The discrete Fourier transform \& Applications to 2×2 matrix problems

Homework Problems

34. The Fourier transform of various functions

Compute the Fourier coefficients of the following functions on $[-\pi,+\pi]$ and characterize their asymptotic behavior for large $|k|$:
(i) $f(x)=1+x$
(ii) $g(x)=\sin 2 x$
(iii) $h(x)= \begin{cases}+1 & x \in[0,+\pi] \\ 0 & x \in[-\pi, 0)\end{cases}$
(iv) $j(x)= \begin{cases}+1 & x \in[0,+\pi] \\ -1 & x \in[-\pi, 0)\end{cases}$
35. The Pauli matrices

Consider the three Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathbf{i} \\
+\mathbf{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(i) Prove $\sigma_{j} \sigma_{k}=\delta_{j k} \mathrm{id}_{\mathbb{C}^{2}}+\mathrm{i} \sum_{l=1}^{3} \epsilon_{j k l} \sigma_{l}$ where $\epsilon_{j k l}$ is the epsilon tensor.
(ii) Prove that any 2×2 matrix can be written as the linear combination of the identity and the three Pauli matrices with coefficients h_{0} and $h=\left(h_{1}, h_{2}, h_{3}\right)$,

$$
\begin{equation*}
\operatorname{Mat}_{\mathbb{C}}(2) \ni A=\left(a_{j k}\right)_{1 \leq j, k \leq 2}=h_{0} \operatorname{id}_{\mathbb{C}^{2}}+\sum_{j=1}^{3} h_{j} \sigma_{j}=: \operatorname{id}_{\mathbb{C}^{2}}+h \cdot \sigma . \tag{1}
\end{equation*}
$$

Hint: Use that Mat $_{\mathbb{C}}(2)$ is finite-dimensional.
(iii) Now assume that the coefficients h_{0}, \ldots, h_{3} in equation (1) are real. Show that then the resulting matrix $H=h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h \cdot \sigma$ is hermitian. Compute the eigenvalues $E_{ \pm}\left(h_{0}, h\right)$ of H in terms of the coefficients h_{0} and h.
(iv) Use (i) to prove that for real h_{0}, \ldots, h_{3}

$$
P_{ \pm}\left(h_{0}, h\right)=\frac{1}{2}\left(\operatorname{id}_{\mathbb{C}^{2}} \pm \frac{h \cdot \sigma}{|h|}\right), \quad h \neq 0 \in \mathbb{R}^{3},|h|:=\sqrt{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}},
$$

are the projections onto the eigenspaces for the two eigenvalues $E_{ \pm}\left(h_{0}, h\right)$ of H.
(v) Compute the trace of H.

Note: In physics especially, one frequently writes $h \cdot \sigma$ for $\sum_{j=1}^{3} h_{j} \sigma_{j}$ where $h=\left(h_{1}, h_{2}, h_{3}\right)$.
36. Functional calculus for 2×2 matrices

Let f be a piecewise continuous function and $H=H^{*}$ a hermitian 2×2 matrix. Then define

$$
\begin{equation*}
f(H):=\sum_{j= \pm} f\left(E_{ \pm}\right) P_{ \pm} \tag{2}
\end{equation*}
$$

where $E_{ \pm}$are the eigenvalues of H and $P_{ \pm}$the two projections from problem 35.
(i) Compute $f(H)$ defined as in equation (2) for $H=h \cdot \sigma, h \neq 0$, and

$$
f(x)=\left\{\begin{array}{ll}
1 & x \geq 0 \\
0 & x<0
\end{array} .\right.
$$

(ii) Show that $f(H)$ for $f(x)=\mathrm{e}^{-\mathrm{i} t x}$ (defined via (2)) coincides with the matrix exponential, i. e.

$$
\begin{equation*}
f(H)=\mathrm{e}^{-\mathrm{i} \mathrm{t} h_{0}}\left(\cos (|h| t)-\frac{\mathrm{i}}{|h|} \sin (|h| t) h \cdot \sigma\right)=\mathrm{e}^{-\mathrm{i} t H}=\sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{n}}{n!} H^{n} . \tag{3}
\end{equation*}
$$

Hint: Use $\mathrm{e}^{-\mathrm{i} t\left(h_{0}+h \cdot \sigma\right)}=\mathrm{e}^{-\mathrm{i} t h_{0}} \mathrm{e}^{-\mathrm{i} t h \cdot \sigma}$.
(iii) Assuming $h_{0}, h_{1}, h_{2}, h_{3}$ are real, compute $\psi(t)$ for the initial condition $\psi(0)=\psi_{0} \in \mathbb{C}^{2}$:
(a) $\frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\left(h_{2} \sigma_{2}+h_{3} \sigma_{3}\right) \psi(t)$
(b) $\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=h_{2} \sigma_{2} \psi(t)$
(c) $-\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t} \psi(t)=\left(h_{0} \mathrm{id}_{\mathbb{C}^{2}}+h_{3} \sigma_{3}\right) \psi(t)$

37. A simple model for graphene

Consider the nearest-neighbor model for graphene

$$
H=\left(\begin{array}{cc}
q_{3} \mathrm{id}_{\ell^{2}\left(\mathbb{Z}^{2}\right)} & 1_{\ell^{2}\left(\mathbb{Z}^{2}\right)}+q_{1} \mathfrak{s}_{1}+q_{2} \mathfrak{s}_{2} \\
1_{\ell^{2}\left(\mathbb{Z}^{2}\right)}+q_{1} \mathfrak{s}_{1}^{*}+q_{2} \mathfrak{s}_{2}^{*} & -q_{3} \mathrm{id}_{\ell^{2}\left(\mathbb{Z}^{2}\right)}
\end{array}\right)
$$

Here, $q_{1}, q_{2} \in \mathbb{R}$ are hopping amplitudes while $q_{3} \in \mathbb{R}$ is the so-called stagger parameter. Repeat the analysis in Chapter 6.1.5.2:
(i) Compute the momentum representation $H^{\mathcal{F}}:=\mathcal{F}^{-1} H \mathcal{F}$. What Hilbert space does this operator act on?
(ii) Find a matrix-valued function $T(k)$ so that $H^{\mathcal{F}}=T(\hat{k})$ is the multiplication operator associated to T.
(iii) Find the eigenvalues $E_{ \pm}(k)$ and eigenprojections $P_{ \pm}(k)$ of $T(k)$.
(iv) Compute the unitary evolution group $U^{\mathcal{F}}(t)$ for $H^{\mathcal{F}}$.
(v) Compute the unitary evolution group $U(t)$ in position representation.
(vi) Voluntary: Identify the parameter region where the eigenvalues are not separated by a gap, i. e. $\inf _{k \in \mathbb{T}^{n}}\left|E_{+}(k)-E_{-}(k)\right|=0$.

Remark: This nearest-neighbor model with stagger was used to investigate the piezoelectric effect in graphene: Topological Polarization in Graphene-like Systems, G. De Nittis and M. Lein, J. Phys. A 46 no. 38, p. 385001, 2013

Hand in home work on: Thursday, 28 November 2013, before class

