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The discrete Fourier transform &
Applications to 2 x 2 matrix problems

Homework Problems

34. The Fourier transform of various functions

Compute the Fourier coefficients of the following functions on [—7, +x] and characterize their
asymptotic behavior for large |k|:

@ flz)=1+=z
(if) g(x) = sin2x
(i) h(z) = {0 z € [-m,0)

o 9= TEE

35. The Pauli matrices

Consider the three Pauli matrices

(01 (0 i /10
91=11 o) 2=\4 o) 93=\o -1/

3
(i) Prove ooy = 0j idc2 +1i Z ¢k 07 where €1 is the epsilon tensor.
=1
(ii) Prove that any 2 x 2 matrix can be written as the linear combination of the identity and the
three Pauli matrices with coefficients hg and h = (hy, he, h3),

3
Matc(2) 3 A = (ajk)1<jh<2 = hoidce + Y hjoj =tidee + h - 0. 1)
j=1
Hint: Use that Matc(2) is finite-dimensional.

(iii) Now assume that the coefficients hq, ..., hs in equation (1) are real. Show that then the re-
sulting matrix H = hgidc2 + h - o is hermitian. Compute the eigenvalues E 1 (hg, h) of H in
terms of the coefficients hg and h.

(iv) Use (i) to prove that for real hy, ..., h3

1 h -
Pi(ho,h):5 (idCQiWU), h#0€R3 |h:=/h} +h3+ h3,

are the projections onto the eigenspaces for the two eigenvalues E (hg, h) of H.



(v) Compute the trace of H.

3
Note: In physics especially, one frequently writes 4 - o for Z h; o where h = (hi, ha, h3).
j=1
36. Functional calculus for 2 x 2 matrices
Let f be a piecewise continuous function and H = H* a hermitian 2 x 2 matrix. Then define
f(H) =) f(Es)Pye (2)
j=+
where F. are the eigenvalues of H and Py the two projections from problem 35.
(i) Compute f(H) defined as in equation (2) for H = h - o, h # 0, and
1 >0
-]

0 <0

(ii) Show that f(H) for f(x) = e~ (defined via (2)) coincides with the matrix exponential, i. e.

f(H) = e~itho (cos(h\ t) — 1 sin(|h|t) - 0) = e itH — i (i H". (3)

|h ~= nl

Hint: Use e it(hothao) — g=itho g—ith-o
(iii) Assuming ho, h1, h2, h3 are real, compute 1(t) for the initial condition 1)(0) = 1y € C%

(@ £v(t) = (haoo + hyos)(t)

() it (t) = haow(t)

(©) —i$vy(t) = (hoidcz + hs o3) Y (t)

37. A simple model for graphene
Consider the nearest-neighbor model for graphene
- < g3 idp2(z2) lez(z2) + qu 51 + QQ52> '
Lep(z2) +qus1 +q253 —q3idg2(z2)

Here, ¢1, g2 € R are hopping amplitudes while g3 € R is the so-called stagger parameter. Repeat
the analysis in Chapter 6.1.5.2:

(i) Compute the momentum representation H* := F~! H F. What Hilbert space does this op-
erator act on?

(ii) Find a matrix-valued function T'(k) so that H¥ = T'(k) is the multiplication operator associ-
atedto 7.

(iii) Find the eigenvalues F1 (k) and eigenprojections Py (k) of T'(k).
(iv) Compute the unitary evolution group U () for H”.
(v) Compute the unitary evolution group U (¢) in position representation.
(vi) Voluntary: Identify the parameter region where the eigenvalues are not separated by a gap,
i.e. kiGr%rfn\E+(k) — E_(k)| =0.

Remark: This nearest-neighbor model with stagger was used to investigate the piezoelectric effect
in graphene: Topological Polarization in Graphene-like Systems, G. De Nittis and M. Lein, J. Phys. A 46
no. 38, p. 385001, 2013

Hand in home work on: Thursday, 28 November 2013, before class
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