Foundations of
 Quantum Mechanics
 (APM 421 H)

Functional Calculus

Homework Problems

34. The Weyl criterion (19 points)

Prove the Weyl criterion:
Theorem 1 Let H be a selfadjoint operator on a Hilbert space \mathcal{H} with domain $\mathcal{D}(H)$.
(i) $\lambda \in \sigma(H)$ holds if and only if there exists a sequence $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ so that $\left\|\psi_{n}\right\|=1$ and

$$
\lim _{n \rightarrow \infty}\left\|H \psi_{n}-\lambda \psi_{n}\right\|_{\mathcal{H}}=0
$$

(ii) We have $\lambda \in \sigma_{\text {ess }}(H)$ if and only if we can choose the sequence $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ to be orthonormal.

Solution:

(i) The weak Weyl criterion takes care of one direction, i. e. if there exists a Weyl sequence $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ to $\lambda \in \mathbb{R}$, then necessarily $\lambda \in \sigma(H)$ [1].
For the converse direction, pick a $\lambda \in \sigma(H)$. We will now construct a Weyl sequence: since $\lambda \in \sigma(H)$ we know from Proposition 6.2.1 that the projection-valued measures $P((\lambda-1 / n, \lambda+$ $1 / n)) \neq 0, n \in \mathbb{N}$, do not vanish [1]. Consequently, we can choose a normalized vector $\psi_{n} \in$ $\operatorname{ran} P((\lambda-1 / n, \lambda+1 / n))$ for each $n \in \mathbb{N}$ [1]. And thus, we can estimate the norm by

$$
\begin{aligned}
\left\|H \psi_{n}-\lambda \psi_{n}\right\|^{2} & \stackrel{[1]}{=}\left\|(H-\lambda) 1_{(\lambda-1 / n, \lambda+1 / n)}(H) \psi_{n}\right\|^{2} \\
& \stackrel{[1]}{=} \int_{\lambda-1 / n}^{\lambda+1 / n}\left\langle\psi_{n}, \mathrm{~d} P\left(\lambda^{\prime}\right) \psi_{n}\right\rangle\left(\lambda^{\prime}-\lambda\right)^{2} \stackrel{[1]}{\leq} \frac{1}{n^{2}} \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

which means $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ is a Weyl sequence [1].
(ii) " \Rightarrow :" If we assume in addition that $\lambda \in \sigma_{\text {ess }}(H)$, then $\mathcal{H}_{n}:=\operatorname{ran} P((\lambda-1 / n, \lambda+1 / n))$ is infinite-dimensional for all $n \in \mathbb{N}[1]$, and these spaces are nested, $\mathcal{H}_{n} \supseteq \mathcal{H}_{n+1}$ [1], meaning we can choose

$$
\psi_{n+1} \stackrel{[1]}{\in} \mathcal{H}_{n+1} \cap\left(\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{n}\right)^{\perp}
$$

because the intersection on the right-hand side is non-trivial [1]. Hence, the Weyl sequence constructed in this fashion is orthonormal [1].
" \Leftarrow :" Suppose the Weyl sequence $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ to $\lambda \in \mathbb{R}$ is composed of orthonormal vectors. We already know from part (i) that $\lambda \in \sigma(H)[1]$, and all that remains to be shown is $\sigma_{\text {ess }}(H)$.

Without loss of generality, we may assume that $\psi_{n} \in \operatorname{ran} 1_{(\lambda-1 / n, \lambda+1 / n)}(H)$ (otherwise select a subsequence which satisfies the above condition) [1].
Assume $\lambda \in \sigma_{\text {disc }}(H)$ [1]. Then λ is an eigenvalue of finite multiplicity; Moreover, λ cannot be the accumulation point of eigenvalues [1]. That means for $n \geq N$ large enough the intersection $\sigma(H) \cap(\lambda-1 / n, \lambda+1 / n)=\{\lambda\}$ consists only of the eigenvalue itself [1]. But then for all $n \geq N$ the subspace $\operatorname{ran} 1_{(\lambda-1 / n, \lambda+1 / n)}(H)$ is finite-dimensional [1], meaning that the Weyl sequence $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ cannot be chosen to consist of orthonormal vectors [1].

