{j k l} \sigma_{l}=h^{2}
\end{aligned}
$$

and thus we identify a pattern in $(h \cdot \sigma)^{n}$:

$$
\begin{aligned}
(h \cdot \sigma)^{2 n} & =|h|^{2 n} \operatorname{id}_{\mathbb{C}^{2}} \\
(h \cdot \sigma)^{2 n+1} & =(h \cdot \sigma)^{2 n} h \cdot \sigma=|h|^{2 n} h \cdot \sigma
\end{aligned}
$$

This means that we can compute the matrix exponential after splitting the sum into even and odd terms:

$$
\begin{aligned}
\mathrm{e}^{-\mathrm{i} t H} & =\mathrm{e}^{-\mathrm{i} t h_{0}} \mathrm{e}^{-\mathrm{i} t h \cdot \sigma}=\mathrm{e}^{-\mathrm{i} t h_{0}} \sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{n}}{n!}(h \cdot \sigma)^{n} \\
& =\mathrm{e}^{-\mathrm{i} t h_{0}} \sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{2 n}}{(2 n)!}(h \cdot \sigma)^{2 n}+\mathrm{e}^{-\mathrm{i} t h_{0}} \sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{2 n+1}}{(2 n+1)!}(h \cdot \sigma)^{2 n+1} \\
& =\mathrm{e}^{-\mathrm{i} t h_{0}} \sum_{n=0}^{\infty}(-1)^{n} \frac{(|h| t)^{2 n}}{(2 n)!} \mathrm{id}_{\mathbb{C}^{2}}-\frac{\mathrm{i}}{|h|} \mathrm{e}^{-\mathrm{i} t h_{0}} \sum_{n=0}^{\infty}(-1)^{n} \frac{(|h| t)^{2 n+1}}{(2 n+1)!} h \cdot \sigma \\
& =\mathrm{e}^{-\mathrm{i} t h_{0}}\left(\cos (|h| t) \mathrm{id}_{\mathbb{C}^{2}}-\frac{\mathrm{i}}{|h|} \sin (|h| t) h \cdot \sigma\right)
\end{aligned}
$$

Thus, left- and right-hand side agree.
(iii) (a)

$$
\begin{aligned}
\psi(t) & =\mathrm{e}^{t H} \psi_{0}=\mathrm{e}^{t|h|} P_{+}\left(0,0, h_{2}, h_{3}\right)+\mathrm{e}^{-t|h|} P_{-}\left(0,0, h_{2}, h_{3}\right) \\
& =\frac{1}{2}\left(\mathrm{e}^{+t|h|}+\mathrm{e}^{-t|h|}\right) \psi_{0}+\frac{1}{2} \frac{\mathrm{e}^{+t|h|}-\mathrm{e}^{-t|h|}}{|h|}\left(h_{2} \sigma_{2}+h_{3} \sigma_{3}\right) \psi_{0} \\
& =\cosh (t|h|) \psi_{0}+\sinh (t|h|)\left(h_{2} \sigma_{2}+h_{3} \sigma_{3}\right) \psi_{0}
\end{aligned}
$$

(b) $\psi(t)=\mathrm{e}^{-\mathrm{i} t H} \psi_{0}=\cos \left(t\left|h_{2}\right|\right) \psi_{0}-\mathrm{i} \frac{h_{2}}{\left|h_{2}\right|} \sin \left(t\left|h_{2}\right|\right) \sigma_{2} \psi_{0}$
(c) $\psi(t)=\mathrm{e}^{+\mathrm{i} t H} \psi_{0}=\mathrm{e}^{+\mathrm{i} t h_{0}} \cos \left(t\left|h_{2}\right|\right) \psi_{0}+\mathrm{i} \mathrm{e}^{\mathrm{+} \mathrm{i} t h_{0}} \frac{h_{3}}{\left|h_{3}\right|} \sin \left(t\left|h_{3}\right|\right) \sigma_{3} \psi_{0}$

37. A simple model for graphene (12 points)

Consider the nearest-neighbor model for graphene

$$
H=\left(\begin{array}{cc}
q_{3} \mathrm{id}_{\ell^{2}\left(\mathbb{Z}^{2}\right)} & 1_{\ell^{2}\left(\mathbb{Z}^{2}\right)}+q_{1} \mathfrak{s}_{1}+q_{2} \mathfrak{s}_{2} \\
1_{\ell^{2}\left(\mathbb{Z}^{2}\right)}+q_{1} \mathfrak{s}_{1}^{*}+q_{2} \mathfrak{s}_{2}^{*} & -q_{3} \mathrm{id}_{\ell^{2}\left(\mathbb{Z}^{2}\right)}
\end{array}\right) .
$$

Here, $q_{1}, q_{2} \in \mathbb{R}$ are hopping amplitudes while $q_{3} \in \mathbb{R}$ is the so-called stagger parameter. Repeat the analysis in Chapter 6.1.5.2:
(i) Compute the momentum representation $H^{\mathcal{F}}:=\mathcal{F}^{-1} H \mathcal{F}$. What Hilbert space does this operator act on?
(ii) Find a matrix-valued function $T(k)$ so that $H^{\mathcal{F}}=T(\hat{k})$ is the multiplication operator associated to T.
(iii) Find the eigenvalues $E_{ \pm}(k)$ and eigenprojections $P_{ \pm}(k)$ of $T(k)$.
(iv) Compute the unitary evolution group $U^{\mathcal{F}}(t)$ for $H^{\mathcal{F}}$.
(v) Compute the unitary evolution group $U(t)$ in position representation.
(vi) Voluntary: Identify the parameter region where the eigenvalues are not separated by a gap, i. e. $\inf _{k \in \mathbb{T}^{n}}\left|E_{+}(k)-E_{-}(k)\right|=0$.

