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The continuous Fourier transform

Homework Problems
38. Unitarity of the Fourier transform

Show that the continuous Fourier transform F : L?(R") — L?(R"™) is unitary.

Solution:

We will only show F* F = id2gn), the arguments for 7 F* = id 2 (gn) are analogous. Parseval’s
theorem states that

(p,0) = (Foo, Fib) = (@, F* Fip)

holds for all ¢, € L*(R™). In other words, F* F1) — 1) is orthogonal to all vectors, and thus it is
necessarily 0 which proves 7* F = id 2 gn).



39. Fourier transforms of particular functions (18 points)
Compute the Fourier transforms of the following L!(R) functions:
() f(z)=e N x>0

. 1 ze|-1,+41
(i) g(z) =11 49(2) = {O v d {_LJFJ
(if) h(z) =ze 27", A >0

(iv) j=gx*g

(V) k= e_%xQ * 1[_1,+1]
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has already been computed in the lecture notes (cf. page 101), and thus
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40. Inhomogeneous heat equation

Consider the inhomogeneous heat equation

du(t) = +D Ayu(t) + f(t), u(0) = wo, (1)

with diffusion constant D > 0.

(i)

(i)
(iii)

Derive the solution u(t) to the inhomogeneous equation. You need not justify your manipu-
lations.

Verify that the solution from (i) solves (1).

Give sufficient conditions on the solution u which ensure uniqueness. Justify your answer.

Solution:

(i)

(i)

In momentum representation, the inhomogeneous heat equation reads
Ayi(t) = —DEXat) + f(t), a(0) = d,

where i(t) = F(u(t)), f(t) = F(f(t)) and tig = Fuq.

Inhomogeneous linear ODEs have a closed-form solution (equation (2.12) in the lecture notes),
N t noy e
at) = e P gg + / dse~(=9P€ £ (),
0
and applying the inverse Fourier transform to 4(t) yields
t
u(t) = G(t) * ug —l—/ dsG(t — s) * f(s).
0
First of all, u(t) satisfies the initial condition,

t
u(0) = lim <G(t) * U —|—/ dsG(t — s) * f(s)> = up.

t\0 0
It is easier to compute the time derivative in the momentum representation:

. A t o o
dat) = —DE2e P 4y — D €2 / dse (1=9IDE f(5) e~ (=D f(4)
0

s=t

— —DE&a(t) + f(t)

This is just the heat equation in momentum representation, and thus, u(t) solves the initial
value problem.

(iii) Just like in the homogeneous case u(t), dyu(t) € L*(R™) for all t > 0 is a sufficient condition

to ensure uniqueness.

Suppose u(t) were a second solution to the inhomogeneous heat equation, then their dif-
ference g(t) := wu(t) — u(t) is a solution to the homogeneous heat equation and initial value
g(0) = 0. And the only solution which satisfies g(t), 9;9(t) € L'(R™) is the trivial solution
g(t) = 0 (Theorem 6.2.15).



41. Uncertainty of Gauf functions

Compute the right-hand side of Heisenberg’s uncertainty principle
oy (2) o (—ihdy )
in one dimension for

(i) Ya(z) = {‘/; -57° A\ >0, and

(i) pa(z) = f/ge“xff) e 2(7770)° \ > 0,20, € R.

Here, the standard deviation

o) = B (1~ Eut)?)

for a selfadjoint operator H = H* with respect to 1, ||¢|| = 1, is defined as in the lecture notes via
the expectation value

Ey(H) := (¢, HY).

Solution:

(i) Firstof all, since ¢)(—z) = 1)(x) the expectation value

Ey, (2 /dx[:pe ra?

necessarily vanishes. Similarly,
By, (—ihdy) = —ih (9, Outhr) = —ih (Fipx, FOxthy)
= h(Wiys, Edryn) =0
is also 0, because the Fourier transform of a Gaulian is also a GauRian.

That means we can compute the first standard deviation by partial integration:

Ty (8)? = By, <(:i" —Ey, (53))2> Ey, (& \/>/ A 22 e
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To compute the other standard deviation, we note that since the Fourier transform of a Gauian
is a GauRian with inverse width,

(Fa) (&) = 4

3>

x2)(§) = e nt = P1/xs
we can relate o, (—ih0;) to oy, (Z),

Oy (—1h0y)? = —R2 (1hy, 02\ ) = —h* (Fapy, FOby)

. K2
= +h* (Fipyyy, 91, ) = T
Hence, 1), minimizes the uncertainty relation,
. 1 RN h_ h
Ty (8) oy (= 1h6$):ﬁ 72525



(ii) We will reuse the results from (i) as much as possible: the mean of ) is zg:

B () = [ doa e un (o~ an)| = [ do ot a0 [in o)
= ao[[¢a(@)]’

:xo

Hence, the standard deviation of ) coincides with that of ,:

0r ()7 = Epy (& — 20)?) = / dr (2 — )2 [ 5 (& — ) ’
R
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Since the Fourier transform intertwines taking derivatives with multiplying by monomials
and maps Gaullians on Gauflians of inverse width,

(Foa)(€) = (Fet™ 0 hy (-« — 20)) (&) = (Fa(+ — 30)) (€ — &) = e 4% Y1\ (§ — o),
we obtain the same integral (up to 72) where ) is replaced by A~1,
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Hence, also shifted Gaulians have minimal uncertainty,

TN (i‘) O-SOA(*ihax) =52

o | St

2



