
Foundations of
QuantumMechanics

(APM 421 H)

Winter 2014
Solutions 12
(2014.11.28)

Homework for Bonus Points

This homework sheet is for bonus points. However, all problems are immediately relevant for the final exam
and finishing them will be useful as part of the preparation independently of the bonus points. You need
not finish all problems, anything you submit will count in your favor.

Homework Problems

37. The Banach space of trace class operators (10 points)
Let A ∈ B(H) be a bounded operator on an infinite-dimensional, separable Hilbert space. Then
define the trace

TrA :=

∞∑
n=1

⟨φn, Aφn⟩

where {φn}n∈N is an arbitrary orthonormal basis ofH. We have already shown that the definition
of Tr does not depend on the choice of basis. The goal of this problem is to characterize elements
of the Banach space of trace class operators

T 1(H) :=
{
A ∈ B(H) | Tr |A| <∞

}
with norm ∥A∥T 1 := Tr |A|. This will be done in steps:
(i) For an arbitrary A ∈ B(H), define |A| :=

√
A∗A via functional calculus. Prove that |A| ≥ 0.

Now supposeH ∈ B(H) is bounded and selfadjoint so that σdisc(H) = {En}n∈I and σess(H) ⊆ {0}.
Here, the eigenvalues En are counted according to their multiplicities, and the index set I is N in
caseH has infinitely many eigenvalues and I = {1, . . . , N} if the number of non-zero eigenvalues
is finite.
(ii) Show that any eigenfunction ofH and is an eigenfunction of |H|.
(iii) Prove |σ(H)| = σ(|H|).
Now supposeH ∈ B(H) is just bounded and selfadjoint.
(iv) Use the Weyl Criterion to show that Tr |H| <∞ implies σess(|H|) = σess(H) ⊆ {0}.
(v) Show that forH ∈ T 1(H) we have

∥H∥T 1 =

∞∑
n=1

|En|

where σp(H) = {En}n∈N (i. e. En may be 0).
(vi) Let ρ be a density operator. Prove that σess(ρ) ⊆ {0} and that σdisc(ρ) ⊆ [0, 1].
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Solution:

(i) H := A∗A is a bounded selfadjoint operator. Moreover, A∗A ≥ 0 since⟨
ψ,A∗Aψ

⟩
= ∥Aψ∥2 ≥ 0.

Hence, we can take the square root ofH = A∗A defined via functional calculus. The fact that
λ 7→

√
λ is unbounded is immaterial because σ(H) is a bounded subset of [0,+∞) and f(H)

is solely determined by the behavior of f on σ(H). Thus, we set

|A| :=
√
A∗A =

∫
σ(A∗A)

1dλ(A
∗A)

√
λ.

(ii) First of all, under these conditions H has a basis of eigenvalues, and we can express H just
as in Problem 33. The fact that we admit the case σess(H) = {0} does not change the story,
because the zero eigenvalue does not contribute to the sum

H =
∑
n∈N

En |φn⟩⟨φn|.

Consequently, we have by functional calculus

|H| =
∑
n∈N

|En| |φn⟩⟨φn|,

and any eigenfunction ofH to En is an eigenfunction of |H| to |En|.
(iii) This follows directly from (ii). Alternatively, we can argue that Theorem 6.2.4 applies to the

continuous function λ 7→ |λ|: Because H is bounded and σess(H) ⊆ {0} by assumption,
and accumulation points of eigenvalues lie in the essential spectrum, the arguments in Prob-
lem 33 (iv) imply σess(H) = {0} is non-empty. Hence, we can omit the closure, and we have
shown ∣∣σ(H)

∣∣ = σ(|H|).

(iv) To simplify the notation, we assumewithout loss of generality thatH ≥ 0 (meaningH = |H|)
for otherwise replace H with |H| in the following. Assume there exists a E ∈ σess(H) =
σess(|H|) with E ̸= 0, in fact E > 0. Thus, by the Weyl criterion, there exists an orthonormal
sequence φn with

lim
n→∞

∥∥(H − E)φn

∥∥ = 0.

This also implies that ⟨φn,Hφn⟩
n→∞−−−→ E, because expressing the norm in terms of the scalar

product yields∥∥Hφn − Eφn

∥∥2 = ∥∥Hφn

∥∥2 + E2 ∥φn∥2 − ⟨E φn,Hφn⟩ − ⟨Hφn, E φn⟩

=
∥∥Hφn

∥∥2 + E2 − 2E ⟨φn,Hφn⟩
n→∞−−−→ 0.

