

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 10 (2014.11.14)

Functional Calculus

Homework Problems

30. Functional calculus for matrices revisited

Let $H = h_0 \operatorname{id}_{\mathbb{C}^2} + \sum_{j=1}^3 h_j \, \sigma_j$ be a hermitian 2×2 matrix written in terms of the Pauli matrices σ_1 , σ_2 and σ_3 .

- (i) Compute the projection-valued measure associated to H.
- (ii) Show that the functional calculus introduced on Sheet 01 coincides with the functional calculus from Chapter 6 of the lecture notes.
- (iii) Prove that the following inequality is false:

$$\left|\left(\sigma_3+\mathrm{id}_{\mathbb{C}^2}\right)+\left(\sigma_1-\mathrm{id}_{\mathbb{C}^2}\right)\right|\leq \left|\sigma_3+\mathrm{id}_{\mathbb{C}^2}\right|+\left|\sigma_1-\mathrm{id}_{\mathbb{C}^2}\right|$$

(iv) Show that the analogous inequality for the traces does hold true:

$$\mathsf{Tr}\left|\left(\sigma_3 + \mathsf{id}_{\mathbb{C}^2}\right) + \left(\sigma_1 - \mathsf{id}_{\mathbb{C}^2}\right)\right| \leq \mathsf{Tr}\left|\sigma_3 + \mathsf{id}_{\mathbb{C}^2}\right| + \mathsf{Tr}\left|\sigma_1 - \mathsf{id}_{\mathbb{C}^2}\right|$$

31. Projections and functional calculus

Let P be a selfadjoint operator on a Hilbert space \mathcal{H} . Show that P is an orthogonal projection if and only if $\sigma(P) \subseteq \{0,1\}$.

32. The semirelativistic kinetic energy

Consider a semirelativistic quantum particle subjected to a magnetic field $B = \nabla_x \times A$. (Semirelativistic here means that you are in an energy regime where one cannot yet create particle-antiparticle pairs but the energies are high enough so that one needs to take the relativistic kinetic energy.) Assuming the vector potential $A \in \mathcal{C}^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$ is smooth, the hamiltonian

$$H^A = \sqrt{m^2 + \left(-\mathrm{i}\nabla_x - A(\hat{x})\right)^2}.$$

The purpose of this problem is to rigorously define H^A . You may use without proof that kinetic momentum $P_j^A := -\mathrm{i}\partial_{x_j} - A_j(\hat{x})$ and $(P^A)^2$ (endowed with the correct domains) define selfadjoint operators.

(i) Let $\phi \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ be a phase function and $e^{+i\phi}$ the associated unitary. Show that kinetic momentum is gauge-covariant,

$$P^{A+\nabla_x\phi} = \mathbf{e}^{+\mathrm{i}\phi} P^A \mathbf{e}^{-\mathrm{i}\phi}$$

- (ii) Find a less laborious way to prove $(P^{A+\nabla_x\phi})^2=\mathrm{e}^{+\mathrm{i}\phi}\,(P^A)^2\,\mathrm{e}^{-\mathrm{i}\phi}$. Work smart, not hard.
- (iii) Define the semirelativistic kinetic energy $\sqrt{m^2+(P^A)^2}$.
- (iv) Prove $\sqrt{m^2 + (P^A)^2} \ge |P^A|$.
- (v) Show $\sqrt{m^2 + (P^{A+\nabla_x \phi})^2} = \mathrm{e}^{+\mathrm{i}\phi} \, \sqrt{m^2 + (P^A)^2} \, \mathrm{e}^{-\mathrm{i}\phi}$.

33. Resolution of the identity

Suppose H be a selfadjoint operator on a Hilbert space $\mathcal H$ whose spectrum is purely discrete, i. e. $\sigma(H)=\sigma_{\mathrm{disc}}(H)=\{E_n\}_{n\in\mathbb N}$. Here, the eigenvalues E_n are repeated according to their multiplicity.

- (i) Express the projection-valued measure in terms of the eigenfunctions of φ_n .
- (ii) Write out $H=\int_{\mathbb{R}}\mathrm{d}P(\lambda)\,\lambda$ explicitly.
- (iii) Prove that there exists a resolution of the identity with respect to the eigenfunctions φ_n ,

$$\mathrm{id}_{\mathcal{H}} = \sum_{n \in \mathbb{N}} |\varphi_n\rangle\langle \varphi_n|.$$

Put another way, show that $\mathrm{span}\{\varphi_n\}_{n\in\mathbb{N}}=\mathcal{H}.$

(iv) Show that H is necessarily unbounded.

Hint: Review the definitions of discrete and essential spectrum.