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The continuous Fourier transform

Homework Problems

38. Unitarity of the Fourier transform
Show that the continuous Fourier transform F : L2(Rn) −→ L2(Rn) is unitary.

Solution:
We will only show F∗F = idL2(Rn), the arguments for F F∗ = idL2(Rn) are analogous. Parseval’s
theorem states that

⟨φ,ψ⟩ =
⟨
Fφ,Fψ

⟩
=
⟨
φ,F∗Fψ

⟩
holds for all φ,ψ ∈ L2(Rn). In other words, F∗Fψ − ψ is orthogonal to all vectors, and thus it is
necessarily 0 which proves F∗F = idL2(Rn).
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39. Fourier transforms of particular functions (18 points)
Compute the Fourier transforms of the following L1(R) functions:
(i) f(x) = e−λ|x|, λ > 0

(ii) g(x) = 1[−1,+1](x) :=

{
1 x ∈ [−1,+1]

0 x ̸∈ [−1,+1]

(iii) h(x) = x e−
λ
2
x2 , λ > 0

(iv) j = g ∗ g

(v) k = e−
λ
2
x2 ∗ 1[−1,+1]

Solution:

(i)

(Ff)(ξ) = 1√
2π

∫
R
dx e−ixξ e−λ|x|

[1]
=

1√
2π

∫ +∞

0
dx e−ixξ e−λx + 1√

2π

∫ 0

−∞
dx e−ixξ e+λx

[1]
=

1√
2π

∫ +∞

0
dx e−(λ+iξ)x − 1√

2π

∫ +∞

0
dx e−(λ−iξ)x

[1]
=

[
1√
2π

e−(λ+iξ)x

−(λ+ iξ)

]+∞

0

+

[
1√
2π

e−(λ−iξ)x

−(λ− iξ)

]+∞

0

=
1√
2π

(
1

λ+ iξ +
1

λ− iξ

)
[1]
=

√
2

π

λ

ξ2 + λ2

(ii)

(Fg)(ξ) = 1√
2π

∫
R
dx e−ixξ 1[−1,+1](x)

[1]
=

1√
2π

∫ +1

−1
dx e−ixξ

=

[
1√
2π

e−ixξ

−iξ

]+1

−1

[1]
=

√
2

π

sin ξ
ξ

(iii)

(Fh)(ξ) = 1√
2π

∫
R
dx e−ixξ x e−

λ
2
x2

[2]
=

1√
2π

∫
R
dx
((
x+ i ξλ

)
− i ξλ

)
e−

λ
2
(x+i ξ

λ
)2 e−

1
2λ
ξ2

[2]
= e−

1
2λ
ξ2 1√

2π

∫
R
dx
(
−λ−1

)
∂x

(
e−

λ
2
(x+i ξ

λ
)2
)

︸ ︷︷ ︸
=0

+
iξ e− 1

2λ
ξ2

λ

1√
2π

∫
R
dx e−

λ
2
(x+i ξ

λ
)2

The integral

1√
2π

∫
R
dx e−

λ
2
(x+i ξ

λ
)2 =

1√
λ

1√
2π

∫
R
dx e−

1
2
x2 [1]

=
1√
λ
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has already been computed in the lecture notes (cf. page 101), and thus

(Fh)(ξ) [1]
=

iξ e− 1
2λ
ξ2

λ3/2
.

(iv)

(Fj)(ξ) [1]
=

√
2π
(
Fg
)2
(ξ)

[1]
=

√
2π

(
− i√

2π

sin ξ
ξ

)2
[1]
= − 1√

2π

sin2 ξ
ξ2

(v)

(Fk)(ξ) [1]
=

√
2π
(
Fe−

λ
2
x2
)
(ξ)
(
F1[−1,+1]

)
(ξ)

[1]
=

√
2π

(
e− 1

2λ
ξ2

√
λ

) (
− i√

2π

sin ξ
ξ

)
[1]
= −i sin ξ

ξ
e−

1
2λ
ξ2
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40. Inhomogeneous heat equation
Consider the inhomogeneous heat equation

∂tu(t) = +D∆xu(t) + f(t), u(0) = u0, (1)

with diffusion constantD > 0.
(i) Derive the solution u(t) to the inhomogeneous equation. You need not justify your manipu-

lations.
(ii) Verify that the solution from (i) solves (1).
(iii) Give sufficient conditions on the solution u which ensure uniqueness. Justify your answer.

Solution:

(i) In momentum representation, the inhomogeneous heat equation reads

∂tû(t) = −D ξ̂2 û(t) + f̂(t), û(0) = û0,

where û(t) = F
(
u(t)

)
, f̂(t) = F

(
f(t)

)
and û0 = Fu0.

Inhomogeneous linear ODEs have a closed-form solution (equation (2.12) in the lecture notes),

û(t) = e−tDξ̂2 û0 +
∫ t

0
ds e−(t−s)Dξ̂2 f̂(s),

and applying the inverse Fourier transform to û(t) yields

u(t) = G(t) ∗ u0 +
∫ t

0
dsG(t− s) ∗ f(s).

(ii) First of all, u(t) satisfies the initial condition,

u(0) = lim
t↘0

(
G(t) ∗ u0 +

∫ t

0
dsG(t− s) ∗ f(s)

)
= u0.