Given that ∥Hφn∥ approaches E, we deduce

lim
n→∞

⟨φn,Hφn⟩ = E.

By discarding the firstN elements, we can ensure that ⟨φn, Hφn⟩ ≥ E/2, for instance.
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Then to compute the tracewemaypick anorthonormal basis {ψn}n∈Nwhich contains {φn}n∈N.
With that basis andH ≥ 0 we obtain a contradiction,

+∞ > Tr |H| =
∞∑
n=1

⟨ψn, |H|ψn⟩ ≥
∞∑
n=1

⟨φn,Hφn⟩ ≥
∞∑
n=1

E

2
= +∞.

That meansH cannot be trace class if σess(H) ̸⊆ {0}.
(v) For this computation, we merely use the eigenbasis {φn}n∈N of H (which by (ii) is also an

eigenbasis for |H|) to compute the trace:

∥∥H∥∥
T 1 = Tr |H| =

∞∑
n=1

⟨φn, |H|φn⟩ =
∞∑
n=1

|En|

(vi) Density operators ρ are selfadjoint and non-negative operators with trace 1. In particular,
density operators are trace class, and thus, apart from 0, their spectrum is purely discrete.
This means we have σess(ρ) ⊆ {0}. Moreover, ρ ≥ 0 implies that the eigenvalues En ≥ 0 are
non-negative and |ρ| = ρ. Thus, by (iv) the eigenvalues En of ρ have to sum up to 1,

1 = Tr ρ =

∞∑
n=1

En.

Consequently, 0 ≤ En ≤ 1 holds and we have shown σ(ρ) = σdisc(ρ) ∪ σdisc(ρ) ⊆ [0, 1].

3



38. Holomorphic functional calculus (10 points)
Let H = H∗ be a bounded selfadjoint operator and f a function which is holomorphic in a neigh-
borhood of σ(H). Then we define f(H) via holomorphic functional calculus via

fΓ(H) :=
i
2π

∫
Γ
dz f(z) (H − z)−1

where Γ is a contour which is contained in the region of holomorphy of f which encloses σ(H).
(i) Prove that fΓ(H) coincides with f(H) defined via functional calculus from Chapter 6.
(ii) Use functional calculus to prove that fΓ(H) does not depend on the choice of contour, i. e. if

Γ′ is another contour enclosing σ(H), then fΓ(H) = fΓ′(H).
(iii) Use one of the resolvent identities and results from complex analysis to prove

fΓ(H) gΓ(H) = (f g)Γ(H).

Hint: Do not use functional calculus here (because then, the exercise is trivial).

Solution:

(i) AsH is bounded, its spectrum σ(H) is a compact subset ofR andC. And because holomorphic
functions are smooth, they are bounded on the compact subset σ(H). Hence, functional cal-
culus from Chapter 6 applies, and we can write the resolvent in terms of the projection-valued
measure P (Λ) = 1Λ(H),

(H − z)−1 =

∫
σ(H)

dP (λ) (λ− z)−1.

Thus, if we combine this with Cauchy’s integral theorem

f(λ) =
1

i2π

∫
Γ
dz f(z) (z − λ)−1,

we obtain fΓ(H) = f(H),

fΓ(H) =
i
2π

∫
Γ
dz f(z)

∫
σ(H)

dP (λ) (λ− z)−1

=

∫
σ(H)

dλ dP (λ)
(

1

i2π

∫
Γ
dz f(z) (z − λ)−1

)
=

∫
σ(H)

dλ dP (λ) f(λ).

(ii) Since f(H) (defined via functional calculus) does notmake reference to any particular contour
and the arguments from (i) go through as long as the contour encloses σ(H), this follows
directly from (i).

(iii) We merely need to make a slight modification to the arguments in Chapter 6.4, pages 97–99:
choose two contours Γ and Γ′ which both enclose σ(H) and Γ′ is assumed to be contained in
the interior of Γ. Then using the (first) resolvent identity

−(z − w) (H − z)−1 (H − w)−1 = (H − z)−1 − (H − w)−1
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to write the product of resolvents as a difference of resolvents, we obtain

fΓ(H) gΓ′(H) =

(
i
2π

)2 ∫
Γ
dz

∫
Γ′
dw f(z) g(w) (H − z)−1 (H − w)−1

= −
(

i
2π

)2 ∫
Γ
dz

∫
Γ′
dw f(z) g(w) (z − w)−1 (H − z)−1

+

(
i
2π

)2 ∫
Γ
dz

∫
Γ′
dw f(z) g(w) (z − w)−1 (H − w)−1.

