

Foundations of Quantum Mechanics (APM 421 H)

Winter 2014 Problem Sheet 11 (2014.11.21)

Functional Calculus

Homework Problems

34. The Weyl criterion

Prove the Weyl criterion:

Theorem 1 Let H be a selfadjoint operator on a Hilbert space \mathcal{H} with domain $\mathcal{D}(H)$.

(i) $\lambda \in \sigma(H)$ holds if and only if there exists a sequence $\{\psi_n\}_{n\in\mathbb{N}}$ so that $\|\psi_n\| = 1$ and

$$\lim_{n \to \infty} \left\| H \psi_n - \lambda \, \psi_n \right\|_{\mathcal{H}} = 0.$$

(ii) We have $\lambda \in \sigma_{ess}(H)$ if and only if we can choose the sequence $\{\psi_n\}_{n \in \mathbb{N}}$ to be orthonormal.

35. Functional calculus for the momentum operator

Consider the momentum operator $P = -i\partial_x$ on $L^2(\mathbb{R})$ with domain $\mathcal{D}(P) = H^1(\mathbb{R})$.

- (i) Show $P = P^*$ and give $\sigma(P)$.
- (ii) Compute the projection-valued measure $1_{\Lambda}(P)$ where $\Lambda \subseteq \mathbb{R}$ is a Borel set.
- (iii) Explain how to define $U(t) := e^{-itP}$ and prove that U(t) U(s) = U(t+s).
- (iv) Define the selfadjoint operator $H = P^2$ via the functional calculus associated to P and prove that it coincides with $H' = -\partial_x^2$ endowed with domain $\mathcal{D}(H') = H^2(\mathbb{R})$.

36. Functional calculus for the position operator

Suppose $H = -\partial_x^2 + V = H^*$ is a selfadjoint operator on $L^2(\mathbb{R})$ with domain $\mathcal{D}(H)$, and consider the position operator $Q = \hat{x}$ equipped with domain

$$\mathcal{D}(Q) = \left\{ \varphi \in L^2(\mathbb{R}) \mid \hat{x}\varphi \in L^2(\mathbb{R}) \right\}.$$

You may use without proof that Q is selfadjoint.

(i) Show that $Q(t) := e^{+itH} Q e^{-itH}$ satisfies the Heisenberg equation of motion

$$\frac{\mathrm{d}}{\mathrm{d}t}Q(t) = \mathrm{i}\left[H, Q(t)\right].$$

A formal computation suffices (i. e. you may ignore questions of domains).

- (ii) Prove that also $Q(t) = Q(t)^*$ is selfadjoint.
- (iii) Let $(V(\hat{x})\psi)(x) := V(x)\psi(x)$ be the multiplication operator associated to a bounded Borel function $V : \mathbb{R} \longrightarrow \mathbb{C}$. Prove that $V(\hat{x})$ coincides with V(Q) (defined through functional calculus associated to Q).
- (iv) Prove $(V(Q))(t) := e^{+itH} V(Q) e^{-itH}$ coincides with V(Q(t)).

Hand in home work on: Friday, 28 November 2014, before class