35. Functional calculus for the momentum operator (25 points)

Consider the momentum operator $P=-\mathrm{i} \partial_{x}$ on $L^{2}(\mathbb{R})$ with domain $\mathcal{D}(P)=H^{1}(\mathbb{R})$.
(i) Show $P=P^{*}$ and give $\sigma(P)$.
(ii) Compute the projection-valued measure $1_{\Lambda}(P)$ where $\Lambda \subseteq \mathbb{R}$ is a Borel set.
(iii) Explain how to define $U(t):=\mathrm{e}^{-\mathrm{i} t P}$ and prove that $U(t) U(s)=U(t+s)$.
(iv) Define the selfadjoint operator $H=P^{2}$ via the functional calculus associated to P and prove that it coincides with $H^{\prime}=-\partial_{x}^{2}$ endowed with domain $\mathcal{D}\left(H^{\prime}\right)=H^{2}(\mathbb{R})$.

Solution:

(i) We use the Fundamental Criterion of Selfadjointness [1]: we first shown essential selfadjointness of P and then, in a second step, show that the domain of selfadjointness coincides with $H^{1}(\mathbb{R})$. To compute the deficiency indices $N_{ \pm}:=\operatorname{dim} \operatorname{ker}\left(P^{*} \pm \mathrm{i}\right)$ [1], we solve the equation

$$
\begin{equation*}
-\mathbf{i} \partial_{x} \varphi_{ \pm}=\mp \mathbf{i} \varphi_{ \pm} \Longleftrightarrow \partial_{x} \varphi_{ \pm}= \pm \varphi_{ \pm} \tag{1}
\end{equation*}
$$

for both signs. Obviously, the solutions are $\varphi_{ \pm}(x)=c \mathrm{e}^{ \pm x}$ [1]. However, for neither choice of sign is $\varphi_{ \pm} \notin L^{2}(\mathbb{R})$ square-integrable [1]. Consequently, $N_{ \pm}=0$ and P is essentially selfadjoint [1]. On the other hand, the domain of P,

$$
\begin{aligned}
\mathcal{D}(P)=H^{1}(\mathbb{R}) & \stackrel{[1]}{=}\left\{\varphi \in L^{2}\left(\mathbb{R}^{d}\right) \mid \mathcal{F}^{-1} \sqrt{1+\xi^{2}} \mathcal{F} \varphi \in L^{2}\left(\mathbb{R}^{d}\right)\right\} \\
& \stackrel{[1]}{=}\left\{\varphi \in L^{2}\left(\mathbb{R}^{d}\right) \mid \int_{\mathbb{R}} \mathrm{d} \xi\left(1+\xi^{2}\right) \mathcal{F} \varphi(\xi)<\infty\right\} \\
& \stackrel{[1]}{=}\left\{\varphi \in L^{2}\left(\mathbb{R}^{d}\right) \mid \int_{\mathbb{R}} \mathrm{d} \xi \xi^{2} \mathcal{F} \varphi(\xi)<\infty\right\},
\end{aligned}
$$

coincides with the maximal domain,

$$
\mathcal{D}\left(P_{\max }\right)=\left\{\varphi \in L^{2}(\mathbb{R}) \mid \partial_{x} \varphi \in L^{2}(\mathbb{R})\right\} \stackrel{[1]}{=} \mathcal{D}(P)
$$

And hence, $P=P^{*}$ is selfadjoint.
(ii) Given that $\mathcal{F} P \mathcal{F}^{-1}=\hat{\xi}$ [1] is equivalent to a multiplication operator, we can write the projection-valued measure as

$$
1_{\Lambda}(P) \stackrel{[2]}{=} \mathcal{F}^{-1} 1_{\Lambda}(\hat{\xi}) \mathcal{F}
$$

(iii) As $\lambda \mapsto \mathrm{e}^{-\mathrm{i} t \lambda}$ is a bounded Borel function [1],

$$
U(t)=\mathrm{e}^{-\mathrm{i} t P} \stackrel{[1]}{=} \int_{\mathbb{R}} 1_{\mathrm{d} \lambda}(P) \mathrm{e}^{-\mathrm{i} t \lambda}
$$

is defined via functional calculus. Then $U(t) U(s)=U(t+s)$ is an immediate consequence of $f(H) g(H)=(f g)(H)[1]$ and $\mathrm{e}^{-\mathrm{i} t \lambda} \mathrm{e}^{-\mathrm{i} s \lambda}=\mathrm{e}^{-\mathrm{i}(t+s) \lambda}$ on the level of functions [1].
(iv) The operator

$$
H: \stackrel{[1]}{=} \int_{\mathbb{R}} 1_{\mathrm{d} \lambda}(P) \lambda^{2}
$$

defined via functional calculus is endowed with the domain

$$
\mathcal{D}(H): \stackrel{[1]}{=}\left\{\psi \in L^{2}(\mathbb{R}) \mid \int_{\mathbb{R}}\left\langle\psi, 1_{\mathrm{d} \lambda}(P) \psi\right\rangle \lambda^{4}<\infty\right\}
$$