Because Γ′ is contained in the interior of Γ, the function w 7→ g(w) (z −w)−1 is holomorphic
on a region which contains Γ′; in particular, it has no residuals in the interior of Γ′, and thus∫

Γ′
dw g(w) (z − w)−1 = 0

which means the first term in the sum vanishes. On the other hand, z 7→ f(z) (z − w)−1 does
have a single residual in the interior of Γ, and consequently, we obtain∫

Γ
f(z) (z − w)−1 = −i2π f(w).

That means we have shown

. . . = −
(

i
2π

)2 ∫
Γ
dz

(∫
Γ′
dw g(w) (z − w)−1

)
︸ ︷︷ ︸

=0

f(z) (H − z)−1

+

(
i
2π

)2 (∫
Γ′
dw

∫
Γ
dz f(z) (z − w)−1

)
︸ ︷︷ ︸

=−i2π f(w)

g(w) (H − w)−1

=
i
2π

∫
Γ′
dw f(w) g(w) (H − w)−1 = (f g)Γ′(H).

By (ii) we can replace Γ′ by Γ on the left- and right-hand side, meaning we have shown

fΓ(H) gΓ(H) = (f g)Γ(H).
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39. Selfadjointness (10 points)
Consider the Hamilton operator

H = −∆x −
1− cos |x|

|x|3

endowed with domainD(H) = H2(R3).
(i) Prove thatH is selfadjoint.
(ii) How many eigenvalues doesH have below 0? Justify your answer.

Solution:

(i) The domain D(H) = H2(R3) coincides with the domain of selfadjointness of −∆x, and we
need to check whether we can apply Theorem 5.2.25, i. e. whether the potential is of class
L2(R3) + L∞(R3). Clearly, away from x = 0, the potential is bounded, and all we need to
check is whether the singularity at x = 0 is square integrable. Taylor expanding 1 − cos r
around r = |x| = 0 yields

1− cos r
r3

= −
∑∞

n=1
(−1)n

(2n)! r
2n

r3

=
1

r

∞∑
n=0

(−1)n

(2n+ 2)!
r2n, (1)

and the potential has a Coulombic 1/|x| singularity at x = 0. That means the potential is in
L2(R3) + L∞(R3), and consequently, Theorem 5.2.25 applies –H is selfadjoint.

(ii) The sum on the right-hand side of equation (1) is non-negative for all r ≥ 0, and thus

H = −∆x −
1− cos |x|

|x|3
≤ −∆− 1

2 |x|
= HC

holds onD(H) = H2(R3) = D(HC). That means we also deduce

En(H) ≤ En(HC)

where theEn are defined as on p. 71 of the lecture notes. SinceHC has infinitely many eigen-
values below 0, so doesH .
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40. Hamilton operators for spin systems
Define the operator

H0 = −i∂x1 ⊗ σ1 − i∂x2 ⊗ σ2 =

(
0 −i∂x1 − ∂x2

−i∂x1 + ∂x2 0

)
equipped with domainD(H0) = C∞

c (R2,C2) where σ1 and σ2 are the first two Pauli matrices.
(i) Show thatH0 is equivalent to a hermitian-matrix-valued multiplication operator.
(ii) Prove thatH0 is essentially selfadjoint.
(iii) Is the the selfadjoint extensionH := H0 bounded from below? Justify your answer.
(iv) Show thatK := C

(
idL2(R2) ⊗ σ2

)
commutes withH onD(H).

Solution:

(i) By Fourier transform we obtain

HF
0 := F H0F−1 = ξ̂1 ⊗ σ1 + ξ̂2 ⊗ σ2 =

(
0 ξ̂1 − iξ̂2

ξ̂1 + iξ̂2 0

)
=: T (ξ̂)

where HF
0 is endowed with the domain D(HF

0 ) = FC∞
c (R3,C2). Put another way, H0 is

unitarily equivalent to the matrix-valued multiplication operator associated to T .
(ii) The essential selfadjointness of H0 is equivalent to that of HF

0 . Since T (ξ) is a hermitian
matrix, the operatorHF

0 (and consequently alsoH0) is symmetric: for φ,ψ ∈ C∞
c (R3,C2) we

thus obtain ⟨
φ,H0ψ

⟩
=

⟨
Fφ,HF

0 Fψ
⟩
=

⟨
Fφ, T (ξ̂)Fψ

⟩
=

⟨
T (ξ̂)Fφ,Fψ

⟩
=

⟨
H0φ,ψ

⟩
.

