Differential Equations of

The continuous Fourier transform

Homework Problems

38. Unitarity of the Fourier transform

Show that the continuous Fourier transform $\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is unitary.

Solution:

We will only show $\mathcal{F}^{*} \mathcal{F}=\operatorname{id}_{L^{2}\left(\mathbb{R}^{n}\right)}$, the arguments for $\mathcal{F} \mathcal{F}^{*}=\mathrm{id}_{L^{2}\left(\mathbb{R}^{n}\right)}$ are analogous. Parseval's theorem states that

$$
\langle\varphi, \psi\rangle=\langle\mathcal{F} \varphi, \mathcal{F} \psi\rangle=\left\langle\varphi, \mathcal{F}^{*} \mathcal{F} \psi\right\rangle
$$

holds for all $\varphi, \psi \in L^{2}\left(\mathbb{R}^{n}\right)$. In other words, $\mathcal{F}^{*} \mathcal{F} \psi-\psi$ is orthogonal to all vectors, and thus it is necessarily 0 which proves $\mathcal{F}^{*} \mathcal{F}=\mathrm{id}_{L^{2}\left(\mathbb{R}^{n}\right)}$.

39. Fourier transforms of particular functions (18 points)

Compute the Fourier transforms of the following $L^{1}(\mathbb{R})$ functions:
(i) $f(x)=\mathrm{e}^{-\lambda|x|}, \lambda>0$
(ii) $g(x)=1_{[-1,+1]}(x):= \begin{cases}1 & x \in[-1,+1] \\ 0 & x \notin[-1,+1]\end{cases}$
(iii) $h(x)=x \mathrm{e}^{-\frac{\lambda}{2} x^{2}}, \lambda>0$
(iv) $j=g * g$
(v) $k=\mathrm{e}^{-\frac{\lambda}{2} x^{2}} * 1_{[-1,+1]}$

Solution:

(i)

$$
\begin{aligned}
(\mathcal{F} f)(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{e}^{-\lambda|x|} \\
& \stackrel{[1]}{=} \frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} \mathrm{d} x \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{e}^{-\lambda x}+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{e}^{+\lambda x} \\
& \stackrel{[1]}{=} \frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} \mathrm{d} x \mathrm{e}^{-(\lambda+\mathrm{i} \xi) x}-\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} \mathrm{d} x \mathrm{e}^{-(\lambda-\mathrm{i} \xi) x} \\
& \stackrel{[1]}{=}\left[\frac{1}{\sqrt{2 \pi}} \frac{\mathrm{e}^{-(\lambda+\mathrm{i} \xi) x}}{-(\lambda+\mathrm{i} \xi)}\right]_{0}^{+\infty}+\left[\frac{1}{\sqrt{2 \pi}} \frac{\mathrm{e}^{-(\lambda-\mathrm{i} \xi) x}}{-(\lambda-\mathrm{i} \xi)}\right]_{0}^{+\infty} \\
& =\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{\lambda+\mathrm{i} \xi}+\frac{1}{\lambda-\mathrm{i} \xi}\right) \stackrel{[1]}{=} \sqrt{\frac{2}{\pi}} \frac{\lambda}{\xi^{2}+\lambda^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
(\mathcal{F} g)(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\mathrm{i} x \xi} 1_{[-1,+1]}(x) \stackrel{[1]}{=} \frac{1}{\sqrt{2 \pi}} \int_{-1}^{+1} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} x \xi} \\
& =\left[\frac{1}{\sqrt{2 \pi}} \frac{\mathrm{e}^{-\mathrm{i} x \xi}}{-\mathrm{i} \xi}\right]_{-1}^{+1} \stackrel{[1]}{=} \sqrt{\frac{2}{\pi}} \frac{\sin \xi}{\xi}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
(\mathcal{F} h)(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\mathrm{i} x \xi} x \mathrm{e}^{-\frac{\lambda}{2} x^{2}} \\
& \stackrel{[2]}{=} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x\left(\left(x+\mathrm{i} \frac{\xi}{\lambda}\right)-\mathrm{i} \frac{\xi}{\lambda}\right) \mathrm{e}^{-\frac{\lambda}{2}\left(x+\mathrm{i} \frac{\xi}{\lambda}\right)^{2}} \mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}} \\
& \stackrel{[2]}{=} \mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}} \frac{1}{\sqrt{2 \pi}} \underbrace{\int_{\mathbb{R}} \mathrm{d} x\left(-\lambda^{-1}\right) \partial_{x}\left(\mathrm{e}^{-\frac{\lambda}{2}\left(x+\mathrm{i} \frac{\xi}{\lambda}\right)^{2}}\right)}_{=0}+\frac{\mathrm{i} \xi \mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}}}{\lambda} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{\lambda}{2}\left(x+\mathrm{i} \frac{\xi}{\lambda}\right)^{2}}
\end{aligned}
$$