Since it is clear that H acts on $\varphi \in \mathcal{D}(H)$ as $\varphi \mapsto-\partial_{x}^{2} \varphi$ [1], it remains to show $\mathcal{D}(H)=$ $\mathcal{D}\left(H^{\prime}\right)=H^{2}(\mathbb{R})$. As we can express the projection-valued measure as a multiplication operator after Fourier transform, we can rewrite the imposed condition from $\mathcal{D}(H)$ as

$$
\begin{aligned}
& \int_{\mathbb{R}}\left\langle\psi, 1_{\mathrm{d} \lambda}(P) \psi\right\rangle \lambda^{4} \stackrel{[1]}{=} \int_{\mathbb{R}}\left\langle\mathcal{F} \psi, 1_{\mathrm{d} \lambda}(\hat{\xi}) \mathcal{F} \psi\right\rangle \lambda^{4} \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \lambda\left|\lambda^{2} \mathcal{F} \psi(\lambda)\right|^{2} \\
& \stackrel{[1]}{=}\left\|\hat{\xi}^{2} \mathcal{F} \psi\right\|^{2}<\infty .
\end{aligned}
$$

That, however, is equivalent to saying $\varphi \in H^{2}(\mathbb{R})[1]$, and we have shown $\mathcal{D}(H)=H^{2}(\mathbb{R})=$ $\mathcal{D}\left(H^{\prime}\right)[1]$.

36. Functional calculus for the position operator (31 points)

Suppose $H=-\partial_{x}^{2}+V=H^{*}$ is a selfadjoint operator on $L^{2}(\mathbb{R})$ with domain $\mathcal{D}(H)$, and consider the position operator $Q=\hat{x}$ equipped with domain

$$
\mathcal{D}(Q)=\left\{\varphi \in L^{2}(\mathbb{R}) \mid \hat{x} \varphi \in L^{2}(\mathbb{R})\right\}
$$

You may use without proof that Q is selfadjoint.
(i) Show that $Q(t):=\mathrm{e}^{+\mathrm{i} t H} Q \mathrm{e}^{-\mathrm{i} t H}$ satisfies the Heisenberg equation of motion

$$
\frac{\mathrm{d}}{\mathrm{~d} t} Q(t)=\mathrm{i}[H, Q(t)]
$$

A formal computation suffices (i. e. you may ignore questions of domains).
(ii) Prove that also $Q(t)=Q(t)^{*}$ is selfadjoint.
(iii) Let $(V(\hat{x}) \psi)(x):=V(x) \psi(x)$ be the multiplication operator associated to a bounded Borel function $V: \mathbb{R} \longrightarrow \mathbb{C}$. Prove that $V(\hat{x})$ coincides with $V(Q)$ (defined through functional calculus associated to Q).
(iv) Prove $(V(Q))(t):=\mathrm{e}^{+\mathrm{i} t H} V(Q) \mathrm{e}^{-\mathrm{i} t H}$ coincides with $V(Q(t))$.

Solution:

(i) Using that H and $\mathrm{e}^{ \pm \mathrm{i} t H}$ commute (Theorem 4.3.5) [1], we compute the time-derivative and collect the terms accordingly:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} Q(t) & \stackrel{[1]}{=}\left(\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{+\mathrm{i} t H}\right) Q \mathrm{e}^{-\mathrm{i} t H}+\mathrm{e}^{+\mathrm{i} t H} Q\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{e}^{-\mathrm{i} t H}\right) \\
& \stackrel{[1]}{=}+\mathrm{i} H \mathrm{e}^{+\mathrm{i} t H} Q \mathrm{e}^{-\mathrm{i} t H}+\mathrm{e}^{+\mathrm{i} t H} Q\left(-\mathrm{i} H \mathrm{e}^{-\mathrm{i} t H}\right) \\
& \stackrel{[1]}{=} \mathrm{i}[H, Q(t)]
\end{aligned}
$$