Remark: This nearest-neighbor model with stagger was used to investigate the piezoelectric effect in graphene: Topological Polarization in Graphene-like Systems, G. De Nittis and M. Lein, J. Phys. A 46 no. 38, p. 385001, 2013

Solution:

(i) Using that $\mathcal{F}^{-1} \mathfrak{s}_{j} \mathcal{F}=\mathrm{e}^{+\mathrm{i} \hat{k}_{j}}$ [1], we obtain

$$
\begin{aligned}
H^{\mathcal{F}} & =\mathcal{F}^{-1} H \mathcal{F} \\
& \stackrel{[2]}{=}\left(\begin{array}{cc}
q_{3} \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}\right)} & \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}\right)}+q_{1} \mathrm{e}^{+\mathrm{i} \hat{k}_{1}}+q_{2} \mathrm{e}^{+\mathrm{i} \hat{k}_{2}} \\
\mathrm{id}_{L^{2}\left(\mathbb{T}^{2}\right)}+q_{1} \mathrm{e}^{-\mathrm{i} \hat{k}_{1}}+q_{2} \mathrm{e}^{-\mathrm{i} \hat{k}_{2}} & -q_{3} \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}\right)}
\end{array}\right) \\
& =\left(\begin{array}{cc}
q_{3} \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}\right)} & \omega(\hat{k}) \\
\omega(\hat{k}) & -q_{3} \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}\right)}
\end{array}\right)
\end{aligned}
$$

where $\omega(k)=1+q_{1} \mathrm{e}^{+\mathrm{i} k_{1}}+q_{2} \mathrm{e}^{+\mathrm{i} k_{2}}$ is defined just as in the lecture. $H^{\mathcal{F}}$ is a bounded operator acting on $L^{2}\left(\mathbb{T}^{2}, \mathbb{C}^{2}\right)[1]$.
(ii) The matrix-valued function can be read off as

$$
T(k) \stackrel{[1]}{=}\left(\begin{array}{cc}
q_{3} & \omega(k) \\
\omega(k) & -q_{3}
\end{array}\right) \stackrel{[1]}{=} \operatorname{Re}(\omega(k)) \sigma_{1}-\operatorname{Im}(\omega(k)) \sigma_{2}+q_{3} \sigma_{3} .
$$

(iii) The eigenvalues and eigenprojections have already been calculated in problem 35:

$$
\begin{aligned}
& E_{ \pm}(k) \stackrel{[1]}{=} \pm \sqrt{q_{3}^{2}+|\omega(k)|^{2}} \\
& P_{ \pm}(k) \stackrel{[1]}{=} \frac{1}{2}\left(\operatorname{id}_{L^{2}\left(\mathbb{T}^{2}\right)} \pm \frac{\operatorname{Re}(\omega(k)) \sigma_{1}-\operatorname{Im}(\omega(k)) \sigma_{2}+q_{3} \sigma_{3}}{E_{+}(k)}\right)
\end{aligned}
$$

(iv) Problem 36 (ii) has introduced an efficient way to compute the unitary time evolution in the momentum representation [1]:

$$
U^{\mathcal{F}}(t)=\mathrm{e}^{-\mathrm{i} t H^{\mathcal{F}}} \stackrel{[1]}{=} \cos \left(E_{+}(\hat{k}) t\right) \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}, \mathbb{C}^{2}\right)}-\frac{\mathrm{i} \sin \left(E_{+}(\hat{k}) t\right)}{E_{+}(\hat{k})} T(\hat{k})
$$

(v) According to Proposition 6.1.5 (ii), $\mathcal{F}(f g)=\mathcal{F} f * \mathcal{F} g$ holds [1], and hence

$$
\begin{aligned}
U(t) \psi & \stackrel{[1]}{=} \mathcal{F} U^{\mathcal{F}}(t) \mathcal{F}^{-1} \psi \\
& \stackrel{[1]}{=} \mathcal{F}\left(\cos \left(E_{+} t\right) \mathrm{id}_{L^{2}\left(\mathbb{T}^{2}, \mathbb{C}^{2}\right)}-\frac{\mathrm{i} \sin \left(E_{+} t\right)}{E_{+}} T\right) * \psi
\end{aligned}
$$

(vi) The system has no gap if and only if $E_{+}(k)^{2}=q_{3}^{2}+|\omega(k)|^{2}=0$ for some $k \in \mathbb{T}^{2}$. This is zero if and only if $q_{3}=0$ and

$$
\omega(k)=1+q_{1} \mathrm{e}^{-\mathrm{i} k_{1}}+q_{2} \mathrm{e}^{-\mathrm{i} k_{2}} \stackrel{!}{=} 0
$$

The result is best explained in a graph (Figure $2(\mathrm{~b})$ in the aforementioned publication):