The integral

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{\lambda}{2}\left(x+\mathrm{i} \frac{\xi}{\lambda}\right)^{2}}=\frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{1}{2} x^{2}} \stackrel{[1]}{=} \frac{1}{\sqrt{\lambda}}
$$

has already been computed in the lecture notes (cf. page 101), and thus

$$
(\mathcal{F} h)(\xi) \stackrel{[1]}{=} \frac{\mathbf{i} \xi \mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}}}{\lambda^{3 / 2}}
$$

(iv)

$$
(\mathcal{F} j)(\xi) \stackrel{[1]}{=} \sqrt{2 \pi}(\mathcal{F} g)^{2}(\xi) \stackrel{[1]}{=} \sqrt{2 \pi}\left(-\frac{\mathrm{i}}{\sqrt{2 \pi}} \frac{\sin \xi}{\xi}\right)^{2} \stackrel{[1]}{=}-\frac{1}{\sqrt{2 \pi}} \frac{\sin ^{2} \xi}{\xi^{2}}
$$

(v)

$$
\begin{aligned}
(\mathcal{F} k)(\xi) & \stackrel{[1]}{=} \sqrt{2 \pi}\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}\right)(\xi)\left(\mathcal{F} 1_{[-1,+1]}\right)(\xi) \\
& \stackrel{[1]}{=} \sqrt{2 \pi}\left(\frac{\mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}}}{\sqrt{\lambda}}\right)\left(-\frac{\mathrm{i}}{\sqrt{2 \pi}} \frac{\sin \xi}{\xi}\right) \stackrel{[1]}{=}-\mathrm{i} \frac{\sin \xi}{\xi} \mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}}
\end{aligned}
$$

40. Inhomogeneous heat equation

Consider the inhomogeneous heat equation

$$
\begin{equation*}
\partial_{t} u(t)=+D \Delta_{x} u(t)+f(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

with diffusion constant $D>0$.
(i) Derive the solution $u(t)$ to the inhomogeneous equation. You need not justify your manipulations.
(ii) Verify that the solution from (i) solves (1).
(iii) Give sufficient conditions on the solution u which ensure uniqueness. Justify your answer.

Solution:

(i) In momentum representation, the inhomogeneous heat equation reads

$$
\partial_{t} \hat{u}(t)=-D \hat{\xi}^{2} \hat{u}(t)+\widehat{f(t)}, \quad \hat{u}(0)=\hat{u}_{0}
$$

where $\hat{u}(t)=\mathcal{F}(u(t)), \widehat{f(t)}=\mathcal{F}(f(t))$ and $\hat{u}_{0}=\mathcal{F} u_{0}$.
Inhomogeneous linear ODEs have a closed-form solution (equation (2.12) in the lecture notes),

$$
\hat{u}(t)=\mathrm{e}^{-t D \hat{\xi}^{2}} \hat{u}_{0}+\int_{0}^{t} \mathrm{~d} s \mathrm{e}^{-(t-s) D \hat{\xi}^{2}} \widehat{f(s)},
$$

and applying the inverse Fourier transform to $\hat{u}(t)$ yields

$$
u(t)=G(t) * u_{0}+\int_{0}^{t} \mathrm{~d} s G(t-s) * f(s)
$$

(ii) First of all, $u(t)$ satisfies the initial condition,

$$
u(0)=\lim _{t \searrow 0}\left(G(t) * u_{0}+\int_{0}^{t} \mathrm{~d} s G(t-s) * f(s)\right)=u_{0}
$$

It is easier to compute the time derivative in the momentum representation:

$$
\begin{aligned}
\partial_{t} \hat{u}(t) & =-D \hat{\xi}^{2} \mathrm{e}^{-t D \hat{\xi}^{2}} \hat{u}_{0}-D \hat{\xi}^{2} \int_{0}^{t} \mathrm{~d} s \mathrm{e}^{-(t-s) D \hat{\xi}^{2}} \widehat{f(s)}+\left.\mathrm{e}^{-(t-s) D \hat{\xi}^{2}} \widehat{f(s)}\right|_{s=t} \\
& =-D \hat{\xi}^{2} \hat{u}(t)+\widehat{f(t)}
\end{aligned}
$$

