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34. The Weyl criterion (19 points)
Prove the Weyl criterion:

Theorem 1 LetH be a selfadjoint operator on a Hilbert spaceH with domainD(H).
(i) λ ∈ σ(H) holds if and only if there exists a sequence {ψn}n∈N so that ∥ψn∥ = 1 and

lim
n→∞

∥∥Hψn − λψn
∥∥
H = 0.

(ii) We have λ ∈ σess(H) if and only if we can choose the sequence {ψn}n∈N to be orthonormal.

Solution:

(i) The weak Weyl criterion takes care of one direction, i. e. if there exists a Weyl sequence
{ψn}n∈N to λ ∈ R, then necessarily λ ∈ σ(H) [1].
For the converse direction, pick a λ ∈ σ(H). We will now construct a Weyl sequence: since
λ ∈ σ(H)we know fromProposition 6.2.1 that the projection-valuedmeasuresP

(
(λ−1/n, λ+

1/n)
)
̸= 0, n ∈ N, do not vanish [1]. Consequently, we can choose a normalized vector ψn ∈

ranP
(
(λ− 1/n, λ+ 1/n)

)
for each n ∈ N [1]. And thus, we can estimate the norm by

∥∥Hψn − λψn
∥∥2 [1]

=
∥∥(H − λ) 1(λ−1/n,λ+1/n)(H)ψn

∥∥2
[1]
=

∫ λ+1/n

λ−1/n

⟨
ψn, dP (λ′)ψn

⟩
(λ′ − λ)2

[1]

≤ 1

n2
n→∞−−−→ 0,

which means {ψn}n∈N is a Weyl sequence [1].
(ii) “⇒:” If we assume in addition that λ ∈ σess(H), then Hn := ranP

(
(λ − 1/n, λ + 1/n)

)
is

infinite-dimensional for all n ∈ N [1], and these spaces are nested, Hn ⊇ Hn+1 [1], meaning
we can choose

ψn+1

[1]
∈ Hn+1 ∩

(
span{ψj}nj=1

)⊥
because the intersection on the right-hand side is non-trivial [1]. Hence, the Weyl sequence
constructed in this fashion is orthonormal [1].
“⇐:” Suppose the Weyl sequence {ψn}n∈N to λ ∈ R is composed of orthonormal vectors. We
already know from part (i) that λ ∈ σ(H) [1], and all that remains to be shown is σess(H).
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Without loss of generality, we may assume that ψn ∈ ran 1(λ−1/n,λ+1/n)(H) (otherwise select
a subsequence which satisfies the above condition) [1].
Assume λ ∈ σdisc(H) [1]. Then λ is an eigenvalue of finite multiplicity; Moreover, λ cannot
be the accumulation point of eigenvalues [1]. That means for n ≥ N large enough the inter-
section σ(H)∩ (λ− 1/n, λ+ 1/n) = {λ} consists only of the eigenvalue itself [1]. But then for
all n ≥ N the subspace ran 1(λ−1/n,λ+1/n)(H) is finite-dimensional [1], meaning that the Weyl
sequence {φn}n∈N cannot be chosen to consist of orthonormal vectors [1].
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35. Functional calculus for the momentum operator (25 points)
Consider the momentum operator P = −i∂x on L2(R) with domainD(P ) = H1(R).
(i) Show P = P ∗ and give σ(P ).
(ii) Compute the projection-valued measure 1Λ(P ) where Λ ⊆ R is a Borel set.
(iii) Explain how to define U(t) := e−itP and prove that U(t)U(s) = U(t+ s).
(iv) Define the selfadjoint operatorH = P 2 via the functional calculus associated to P and prove

that it coincides withH ′ = −∂2x endowed with domainD(H ′) = H2(R).

Solution:

(i) We use the Fundamental Criterion of Selfadjointness [1]: we first shown essential selfadjoint-
ness of P and then, in a second step, show that the domain of selfadjointness coincides with
H1(R). To compute the deficiency indicesN± := dimker

(
P ∗ ± i

)
[1], we solve the equation

−i∂xφ± = ∓iφ± ⇐⇒ ∂xφ± = ±φ± [1]

for both signs. Obviously, the solutions are φ±(x) = ce±x [1]. However, for neither choice of
sign is φ± ̸∈ L2(R) square-integrable [1]. Consequently, N± = 0 and P is essentially selfad-
joint [1]. On the other hand, the domain of P ,

D(P ) = H1(R) [1]
=

{
φ ∈ L2(Rd)

∣∣ F−1
√

1 + ξ2Fφ ∈ L2(Rd)
}

[1]
=

{
φ ∈ L2(Rd)

∣∣ ∫
R
dξ

(
1 + ξ2

)
Fφ(ξ) <∞

}
[1]
=

{
φ ∈ L2(Rd)

∣∣ ∫
R
dξ ξ2Fφ(ξ) <∞

}
,

coincides with the maximal domain,

D(Pmax) =
{
φ ∈ L2(R) | ∂xφ ∈ L2(R)

} [1]
= D(P ).

And hence, P = P ∗ is selfadjoint.
(ii) Given that F P F−1 = ξ̂ [1] is equivalent to a multiplication operator, we can write the

projection-valued measure as

1Λ(P )
[2]
= F−1 1Λ(ξ̂)F .

(iii) As λ 7→ e−itλ is a bounded Borel function [1],

U(t) = e−itP [1]
=

∫
R
1dλ(P ) e−itλ,

is defined via functional calculus. ThenU(t)U(s) = U(t+ s) is an immediate consequence of
f(H) g(H) = (f g)(H) [1] and e−itλ e−isλ = e−i(t+s)λ on the level of functions [1].