H0 andHF
0 are also densely defined, and thus, we may use the Fundamental Criterion, i. e. we

need to check whether ker(H∗
0 ± i) = {0}. Again, we may phrase that in terms of T (ξ̂): the

eigenvalues of T (ξ) are real, namely± |ξ|, which implies that the equation

T (ξ̂)φ̂± = ∓iφ̂±

has no non-trivial solution. Thus,HF
0 andH0 are essentially selfadjoiint.

(iii) H is not bounded from below, because we can write T as

HF = T (ξ̂) = |ξ| P+(ξ̂)− |ξ| P−(ξ̂)

and evidently, the spectrum ofHF is all of R, σ(H) = σ(HF ) = R.
(iv) First of all, we note thatK leaves the domain invariant. Thenusingσ2j = idC2 , σ1 σ2 = −σ2 σ1,

C σ1 = σ1C and C σ2 = −σ2C, we deduce

K
(
−i∂xj ⊗ σj

)
=

(
−i∂xj ⊗ σj

)
K

for j = 1, 2, meaning that also the sum commutes with K on the domain of selfadjointness
D(H),

[H,K] = 0.
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41. The discrete position operator
Let us define the position operatorQ on ℓ2(Z) via

(Qψ)(n) := nψ(n)

where the domainD(Q) ⊆ ℓ2(Z) has yet to be determined.
(i) Find the domain of selfadjointness forQ and verify thatQ is then indeed selfadjoint.
(ii) Compute σ(Q) and find all spectral decompositions σ♯(Q) where ♯ stands for p, c, r, disc, ess,

pp, sc and ac.
(iii) Compute the projection-valued measure 1Λ(Q) explicitly where Λ ⊆ R is a Borel set.

Solution:

(i) We propose to use

D(Q) =
{
ψ ∈ ℓ2(Z) | n̂ψ ∈ ℓ2(Z)

}
=

{
ψ ∈ ℓ2(Z)

∣∣ ∑
n∈Z

n2
∣∣ψ(n)∣∣2 <∞

}
which is clearly the maximal domain. Clearly, the maximal domain is dense.
A direct computation shows thatQ is symmetric onD(Q):

⟨φ,Qψ⟩ =
∑
n∈Z

φ(n) (Qψ)(n) =
∑
n∈Z

φ(n)nψ(n)

=
∑
n∈Z

nφ(n)ψ(n) =
∑
n∈Z

(Qφ)(n)ψ(n) = ⟨Qφ,ψ⟩

We use the Fundamental Criterion to show essential selfadjointness first: to see that ker(Q∗ ±
i) = {0}, we note that

n̂φ± = ∓iφ±

cannot have a non-trivial solution, because eigenvalues of real-valued multiplication opera-
tors are necessarily real. Hence,Q is essentially selfadjoint.
To showD(Q∗) = D(Q) (i. e.Q∗ = Q), we note that for symmetric operatorsD(Q) ⊆ D(Q∗),
and because D(Q) is the maximal domain, the domain of Q∗ has to coincide with that of Q.
Hence,Q = Q∗ is selfadjoint.

(ii) The ψk(n) = δkn are the eigenfunctions ofQ to the eigenvalue k ∈ Z,(
Qψk

)
(n) = nψk(n) = k δkn = k ψk(n).

Clearly, every eigenvalue is non-degenerate. Also, {ψk}k∈Z form an orthonormal basis of
ℓ2(Z). Consequently, we have the following decompositions of the spectrum:

σ(Q) = Z = σp(Q) = σpp(Q) = σdisc(Q)

σess(Q) = ∅ = σr(Q) = σc(Q) = σsc(Q) = σ(Q)

(iii) For any Borel set Λ ⊆ R the projection-valued measure is

1Λ(Q) =
∑
k∈Z

1Λ(k) |ψk⟩⟨ψk|

where the ψk(n) = δkn are the eigenfunctions to the eigenvalue k.
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