It is easier to compute the time derivative in the momentum representation:

∂tû(t) = −D ξ̂2 e−tDξ̂2 û0 −D ξ̂2
∫ t

0
ds e−(t−s)Dξ̂2 f̂(s) + e−(t−s)Dξ̂2 f̂(s)

∣∣∣
s=t

= −D ξ̂2 û(t) + f̂(t)

This is just the heat equation in momentum representation, and thus, u(t) solves the initial
value problem.

(iii) Just like in the homogeneous case u(t), ∂tu(t) ∈ L1(Rn) for all t ≥ 0 is a sufficient condition
to ensure uniqueness.
Suppose ũ(t) were a second solution to the inhomogeneous heat equation, then their dif-
ference g(t) := u(t) − ũ(t) is a solution to the homogeneous heat equation and initial value
g(0) = 0. And the only solution which satisfies g(t), ∂tg(t) ∈ L1(Rn) is the trivial solution
g(t) = 0 (Theorem 6.2.15).
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41. Uncertainty of Gauß functions
Compute the right-hand side of Heisenberg’s uncertainty principle

σψ(x̂)σψ(−iℏ∂x)

in one dimension for
(i) ψλ(x) = 4

√
λ
πe

−λ
2
x2 , λ > 0, and

(ii) φλ(x) = 4

√
λ
πe+ixξ0 e−λ

2
(x−x0)2 , λ > 0, x0, ξ0 ∈ R.

Here, the standard deviation

σψ(H) :=

√
Eψ
((
H − Eψ(H)

)2)
for a selfadjoint operatorH = H∗ with respect to ψ, ∥ψ∥ = 1, is defined as in the lecture notes via
the expectation value

Eψ(H) :=
⟨
ψ,Hψ

⟩
.

Solution:

(i) First of all, since ψ(−x) = ψ(x) the expectation value

Eψλ
(x̂) =

∫
R
dx
√
λ

π
x e−λx2 = 0

necessarily vanishes. Similarly,

Eψλ
(−iℏ∂x) = −iℏ

⟨
ψλ, ∂xψλ

⟩
= −iℏ

⟨
Fψλ,F∂xψλ

⟩
= ℏ

⟨
ψ1/λ, ξ̂ψ1/λ

⟩
= 0

is also 0, because the Fourier transform of a Gaußian is also a Gaußian.
That means we can compute the first standard deviation by partial integration:

σψλ
(x̂)2 = Eψλ

((
x̂− Eψλ

(x̂)
)2)

= Eψλ
(x̂2) =

√
λ

π

∫
R
dxx2 e−λx2

=
1

λ
√
π

∫
R
dxx2 e−x2 =

[
− 1

2λ
√
π
x e−x2

]+∞

−∞
+

1

2λ
√
π

∫
R
dx e−x2 =

1

2λ

To compute the other standarddeviation, wenote that since the Fourier transformof aGaußian
is a Gaußian with inverse width,

(Fψλ)(ξ) =
4

√
λ

π

(
Fe−

λ
2
x2
)
(ξ) =

1
4
√
λπ

e−
1
2λ
ξ2 = ψ1/λ,

we can relate σψλ
(−iℏ∂x) to σψλ

(x̂),

σψλ
(−iℏ∂x)2 = −ℏ2

⟨
ψλ, ∂

2
xψλ

⟩
= −ℏ2

⟨
Fψλ,F∂2xψλ

⟩
= +ℏ2

⟨
Fψ1/λ, ξ̂

2ψ1/λ

⟩
=

ℏ2

2λ−1
.

Hence, ψλ minimizes the uncertainty relation,

σψλ
(x̂) σψλ

(−iℏ∂x) =
1√
2λ

√
ℏ2λ
2

=
ℏ
2
≥ ℏ

2
.
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(ii) We will reuse the results from (i) as much as possible: the mean of φλ is x0:

Eφλ
(x̂) =

∫
R
dxx

∣∣∣e+ixξ0 ψλ(x− x0)
∣∣∣2 = ∫

R
dx (x+ x0)

∣∣ψλ(x)∣∣2
= x0

∥∥ψλ(x)∥∥2 = x0

Hence, the standard deviation of φλ coincides with that of ψλ:

σφλ
(x̂)2 = Eφλ

(
(x̂− x0)

2
)
=

∫
R
dx (x− x0)

2
∣∣∣e+ixξ0 ψλ(x− x0)

∣∣∣2
=

∫
R
dxx2

∣∣ψλ(x)∣∣2 = 1

2λ

Since the Fourier transform intertwines taking derivatives with multiplying by monomials
and maps Gaußians on Gaußians of inverse width,

(Fφλ)(ξ) =
(
Fe+ixξ0 ψλ( · − x0)

)
(ξ) =

(
Fψλ( · − x0)

)
(ξ − ξ0) = e−iξx0 ψ1/λ(ξ − ξ0),

we obtain the same integral (up to ℏ2) where λ is replaced by λ−1,

σφλ
(−iℏ∂x)2 =

ℏ2λ
2
.

Hence, also shifted Gaußians have minimal uncertainty,

σφλ
(x̂) σφλ

(−iℏ∂x) =
ℏ
2
≥ ℏ

2
.
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