(iv) The operator

H
[1]
:=

∫
R
1dλ(P )λ

2

defined via functional calculus is endowed with the domain

D(H)
[1]
:=

{
ψ ∈ L2(R)

∣∣ ∫
R

⟨
ψ, 1dλ(P )ψ

⟩
λ4 <∞

}
.
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Since it is clear that H acts on φ ∈ D(H) as φ 7→ −∂2xφ [1], it remains to show D(H) =
D(H ′) = H2(R). As we can express the projection-valued measure as a multiplication oper-
ator after Fourier transform, we can rewrite the imposed condition fromD(H) as∫

R

⟨
ψ, 1dλ(P )ψ

⟩
λ4

[1]
=

∫
R

⟨
Fψ, 1dλ(ξ̂)Fψ

⟩
λ4

[1]
=

∫
R
dλ

∣∣λ2Fψ(λ)∣∣2
[1]
=

∥∥ξ̂2Fψ∥∥2 <∞.

That, however, is equivalent to saying φ ∈ H2(R) [1], and we have shown D(H) = H2(R) =
D(H ′) [1].
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36. Functional calculus for the position operator (31 points)
SupposeH = −∂2x + V = H∗ is a selfadjoint operator on L2(R) with domain D(H), and consider
the position operatorQ = x̂ equipped with domain

D(Q) =
{
φ ∈ L2(R) | x̂φ ∈ L2(R)

}
.

You may use without proof thatQ is selfadjoint.
(i) Show thatQ(t) := e+itH Q e−itH satisfies the Heisenberg equation of motion

d
dtQ(t) = i

[
H,Q(t)

]
.

A formal computation suffices (i. e. you may ignore questions of domains).
(ii) Prove that alsoQ(t) = Q(t)∗ is selfadjoint.
(iii) Let

(
V (x̂)ψ

)
(x) := V (x)ψ(x) be the multiplication operator associated to a bounded Borel

function V : R −→ C. Prove that V (x̂) coincides with V (Q) (defined through functional
calculus associated toQ).

(iv) Prove
(
V (Q)

)
(t) := e+itH V (Q) e−itH coincides with V

(
Q(t)

)
.

Solution:

(i) Using that H and e±itH commute (Theorem 4.3.5) [1], we compute the time-derivative and
collect the terms accordingly:

d
dtQ(t)

[1]
=

( d
dte

+itH)Q e−itH + e+itH Q
( d
dte

−itH)
[1]
= +iH e+itH Q e−itH + e+itH Q

(
−iHe−itH)

[1]
= i

[
H,Q(t)

]
(ii) (AB)∗

[1]
= B∗A∗ and

(
e−itH)∗ [1]

= e+itH implies immediately(
Q(t)

)∗ [1]
=

(
e+itH Q e−itH

)∗ [1]
=

(
e−itH)∗Q∗ (e+itH)∗

[1]
= e+itH Q e−itH [1]

= Q(t).

(iii) Since V ∈ L∞(R), both, V (x̂) and V (Q) define bounded operators by Problem 27 [1] and
Lemma 6.1.7 [1], respectively. We have to show

(
V (Q)ψ

)
(x) = V (x)ψ(x) [1]: the projection-

valued measure

1Λ(Q) = 1Λ(x̂)

is simply the multiplication operator associated to the characteristic function 1Λ [1]. Conse-
quently, the two operators agree,(

V (Q)ψ
)
(x)

[1]
=

∫
R

(
1dλ(x̂)ψ

)
(x)V (λ)

[1]
=

∫
R
dλ δ(λ− x)ψ(x)V (λ)

[1]
= V (x)ψ(x)

[1]
=

(
V (x̂)ψ

)
(x).
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(iv) Once we show

1Λ
(
Q(t)

)
= e+itH 1Λ(Q) e−itH , (1)

we immediately deduce

(
V (Q)

)
(t)

[1]
= e+itH

(∫
R
1dλ(Q)V (λ)

)
e−itH

[1]
=

∫
R
e+itH 1dλ(Q) e−itH V (λ)

[1]
=

∫
R
1dλ

(
Q(t)

)
V (λ)

[1]
= V

(
Q(t)

)
.

The only thing left to show is equation (1), and this is done akin to showing covariance in
Problem 32: using the “covariance” of the resolvent(

Q(t)− z
)−1 [1]

= e+itH (Q− z)−1 e−itH ,

we obtain with the help of the Herglotz representation theorem a connection between the
measure forQ(t) and vector ψ, andQ for the vector e−itHψ [1],

⟨
ψ,

(
Q(t)− z

)−1
ψ
⟩ [1]
=

∫
R
dµQ(t)

ψ (λ) (λ− z)−1

[1]
=

⟨
e−itHψ, (Q− z)−1 e−itHψ

⟩
[1]
=

∫
R
dµQe−itHψ

(λ) (λ− z)−1.

Consequently, also the projection-valued measure satisfies the same covariance relation, be-
cause ⟨

ψ, 1Λ
(
Q(t)

)
ψ
⟩ [1]
=

∫
Λ
dµQ(t)

ψ (λ)
[1]
=

∫
Λ
dµQe−itHψ

(λ)

[1]
=

⟨
ψ, e+itH 1Λ(Q) e−itHψ

⟩
.

This proves equation (1), and thus also
(
V (Q)

)
(t) = V

(
Q(t)

)
[1].
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