This is just the heat equation in momentum representation, and thus, $u(t)$ solves the initial value problem.
(iii) Just like in the homogeneous case $u(t), \partial_{t} u(t) \in L^{1}\left(\mathbb{R}^{n}\right)$ for all $t \geq 0$ is a sufficient condition to ensure uniqueness.
Suppose $\tilde{u}(t)$ were a second solution to the inhomogeneous heat equation, then their difference $g(t):=u(t)-\tilde{u}(t)$ is a solution to the homogeneous heat equation and initial value $g(0)=0$. And the only solution which satisfies $g(t), \partial_{t} g(t) \in L^{1}\left(\mathbb{R}^{n}\right)$ is the trivial solution $g(t)=0$ (Theorem 6.2.15).

41. Uncertainty of Gauß functions

Compute the right-hand side of Heisenberg's uncertainty principle

$$
\sigma_{\psi}(\hat{x}) \sigma_{\psi}\left(-\mathrm{i} \hbar \partial_{x}\right)
$$

in one dimension for
(i) $\psi_{\lambda}(x)=\sqrt[4]{\frac{\lambda}{\pi}} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}, \lambda>0$, and
(ii) $\varphi_{\lambda}(x)=\sqrt[4]{\frac{\lambda}{\pi}} \mathrm{e}^{+\mathrm{i} x \xi_{0}} \mathrm{e}^{-\frac{\lambda}{2}\left(x-x_{0}\right)^{2}}, \lambda>0, x_{0}, \xi_{0} \in \mathbb{R}$.

Here, the standard deviation

$$
\sigma_{\psi}(H):=\sqrt{\mathbb{E}_{\psi}\left(\left(H-\mathbb{E}_{\psi}(H)\right)^{2}\right)}
$$

for a selfadjoint operator $H=H^{*}$ with respect to $\psi,\|\psi\|=1$, is defined as in the lecture notes via the expectation value

$$
\mathbb{E}_{\psi}(H):=\langle\psi, H \psi\rangle
$$

Solution:

(i) First of all, since $\psi(-x)=\psi(x)$ the expectation value

$$
\mathbb{E}_{\psi_{\lambda}}(\hat{x})=\int_{\mathbb{R}} \mathrm{d} x \sqrt{\frac{\lambda}{\pi}} x \mathrm{e}^{-\lambda x^{2}}=0
$$

necessarily vanishes. Similarly,

$$
\begin{aligned}
\mathbb{E}_{\psi_{\lambda}}\left(-\mathrm{i} \hbar \partial_{x}\right) & =-\mathrm{i} \hbar\left\langle\psi_{\lambda}, \partial_{x} \psi_{\lambda}\right\rangle=-\mathrm{i} \hbar\left\langle\mathcal{F} \psi_{\lambda}, \mathcal{F} \partial_{x} \psi_{\lambda}\right\rangle \\
& =\hbar\left\langle\psi_{1 / \lambda}, \hat{\xi} \psi_{1 / \lambda}\right\rangle=0
\end{aligned}
$$

is also 0, because the Fourier transform of a Gaußian is also a Gaußian.
That means we can compute the first standard deviation by partial integration:

$$
\begin{aligned}
\sigma_{\psi_{\lambda}}(\hat{x})^{2} & =\mathbb{E}_{\psi_{\lambda}}\left(\left(\hat{x}-\mathbb{E}_{\psi_{\lambda}}(\hat{x})\right)^{2}\right)=\mathbb{E}_{\psi_{\lambda}}\left(\hat{x}^{2}\right)=\sqrt{\frac{\lambda}{\pi}} \int_{\mathbb{R}} \mathrm{d} x x^{2} \mathrm{e}^{-\lambda x^{2}} \\
& =\frac{1}{\lambda \sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} x x^{2} \mathrm{e}^{-x^{2}}=\left[-\frac{1}{2 \lambda \sqrt{\pi}} x \mathrm{e}^{-x^{2}}\right]_{-\infty}^{+\infty}+\frac{1}{2 \lambda \sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-x^{2}}=\frac{1}{2 \lambda}
\end{aligned}
$$