(ii) $(A B)^{*} \stackrel{[1]}{=} B^{*} A^{*}$ and $\left(\mathrm{e}^{-\mathrm{i} t H}\right)^{*} \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} t H}$ implies immediately

$$
\begin{aligned}
(Q(t))^{*} & \stackrel{[1]}{=}\left(\mathrm{e}^{+\mathrm{i} t H} Q \mathrm{e}^{-\mathrm{i} t H}\right)^{*} \stackrel{[1]}{=}\left(\mathrm{e}^{-\mathrm{i} t H}\right)^{*} Q^{*}\left(\mathrm{e}^{+\mathrm{i} t H}\right)^{*} \\
& \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} t H} Q \mathrm{e}^{-\mathrm{i} t H} \stackrel{[1]}{=} Q(t)
\end{aligned}
$$

(iii) Since $V \in L^{\infty}(\mathbb{R})$, both, $V(\hat{x})$ and $V(Q)$ define bounded operators by Problem 27 [1] and Lemma 6.1.7 [1], respectively. We have to show $(V(Q) \psi)(x)=V(x) \psi(x)$ [1]: the projectionvalued measure

$$
1_{\Lambda}(Q)=1_{\Lambda}(\hat{x})
$$

is simply the multiplication operator associated to the characteristic function 1_{Λ} [1]. Consequently, the two operators agree,

$$
\begin{aligned}
(V(Q) \psi)(x) & \stackrel{[1]}{=} \int_{\mathbb{R}}\left(1_{\mathrm{d} \lambda}(\hat{x}) \psi\right)(x) V(\lambda) \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \lambda \delta(\lambda-x) \psi(x) V(\lambda) \\
& \stackrel{[1]}{=} V(x) \psi(x) \stackrel{[1]}{=}(V(\hat{x}) \psi)(x)
\end{aligned}
$$

(iv) Once we show

$$
\begin{equation*}
1_{\Lambda}(Q(t))=\mathrm{e}^{+\mathrm{i} t H} 1_{\Lambda}(Q) \mathrm{e}^{-\mathrm{i} t H} \tag{1}
\end{equation*}
$$

we immediately deduce

$$
\begin{aligned}
(V(Q))(t) & \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} t H}\left(\int_{\mathbb{R}} 1_{\mathrm{d} \lambda}(Q) V(\lambda)\right) \mathrm{e}^{-\mathrm{i} t H} \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{e}^{+\mathrm{i} t H} 1_{\mathrm{d} \lambda}(Q) \mathrm{e}^{-\mathrm{i} t H} V(\lambda) \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} 1_{\mathrm{d} \lambda}(Q(t)) V(\lambda) \\
& \stackrel{[1]}{=} V(Q(t)) .
\end{aligned}
$$

The only thing left to show is equation (1), and this is done akin to showing covariance in Problem 32: using the "covariance" of the resolvent

$$
(Q(t)-z)^{-1} \stackrel{[1]}{=} \mathrm{e}^{\mathrm{+i} t H}(Q-z)^{-1} \mathrm{e}^{-\mathrm{i} t H}
$$

we obtain with the help of the Herglotz representation theorem a connection between the measure for $Q(t)$ and vector ψ, and Q for the vector $\mathrm{e}^{-\mathrm{it} t H} \psi$ [1],

$$
\begin{aligned}
\left\langle\psi,(Q(t)-z)^{-1} \psi\right. & \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \mu_{\psi}^{Q(t)}(\lambda)(\lambda-z)^{-1} \\
& \stackrel{[1]}{=}\left\langle\mathrm{e}^{-i t H} \psi,(Q-z)^{-1} \mathrm{e}^{-\mathrm{i} t H} \psi\right\rangle \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} \mu_{\mathrm{e}^{-i t H} \psi}^{Q}(\lambda)(\lambda-z)^{-1} .
\end{aligned}
$$

Consequently, also the projection-valued measure satisfies the same covariance relation, because

$$
\begin{aligned}
\left\langle\psi, 1_{\Lambda}(Q(t)) \psi\right\rangle & \stackrel{[1]}{=} \int_{\Lambda} \mathrm{d} \mu_{\psi}^{Q(t)}(\lambda) \stackrel{[1]}{=} \int_{\Lambda} \mathrm{d} \mu_{\mathrm{e}^{-\mathrm{i} i H} \psi}^{Q}(\lambda) \\
& \stackrel{[1]}{=}\left\langle\psi, \mathrm{e}^{\mathrm{i} t H} 1_{\Lambda}(Q) \mathrm{e}^{-\mathrm{i} t H} \psi\right\rangle .
\end{aligned}
$$

This proves equation (1), and thus also $(V(Q))(t)=V(Q(t))$ [1].

