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34. The Weyl criterion (19 points)

Prove the Weyl criterion:

Theorem 1 Let H be a selfadjoint operator on a Hilbert space H with domain D(H ).
(i) \ € o(H) holds if and only if there exists a sequence {1, } nen so that ||, || = 1 and
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(ii) We have \ € oess(H ) if and only if we can choose the sequence {1, } ncn to be orthonormal.

Solution:

(i) The weak Weyl criterion takes care of one direction, i. e. if there exists a Weyl sequence

{¥n}nen to X € R, then necessarily A € o(H) [1].

For the converse direction, picka A € o(H). We will now construct a Weyl sequence: since
A € o(H) we know from Proposition 6.2.1 that the projection-valued measures P((A—1/n, A+
1/n)) # 0, n € N, do not vanish [1]. Consequently, we can choose a normalized vector ¢, €
ran P((XA — 1/n, A + 1/n)) for each n € N [1]. And thus, we can estimate the norm by
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which means {1, },en is a Weyl sequence [1].

“=:" If we assume in addition that A € oess(H), then H,, := ran P((A — U/n, A + 1/n)) is
infinite-dimensional for all n € N [1], and these spaces are nested, H,, 2 H,,+1 [1], meaning
we can choose

(1] L
Unt1 € Hny1 0 (span{y;}i_)
because the intersection on the right-hand side is non-trivial [1]. Hence, the Weyl sequence
constructed in this fashion is orthonormal [1].

“«<:” Suppose the Weyl sequence {9, },en to A € R is composed of orthonormal vectors. We
already know from part (i) that A € o(H) [1], and all that remains to be shown is gess(H).



Without loss of generality, we may assume that ¢, € ran1(y_1/, x41/,)(H) (otherwise select
a subsequence which satisfies the above condition) [1].

Assume \ € ogi.(H) [1]. Then ) is an eigenvalue of finite multiplicity; Moreover, A\ cannot
be the accumulation point of eigenvalues [1]. That means for n > N large enough the inter-
section o (H) N (A —1/n, A\ + 1/n) = {A\} consists only of the eigenvalue itself [1]. But then for
alln > N the subspace ran 1(y_1/, x+1/,,)(H) is finite-dimensional [1], meaning that the Weyl
sequence {¢,, }nen cannot be chosen to consist of orthonormal vectors [1].



35. Functional calculus for the momentum operator (25 points)
Consider the momentum operator P = —id, on L?(R) with domain D(P) = H'(R).
(i) Show P = P* and give o(P).
(ii) Compute the projection-valued measure 15 (P) where A C R is a Borel set.
(iii) Explain how to define U (t) := e ¥’ and prove that U (¢) U(s) = U(t + s).
(iv) Define the selfadjoint operator H = P? via the functional calculus associated to P and prove
that it coincides with H' = —9?2 endowed with domain D(H') = H*(R).
Solution:

(i) We use the Fundamental Criterion of Selfadjointness [1]: we first shown essential selfadjoint-
ness of P and then, in a second step, show that the domain of selfadjointness coincides with
H'(R). To compute the deficiency indices N := dimker(P* £ i) [1], we solve the equation

—i0yp+ = Fip+ <= Orp+ = Tp+ (1]

for both signs. Obviously, the solutions are . () = ce™ [1]. However, for neither choice of
sign is o+ ¢ L?(R) square-integrable [1]. Consequently, No+ = 0 and P is essentially selfad-
joint [1]. On the other hand, the domain of P,

D(P) = H'(R) Y {pe?®) | F Y1+ e Fpe L’RY)
U{oe 2@ | [ de1+€) Foe) <o)
U{perr@ | [ e Foe <o},
coincides with the maximal domain,
D(Puax) = {9 € L*(R) | ,p € L*(R)} 2 D(P

And hence, P = P* is selfadjoint.

(ii) Given that F P F~1 = ¢ [1] is equivalent to a multiplication operator, we can write the
projection-valued measure as
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(iii)) As A — e~ is a bounded Borel function [1],

_ —1tP [1]/ —1t)\

is defined via functional calculus. Then U (t) U(s) = U(t + s) is an immediate consequence of
f(H)g(H) = (f g)(H) [1] and e 1A e7i5A = e~i(t+5)A on the level of functions [1].

(iv) The operator
g4 / 140 (P) A2
R

defined via functional calculus is endowed with the domain

pr) & weLQ \/(w,m <oo}.



Since it is clear that H acts on ¢ € D(H) as ¢ — —02¢p [1], it remains to show D(H) =
D(H') = H%(R). As we can express the projection-valued measure as a multiplication oper-
ator after Fourier transform, we can rewrite the imposed condition from D(H ) as

/ (6, 1 (P)g) A+ 2 / (Fib, 140(6) Fib) M
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That, however, is equivalent to saying ¢ € H%(R) [1], and we have shown D(H) = H?*(R) =
D(H') [1].



36. Functional calculus for the position operator (31 points)

Suppose H = —92 + V = H* is a selfadjoint operator on L?(R) with domain D(H ), and consider
the position operator ) = & equipped with domain

D(Q) ={p € L*(R) | &p € L*(R)}.
You may use without proof that @ is selfadjoint.

(i) Show that Q(t) := e Q e~/ satisfies the Heisenberg equation of motion

d .
SO0 =i[H.Q)].

A formal computation suffices (i. e. you may ignore questions of domains).
(ii) Prove that also Q(t) = Q(¢)* is selfadjoint.

(iii) Let (V(£)¥)(z) := V() (x) be the multiplication operator associated to a bounded Borel
function V' : R — C. Prove that V(Z) coincides with V(Q) (defined through functional
calculus associated to Q).

(iv) Prove (V(Q))(t) := ™ V(Q) e 1 coincides with V (Q(2)).

Solution:

(i) Using that H and e™ " commute (Theorem 4.3.5) [1], we compute the time-derivative and
collect the terms accordingly:

d
i@ (t)

1] . . . .
(%B—HtH) Qe itH e+1tHQ (%e 1tH)
O i p etitH Qe it 4 etitH Q (—iHeitH)

Ji[H, Q)]

(ii) (AB)* W B A* and (e7itH)* W o itk implies immediately

(@) i (thH Qe*itH)* 8 (e )" Q* (et
[ etitH  e—itH [1] Qt).

(iii) Since V' € L*°(R), both, V(z) and V(Q) define bounded operators by Problem 27 [1] and
Lemma 6.1.7 [1], respectively. We have to show (V(Q)v)(z) = V() ¢(z) [1]: the projection-
valued measure

16(Q) = 1a(2)

is simply the multiplication operator associated to the characteristic function 1, [1]. Conse-
quently, the two operators agree,
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(iv) Once we show

1A (Q(t)) — e+itH 1A(Q) efitH7 (1)

we immediately deduce

The only thing left to show is equation (1), and this is done akin to showing covariance in
Problem 32: using the “covariance” of the resolvent

Q) —2) " Heti (@2t

we obtain with the help of the Herglotz representation theorem a connection between the
measure for () and vector 1, and  for the vector e ¢ [1],

@0 -7 [ admn-o7
[ < —ithy, (Q — 2)~! e—itHw>
[1]/dlue 1tHw Z)_l'

Consequently, also the projection-valued measure satisfies the same covariance relation, be-

cause
(6, 14(Q 1]/th) [l/dem%
{1 <¢7 et 1, (0) efltH¢>‘

This proves equation (1), and thus also (V(Q))(t) = V(Q(¢)) [1].