To compute the other standard deviation, we note that since the Fourier transform of a Gaußian is a Gaußian with inverse width,

$$
\left(\mathcal{F} \psi_{\lambda}\right)(\xi)=\sqrt[4]{\frac{\lambda}{\pi}}\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}\right)(\xi)=\frac{1}{\sqrt[4]{\lambda \pi}} \mathrm{e}^{-\frac{1}{2 \lambda} \xi^{2}}=\psi_{1 / \lambda}
$$

we can relate $\sigma_{\psi_{\lambda}}\left(-\mathrm{i} \hbar \partial_{x}\right)$ to $\sigma_{\psi_{\lambda}}(\hat{x})$,

$$
\begin{aligned}
\sigma_{\psi_{\lambda}}\left(-\mathrm{i} \hbar \partial_{x}\right)^{2} & =-\hbar^{2}\left\langle\psi_{\lambda}, \partial_{x}^{2} \psi_{\lambda}\right\rangle=-\hbar^{2}\left\langle\mathcal{F} \psi_{\lambda}, \mathcal{F} \partial_{x}^{2} \psi_{\lambda}\right\rangle \\
& =+\hbar^{2}\left\langle\mathcal{F} \psi_{1 / \lambda}, \hat{\xi}^{2} \psi_{1 / \lambda}\right\rangle=\frac{\hbar^{2}}{2 \lambda^{-1}}
\end{aligned}
$$

Hence, ψ_{λ} minimizes the uncertainty relation,

$$
\sigma_{\psi_{\lambda}}(\hat{x}) \sigma_{\psi_{\lambda}}\left(-\mathrm{i} \hbar \partial_{x}\right)=\frac{1}{\sqrt{2 \lambda}} \sqrt{\frac{\hbar^{2} \lambda}{2}}=\frac{\hbar}{2} \geq \frac{\hbar}{2}
$$

(ii) We will reuse the results from (i) as much as possible: the mean of φ_{λ} is x_{0} :

$$
\begin{aligned}
\mathbb{E}_{\varphi_{\lambda}}(\hat{x}) & =\int_{\mathbb{R}} \mathrm{d} x x\left|\mathrm{e}^{+\mathrm{i} x \xi_{0}} \psi_{\lambda}\left(x-x_{0}\right)\right|^{2}=\int_{\mathbb{R}} \mathrm{d} x\left(x+x_{0}\right)\left|\psi_{\lambda}(x)\right|^{2} \\
& =x_{0}\left\|\psi_{\lambda}(x)\right\|^{2}=x_{0}
\end{aligned}
$$

Hence, the standard deviation of φ_{λ} coincides with that of ψ_{λ} :

$$
\begin{aligned}
\sigma_{\varphi_{\lambda}}(\hat{x})^{2} & =\mathbb{E}_{\varphi_{\lambda}}\left(\left(\hat{x}-x_{0}\right)^{2}\right)=\int_{\mathbb{R}} \mathrm{d} x\left(x-x_{0}\right)^{2}\left|\mathrm{e}^{+\mathrm{i} x \xi_{0}} \psi_{\lambda}\left(x-x_{0}\right)\right|^{2} \\
& =\int_{\mathbb{R}} \mathrm{d} x x^{2}\left|\psi_{\lambda}(x)\right|^{2}=\frac{1}{2 \lambda}
\end{aligned}
$$

Since the Fourier transform intertwines taking derivatives with multiplying by monomials and maps Gaußians on Gaußians of inverse width,

$$
\left(\mathcal{F} \varphi_{\lambda}\right)(\xi)=\left(\mathcal{F} \mathrm{e}^{+\mathrm{i} x \xi_{0}} \psi_{\lambda}\left(\cdot-x_{0}\right)\right)(\xi)=\left(\mathcal{F} \psi_{\lambda}\left(\cdot-x_{0}\right)\right)\left(\xi-\xi_{0}\right)=\mathrm{e}^{-\mathrm{i} \xi x_{0}} \psi_{1 / \lambda}\left(\xi-\xi_{0}\right),
$$

we obtain the same integral (up to \hbar^{2}) where λ is replaced by λ^{-1},

$$
\sigma_{\varphi_{\lambda}}\left(-\mathrm{i} \hbar \partial_{x}\right)^{2}=\frac{\hbar^{2} \lambda}{2} .
$$

Hence, also shifted Gaußians have minimal uncertainty,

$$
\sigma_{\varphi_{\lambda}}(\hat{x}) \sigma_{\varphi_{\lambda}}\left(-\mathrm{i} \hbar \partial_{x}\right)=\frac{\hbar}{2} \geq \frac{\hbar}{2} .
$$

